当前位置:文档之家› 屋顶光伏电站简介及案例

屋顶光伏电站简介及案例

屋顶光伏电站简介及案例
屋顶光伏电站简介及案例

用户侧并网屋顶光伏电站介绍用户侧并网光伏发电系统

①太阳电池②开关/保护/防雷③电缆④并网逆变器⑤电度表(光伏电量)

经济和社会效益分析

经济效益

一个10MWp的光伏电站,按系统效率80%,年利用小时数1100小时(江苏地区平均值)计算,一年可发电10000000*1100/1000=1100万度电,按1度电可比原购电价格便宜0.15元,可节省购电用户运营成本近165万元。

10MWp电站总投资约1.2亿左右,根据新能源产业政策,项目建成后税收是三免三减半(每个地区的政策要了解清楚),第四年后建成后每年可缴税约300~400万。

社会效益

每年可节省标准煤约2800t,减排烟尘约700t,减排灰渣约1000t,减排二氧化碳约5960t,减排二氧化硫约56.84t。

屋顶光伏电站案例

盐城阜宁3MWp屋顶光伏发电项目

(中国2009年度最大已并网屋顶光伏电站)

1)项目地址:盐城阜宁3MWp屋顶光伏电站位于阜宁经济开发区荣威塑胶厂。

2)项目规模:3MW(规划9.18MWp)。

3)占地面积:5万平米。

4)组件类型:晶硅电池。

5)组件品牌:常州天合,江苏林洋。

6)逆变器规格:500KW。

7)逆变器品牌:Satcon(美国赛康)。

8)支架类型:固定倾角(30度)支架。

9)支架品牌:中环光伏。

10)接入系统:电站所发电量升压至10kV 直接并入地区电力网。

11)进场施工时间:2009年10月10日。

12)并网时间:2009年12月31日正式并网发电。

13)系统组成:盐城阜宁3MWp屋顶并网光伏电站采用分块发

电,集中并网方案,采用晶硅电池组件。该工程由光伏发电系统、电气系统、接入系统组成,分9个厂房,6个子系统,。每个子系统分别由太阳电池组件、支架、直流防雷汇流箱、并网逆变器、升压变压器等组成。

本项目建设规模为3MW,全部采用固定倾角安装,共安装220W 晶硅太阳能电池13664块。

盐城阜宁3MWp屋顶光伏发电项目运行寿命25年,总体效率为80%,预计电站在25 年运营期内年平均上网电量为337万kW·h,总上网电量为8425 万kW·h,与火电厂相比每年可为电网节约标煤约1028吨,在25年使用期内共节省标煤2.57万吨。项目同时发挥重要的环境效益,每年减轻排放温室效应气体CO2约2743吨;每年减少排放大气污染气体SOx约21吨,NOx约7吨。

项目建设过程图片

已完工项目图片

姜堰2MWp屋顶光伏电站

宿迁泗阳4MWp屋顶光伏电站

营口晶晶1MWp屋顶光伏电站

前期选址实景照片

分布式光伏电站火灾案例及故障分析

分布式光伏电站火灾案例及故障分析近年来,太阳能发电的应用日趋广泛,发展迅速,而越来越多的问题也开始暴露在人们面前,其中光伏发电系统的火灾问题,特别是与建筑结合的分布式发电系统的火灾,可能造成人身、财产的巨大损失,尤其应引起业内重视。有国外的保险公司数据统计发现:光伏电站中火灾事故以32%的赔偿金额占比排名第一,雷击过电压事故以30%的赔偿金额占比紧随其后。但是火灾事故数量仅占比2%,排名最后,这也表明了火灾事故造成的损失远远高于其它事故。 光伏电站并非洪水猛兽,和家用电力体系一样,都是存在一定风险,但可以通过各种防护措施将事故发生率降至无限趋近于零。研究整个光伏电站的建设,光伏电站火灾危险性较大的设备有汇流箱、逆变器、连接器、配电柜及变压器。我们这里将重点针对分布式光伏电站的火灾源头、起因进行分析: 一、分布式电站设备问题 随着光伏电站在中国的快速发展,造成了光伏组件、逆变器等光伏设备的低价竞争,也就带来了部件的质量问题,据有关研究表明,部件质量问题大约占据光伏电站整个故障的50%。据第三方检测认证机构北京鉴衡认证中心相关负责人透露,通过对400多个电站的测试发现,光伏组件主要存在热斑,本身工艺隐裂或破损,直流电弧等质量问题。 1. 光伏组件 1.1 热斑效应

在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。以下三幅图都属于热斑效应。 图1-1 方阵之间遮挡图1-2 鸟粪遮挡图1-3 树荫遮挡 热斑效应的后果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升,引起组件自燃。图1-4:当光伏组件产生热斑效应,发生的自燃现象。图1-5:德国某光伏电站因光伏组件自燃而引起的火灾。为防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。 图1-4 组件自燃现象图1-5 某电站组件自燃引起的火灾1.2 直流电弧

发电厂安全事故案例分析和经验总结(含68个电厂事故分

发电厂安全事故案例 分析和经验总结 目录 大唐集团电厂三起事故的通报 (4) 托克托电厂"10.25"事故通报 (6) 关于山西神头第二发电厂主蒸汽管道爆裂事故有关情况的报告 (9) 华能汕头电厂1999 年2 号汽轮机高压转子弯曲事故情况通报 (11) 裕东电厂#1 机组#5 轴瓦烧损事故报告 (14) 裕东电厂“10.28”#2 机组(300MW)停机事故的通报 (16) 一起发电厂220kV 母线全停事故分析 (19) 宁波北仑港发电厂“ 3.10”电站锅炉爆炸事故分析 (20) 乌石油化热电厂3 号汽轮发电机组“2.25”特别重大事故详细原因分析 (24) 秦岭发电厂200MW-5 号汽轮发电机组轴系断裂的特大事故分析 (26) 某电厂电工检修电焊机触电死亡 (27) 湛江电厂“ 6.4”全厂停电及#2 机烧轴瓦事故通报 (28) 关于2007 年3 月2 日某电厂三号锅炉低水位MFT 动作的事故通报 (30) 某厂#4 机跳闸事故分析........................................................................................ .. (31) 大唐韩城发电厂“8.3”全厂停电事故通报 (34) 托克托电厂“8.16”检修高加烫伤事故分析 (36) 沙洲电厂“10.14”电气误操作全厂停电事故通报 (39) 广西来宾 B 电厂连续发生四起同类设备责任事故 (43) 郑州热电厂发电机定子接地保护动作跳闸分析 (43) 汉川电厂一次机组断油烧瓦事故的思考 (45) 大唐洛阳热电公司“1.23”人身死亡事故的通报 (47) 华能榆社发电有限责任公司电气运行人员走错间隔违章操作人身死亡事故 (48) 王滩发电公司“ 6.10”电气误操作事故分析报告 (49) 大同二电厂5 号机组在小修后启机过程中发生烧瓦恶性事故 (53) 2006 年10 月17 日台山发电公司#4 机汽轮机断油烧瓦事故 (55) 泸州电厂“11.15”柴油泄漏事件 (58) 监护制不落实工作人员坠落 (60) 安全措施不全电除尘内触

工商业屋顶分布式光伏发电系统可研报告

工商业屋顶分布式光伏发电系统可 研报告 目录

称............................................................................ (1) 二、地理位置........................................................................... (1) 三、太阳能资源........................................................................... (1) 四、工程地质........................................................................... (2) 五、区域经济发展概况........................................................................... . (2) 六、工程规模及发电量........................................................................... . (2) 七、光伏系统设计方案........................................................................... . (3) 八、光伏阵列设计及布置方案........................................................................... .. (3) 九、电力接入系统方案........................................................................... . (3) 十、监控及保护系统........................................................................... . (3)

屋顶光伏电站成本计算与效益分析

屋顶光伏电站成本计算与效益分析 一、补贴说明: 光伏发电每度电国家补贴元每度补贴20 年,各个地方还有地方补贴,北京为元每度补贴 5 年。 二、方式说明 (一)全自发自用 指的是屋顶光伏所发电量全额消纳。 此方式投资回报率最高,例如商业用电元每度,光伏发电国家每度电补贴元(按照实际用量算)补贴20 年,在此基础上北京市政府再给补贴每度电元(各地政策不一样),那么一度电实际产生的价值为元(省了元电费再加上元补贴)在此基础上的投资回报率非常高,年收益率在30%左右。 (二)自发自用余额上网指的是屋顶光伏所发电量不能全额消纳,剩余电量上网卖给供电局。 此方式自用部分同上,上网部分按照当地上网电价加国家补贴计算。例如北京上网电价元每度,那么一度电的实际价值为元加元。此方式投资回报率取决于用电量,用电量越大回报率就越高。 (三)全额上网 指的是屋顶光伏所发电量全部卖给供电局,根据各地上网电价不同,一般 元每度电。此方式投资回报率较低,年收益率在15%左右。 根据前段时间炒得很热的“绿屋顶行动”计划,我们也总结了一下,测算方法如下

成本核算: 光伏发电成本目前大约7元/瓦,10平米屋顶大概能安装1kw的光伏,也就是说10 平米的屋顶成本7000 元。 发电量计算: 1kw 的光伏组件光照一小时能发电1 度(理论值),年发电量是 按照年日均光照时间计算的,以北京为例,北京的日均光照时间大约为小时,那么1kw的光伏组件每天能发电度(理论值) 案例分析: 以1w平米屋顶做例子,1w平米可安装1000kw的光伏组件,那么投资成本为700w1w平米屋顶每天可发电1000*=4200度(理论),年发电1533000度。 如果是自发自用,每度电能产生元的价值,那么一年能产生1533000*=3096660 元,也就是说2 年多就能回本,屋顶光伏发电设备的理论使用寿命是25年(实际还要长)也就是说后面20多年都是纯利润。(实际发电量因设备损耗等原因会低一些,但也不会太多,投资回报率在 3 年多一点。) 三、合作方式 租赁屋顶: 由我公司出资按照平米数计算每年支付屋顶租金。(具体费用根据用电量和并网方式计算) 电费打折:屋顶光伏所发电量给予企业价格折扣。(一般为9折左右,根据具体项目不同进行确定) 自行出资建设:由我方承担工程施工,企业出资建设,之后电站 由企业持有,免费用电加补贴。 合资建设:由企业和我方共同出资建设,根据出资比例逐年进行

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法 关键词: 光伏电站光伏发电光伏运维 第一章影响光伏电站发电量的因素 光伏电站发电量计算方法,理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率。但由于各种因素的影响,光伏电站发电量实际上并没有那么多,实际年发电量=理论年发电量*实际发电效率。那么影响光伏电站发电量有哪些因素?以下是我结合日常的设计以及施工经验,给大家讲一讲分布式电站发电量的一些基础常识。 1.1、太阳辐射量 太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如 PV-SYS、RETScreen得到。 1.2、太阳能电池组件的倾斜角度

从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下: A、纬度0°~25°,倾斜角等于纬度 B、纬度26°~40°,倾角等于纬度加5°~10° C、纬度41°~55°,倾角等于纬度加10°~15° 1.3、系统损失 和所有产品一样,光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。 1.3.1组合损失

现阶段光伏电站的清洁主要有,洒水车,人工清洁,机器人三种方式。 1.3.3温度特性 温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了减少温度对发电量的影响,应该保持组件良好的通风条件。 1.3.4线路、变压器损失 系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。系统维护中要特别注意接插件以及接线端子是否牢固。 1.3.5逆变器效率 逆变器由于有电感、变压器和IGBT、MOSFET 等功率器件,在运行时,会产生损耗。一般组串式逆变器效率为97-98%,集中式逆变器效率为98%,变压器效率为99%。 1.3.6阴影、积雪遮挡

3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站 设 计 方 案 设计单位: xxxx有限公司 编制时间: 2016年月

目录 1、项目概况................................................ - 2 - 2、设计原则................................................ - 3 - 3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 - 4.1、光伏组件选型....................................... - 8 - 4.2、光伏并网逆变器选型................................. - 9 - 4.3、站址的选择......................................... - 9 - 4.4、光伏最佳方阵倾斜角与方位.......................... - 11 - 4.5、光伏方阵前后最佳间距设计.......................... - 12 - 4.6、光伏方阵串并联设计................................ - 13 - 4.7、电气系统设计...................................... - 13 - 4.8、防雷接地设计...................................... - 14 - 4、财务分析............................................... - 18 - 5、节能减排............................................... - 19 - 6、结论................................................... - 20 -

最新电厂安全事故案例_电厂安全事故案例分析.doc

最新电厂安全事故案例_电厂安全事故案例 分析 最新电厂安全事故案例_电厂安全事故案例分析 电厂安全事故案例篇1 2007年4月19日无锡供电公司220kV石塘湾变电所25331闸刀因控制回路绝缘不良而带地线自动合闸,220kV母差保护动作跳闸,导致变电所全停电。220KV变电所全停电意味着什么?意味着直接影响到千千万万的单位、居民的用电,面临的直接经济损失是无法估量的,这一事故令我们发人深醒。 电厂安全事故案例篇2 6日下午14时左右,北京多名网友发微博称望京桥附近出现巨响,有网友称系太阳宫热电厂爆炸。从网友发布的照片看,电厂附近烟雾缭绕,附近马路上有大量碎片。 据附近居民介绍,爆炸当时声响震耳欲聋,爆炸冲击力很大,数百米内有震感,房瓦被震飞,炸碎的砖石瓦砾等散落到电厂外的道路上,热电厂的一栋厂房被炸塌一角,导致西坝河路一度无法通行。 据北京消防总队119调度指挥中心证实,位于北京市朝阳区太阳宫公园东侧的一个热电厂发生爆炸。该指挥中心下午14时05分左右接警后,共派出7辆消防车赶赴现场,现场并无明火。 北京市急救中心120热线14时09分也接到电话,到现场后发现,爆炸造成两死一伤,均为该厂女工,其中一名大面积烧伤。死者遗体及伤者均被送往积水潭医院。 电厂安全事故案例篇3 发生事故日期:1987年4月4日14日15时32分,发生

事故地点:清镇电厂扩建工程施工现场,主要原因:防护装置缺乏,伤亡情况:死亡1人,事故简要经过:起架工郭xx等三人带领民工六人上烟囱提升盘。当吊盘由196米提升到197。5米时,六个倒链中有两个已提满行程。这时郭xx和郭xx两人各换一个倒链。在取下倒链钩子时,引起吊盘轻微晃动。此时民工杨xx站在吊盘较高的一侧(因六名民工拉倒链不同步而产生倾斜,盘径5。4米)有离吊盘边缘只有约200~300mm。这时吊盘与砖内衬之间有400mm空隙,杨xx(男,19岁,包工队力工)从此空隙中坠落至地面,经抢救无效死亡。 电力事故案例心得体会 安全无小事这句警醒我们的话在12月4日这天得到了淋漓尽致的体现。不管是运行人员、检修人员还是基层管理工作者,工作中都必须从全局出发,从细处入手,越是细微的地方,越是应该引起我们的高度重视。俗话说:千里之堤,溃于蚁穴。不能因为这是小事而放松警惕,小事同样要求我们以认真负责的态度对待,以严谨细致的工作作风处理。只有这样,我们在工作中才能做到万无一失,确保安全。针对12月4日的事故,总结得出以下几点心得体会: 1.工作必须严格遵守各项规章制度,按流程办事。 省公司入主明星电力以来,给明星公司带来了新的管理形式和管理理念。但我们部分职工未及时跟进,没有做到清空思想,转变观念,做事仍然存在想当然,不负责任,随意操作。无视安全规程和各项规章制度,这是导致本次事故发生的根源。制度犹如法律,制定出来后就要求我们共同遵守,流程是我们工作的过程,应等同于制度,同样要求我们严格遵守。不按制度执行,不按流程办事,就会出现差错,最终酿成事故。 2.加强自身学习,提高技能水平 为避免安全事故的再次发生,我们必须对12.4事故进行分析总结,吸取教训,总结经验。首先应加强自身对安全规程和各类规章制度的学习,在工作中严格执行各项规章制度的要求,不越雷池半步。如典型的两票三制、六要十二步。规程及规章

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

屋顶光伏发电施工方案

屋顶光伏发电施工方案 安装屋顶光伏发电屋顶类型: 一般情况下分为水平屋顶和斜屋顶,水平屋顶即屋顶是平面的,主要以水泥屋顶为主。斜屋顶包括彩钢斜屋顶和陶瓦屋顶。若以地区划分的话,南方一般以角度大的斜屋顶资源为主;中部地区兼有,而东北地区则大部分是陶瓦屋顶资源。 日常用电单位为千瓦时,安装洛阳智凯太阳能光伏发电系统通常以功率单位千瓦来计算。安装设备位置主要以向阳面为主,根据面积可测算安装的光伏发电系统大小,详细参考如下表: 各类屋顶光伏发电施工方案: 1)水平屋顶:在水平屋顶上,光伏阵列可以按最佳角度安装,从而获得最大发电量;并且可采用常规晶硅光伏组件,减少组件投资成本,往往经济性相对较好。但是这种安装方式的美观性一般。 2)倾斜屋顶:在北半球,向正南、东南、西南、正东或正西倾斜的屋顶均可以用于安装光伏阵列。在正南向的倾斜屋顶上,可以按照最佳角度或接近最佳角度安装,从而获得较大发电量;可以采用常规的晶体硅光伏组件,性能好、成本低,因此也有较好经济性。并且与建筑物功能不发生冲突,可与屋顶紧密结合,美观性较好。其它朝向(偏正南)屋顶的发电性能次之。 3)光伏采光顶:指以透明光伏电池作为采光顶的建筑构件,美观性很好,并且满足透光的需要。但是光伏采光顶需要透明组件,组件效率较低;除发电和透明外,采光顶构件要满足一定的力学、美学、结构连接等建筑方面要求,组件成本高;发电成本高;为建筑提升社会价值,带来绿色概念的效果。 立面安装、侧立面安装形式主要指在建筑物南墙、(针对北半球)东墙、西

墙上安装光伏组件的方式。对于多、高层建筑来说,墙体是与太阳光接触面积最大的外表面,光伏幕墙垂直光伏幕墙是使用的较为普遍的一种应用形式。根据设计需要,可以用透明、半透明和普通的透明玻璃结合使用,创造出不同的建筑立面和室内光影效果。 双层光伏幕墙、点支式光伏幕墙和单元式光伏幕墙是目前光伏幕墙安装中比较普遍的形式。目前用于幕墙安装的组件成本较高,光伏系统工程进度受建筑总体进度制约,并且由于光伏阵列偏离最佳安装角度,输出功率偏低。除了光伏玻璃幕墙以外,光伏外墙、光伏遮阳蓬等也可以进行建筑立面安装。 因每一个用户住宅都是不一样的结构,需要通过专业的场地分析、设备选择和业主的需求设计一套符合业主的发电需求、资金预算、房屋结构的系统施工方案。

分布式光伏电站火灾案例及故障分析

分布式光伏电站火灾案例及故障分析 近年来,太阳能发电的应用日趋广泛,发展迅速,而越来越多的问题也开始暴露在人们面前,其中 光伏发电系统的火灾问题,特别是与建筑结合的分布式发电系统的火灾,可能造成人身、财产的巨大损 失,尤其应引起业内重视。有国外的保险公司数据统计发现:光伏电站中火灾事故以32%的赔偿金额占比排名第一,雷击过电压事故以30%的赔偿金额占比紧随其后。但是火灾事故数量仅占比2%,排名最后,这也表明了火灾事故造成的损失远远高于其它事故。 光伏电站并非洪水猛兽,和家用电力体系一样,都是存在一定风险,但可以通过各种防护措施将事 故发生率降至无限趋近于零。研究整个光伏电站的建设,光伏电站火灾危险性较大的设备有汇流箱、逆 变器、连接器、配电柜及变压器。我们这里将重点针对分布式光伏电站的火灾源头、起因进行分析: 一、分布式电站设备问题 随着光伏电站在中国的快速发展,造成了光伏组件、逆变器等光伏设备的低价竞争,也就带来了部 件的质量问题,据有关研究表明,部件质量问题大约占据光伏电站整个故障的50%。据第三方检测认证机构北京鉴衡认证中心相关负责人透露,通过对400多个电站的测试发现,光伏组件主要存在热斑,本 身工艺隐裂或破损,直流电弧等质量问题。 1.光伏组件 1.1热斑效应 在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组 件所产生的能量。被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电 池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。以下三幅图都属于热斑效应。 图1-1 方阵之间遮挡图1-2 鸟粪遮挡图1-3 树荫遮挡 热斑效应的后果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升, 引起组件自燃。图1-4:当光伏组件产生热斑效应,发生的自燃现象。图1-5:德国某光伏电站因光伏组 件自燃而引起的火灾。为防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联 一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。

典型电气事故案例分析

典型电气事故案例分析 渤海石油职业学院阎相环 一、接地保护线烧伤人 1、事故经过 1994年4月6日下午3时许,某厂671变电站运行值班员接班后,312油开关大修负责人提出申请要结束检修工作,而值班长临时提出要试合一下312油开关上方的3121隔离刀闸,检查该刀闸贴合情况。于是,值班长在没有拆开312油开关与3121隔离刀闸之间的接地保护线的情况下,擅自摘下了3121隔离刀闸操作把柄上的“已接地”警告牌和挂锁,进行合闸操作。突然“轰”的一声巨响,强烈的弧光迎面扑向蹲在312油开关前的大修负责人和实习值班员,2人被弧光严重灼伤。 2、原因分析 本来3121隔离刀闸高出人头约2米,而且有铁柜遮挡, AHA12GAGGAGAGGAFFFFAFAF

其弧光不应烧着人,可为什么却把人烧伤了呢?原来,烧伤人 的电弧光不是3121隔离刀闸的电弧光,而是两根接地线烧坏时产生的电弧光。两根接地线是裸露铜丝绞合线,操作员用卡钳卡住连接在设备上时,致使一股线接触不良,另一股绞合线还断了几根铜丝。所以,当违章操作时,强大的电流造成短路,不但烧坏了3121隔离刀闸,而且其中一股接地线接触不良处震动脱落发生强烈电弧光,另一股绞合线铜丝断开处发生强烈电弧光,两股接地线瞬间弧光特别强烈,严重烧伤近处的2人。 造成这起事故的原因是临时增加工作内容并擅自操作,违反基本操作规程。 3、事故教训和防范措施 1).交接班时以及交接班前后一刻钟内一般不要进行重要操作。 2).将警示牌“已接地”换成更明确的表述:“已接地,严禁合闸”。严格遵守规章制度,绝对禁止带地线合闸。 3).接地保护线的作用就在于,当发生触电事故时起到 接地短路作用,从而保障人不受到伤害。所以,接地线质量 AHA12GAGGAGAGGAFFFFAFAF

屋顶光伏电站支架强度及屋面载荷计算

屋顶光伏电站支架强度及屋面载荷计算 1 工程概况 项目名称:江苏省*****中心小学49KW光伏屋顶 工程地址:江苏省*** 设计单位:上海能恩太阳能应用技术有限公司 建设单位:******有限公司 结构形式:屋面钢结构光伏支架 支架高度:0、3m 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2001(2006年版) 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板与钢带》GB/T3280—2007 3设计条件: 太阳能板规格:1650mm*990mm*50mm 混凝土屋顶太阳能板安装数量:200块 最大风速:27、5m/s 平坦开阔地域 太阳能板重量:20kg 安装条件:屋顶 计算标准:日本TRC 0006-1997 设计产品年限:20年 4型材强度计算 4、1 屋顶荷载得确定 (1)设计取值: ①假设为一般地方中最大得荷重,采用固定荷重G与暴风雨产生得风压荷重W 得短期复合荷重。 ②根据气象资料,扬中最大风速为27、5m/s,本计算最大风速设定为:30m/s。 ③对于混凝土屋面,采用最佳倾角安装得系统,需要考虑足够得配重,确保组件方阵得稳定可靠。 ④屋面高度20m。 4、2 结构材料: C型钢重量:1、8kg/m

截面面支架尺寸(mm) 41*41*2 安装角度 25° 材料镀锌 截面面积(A) 277 形心主轴到腹板边缘得距离 1、4516E+01 形心主轴到翼缘尖得距离 2、6484E+01 惯性矩 Ix 8、3731E+04 惯性矩 Iy 4、5694E+04 回转半径 ix 1、7386E+01 回转半径 iy 1、2844E+01 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wy 3、1478E+03

某公司厂房屋顶分布式光伏发电项目申请报告(DOC 127页)【全实用资料】

潍坊泰盈家纺有限公司厂房屋顶分布式 0.15MW光伏发电项目 项目申请报告 有限公司 二〇一六年十二月

目录 第一章申报单位及项目概况 (4) 第一节项目申报单位概况 (4) 第二节项目申请报告编制单位 (5) 第三节项目概况 (6) 第四节项目提出的背景 (9) 第五节项目建设必要性及可行性 (13) 第六节建设条件 (17) 第七节工程技术方案 (44) 第九节总图运输 (72) 第十节配套的公用辅助工程 (74) 第十一节职业安全与卫生 (76) 第十二节企业组织与劳动定员 (79) 第十三节项目实施计划与工程管理 (80) 第十四节投资估算 (86) 第十五节资金筹措 (87) 第二章发展规划、产业政策和行业准入分析 (88) 第二章发展规划、产业政策和行业准入分析 (88) 第一节发展规划分析 (88) 第二节产业政策分析 (92) 第三节行业准入分析 (93) 第三章资源开发及综合利用分析 (95) 第四章节能方案分析 (96) 第一节用能标准和节能规范 (96) 第二节能耗状况和能耗指标分析 (97) 第三节节能措施和节能效果分析 (98) 第四节节能结论分析 (99)

第五章建设用地和征地拆迁分析 (100) 第一节项目选址及用地方案 (100) 第二节征地拆迁和移民安置规划方案 (100) 第六章环境和生态影响分析 (101) 第一节设计依据及标准 (101) 第二节周围环境质量现状 (101) 第三节施工期环境影响及治理措施 (101) 第四节运营期环境影响及治理措施 (103) 第五节生态环境影响分析 (104) 第七章经济影响分析 (105) 第一节经济效益分析 (105) 第二节行业影响分析 (108) 第八章社会影响分析 (110) 第一节社会效益分析 (110) 第二节社会风险及对策分析 (111) 第九章结论和建议 (115) 第一节结论 (115) 第二节建议 (115) 附件附图

工商业屋顶光伏电站设计建设全攻略

工商业屋顶光伏电站设计建设全攻略(附配置清单) 工商业屋顶面积大,用电需求量大,安装光伏发电站之后不仅可以满足日常用电量,多余电量还可以并入国家电网换取收益。 那工商业光伏电站如何建设呢下面就跟着小编来看看吧。 1确定安装容量 确定光伏电站的安装位置,电站不能有建筑、树木遮挡形成阴影;根据可用面积估算电站容量,每平方米可安装组件容量为100W左右。 以一个可用面积为1000平米;的屋顶为例,可建设一个约100kW的电站。 2选择并网方式 收益=度电补贴+卖电收益+节省电费 自发自用,余电上网并网模式适合白天用电量较大的厂房,自用比例越高,成本回收周期越短。 全额上网 收益=度电补贴+卖电收益 全额上网并网模式适合白天用电量较少的厂房,并网简单,享受全额上网电价。 3设备选型 光伏组件 根据项目要求、成本、转换效率和可用面积、选择单晶或者多晶组件。 按某品牌多晶硅电池板参数:选取275Wp组件396块,总功率。 光伏逆变器

光伏逆变器组件总功率为,根据逆变器的最大直流输入功率,33K机器单台最大直流输入功率36300W,选择三相三路MPPT逆变器Suntrio Plus 33K机器3台 交流汇流箱 交流汇流箱交流汇流箱根据项目所选用的逆变器台数,选取多汇一汇流箱 ①汇流排; ②电流互感器; ③防雷器; ④支路空开; ⑤电流/电压表; ⑥汇流断路器; 逆变器与组件的匹配电压要求: 1)组串开路电压处于逆变器的MPPT电压范围内并且大于启动电压; 2)同一路MPPT中,不同组串中组件并联数量相同,所串联的电池板规格一致; 电流要求:组串并联后电流不大于逆变器最大输入电流; 电缆要求:组件串并联中要求电缆接线合理,尽量减少直流电缆长度,避免损耗。 正确连接 错误连接 交直流线缆直流电缆要求:直流电缆一般选择光伏认证专用线缆,目前常用的是PV1-F 1*4mm。光伏阵列到逆变器的直流电缆长度应尽可能短,以减少线缆上的功率损耗。

工厂屋顶光伏发电项目的解决方案两篇

工厂屋顶光伏发电项目的解决方案 两篇 篇一:工厂屋顶光伏发电项目的解决方案 利用闲置的工厂屋顶建设光伏项目,既可以减少能源的消耗,而且充分的利用了闲置的资源,起到了节能减排的作用,给工厂带来了巨大的经济效益、环境效益。深圳尚易新能公司是一个经验丰富且一站式解决光伏发电方案的提供商,可以为您的屋顶量身定制设计一套性价比最优的光伏发电项目。 分布式光伏发电系统的基本设备包括太阳光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。分布式光伏供电系统图如下: 工业屋顶太阳能光伏发电系统:

方案特点: (1)无枯竭危险; (2)安全可靠,无噪声,无污染排放外,清洁干净(无公害); (3)不受资源分布地域的限制,可利用建筑屋面的优势; (4)无需消耗燃料和架设输电线路即可就地发电供电; (5)能源质量高; (6)建设周期短,使用寿命长。 分布式光伏发电的电量消纳方式有哪几种? 分布式光伏发电电量可以全部自用或自发自用余电上网,由用户自行选择,用户不足电量由电网提供。上、下网电量分开结算,电价执行国家相关政策。 企业客户办理分布式光伏发电项目申请需要提供哪些资料? 法人申请需提供: 1.经办人身份证原件和法人委托书原件(或法定代表人身份证原件及复印件); 2.企业法人营业执照、土地证;

3.发电项目前期工作资料; 4.政府投资主管部门同意项目开展前期工作的批复(仅适用需核准项目,分布式光伏项目不需要此项); 5.用户电网相关资料(仅适用大工业用户); 6.合同能源管理项目、公共屋顶光伏项目,还需提供建筑物及设施适用或租用协议。

分布式光伏电站腐蚀案例及故障分析

分布式光伏电站腐蚀案例及故障分析金属受到环境的影响,借着化学或电化学反应所造成之破坏性侵害,称为腐蚀,几乎所有的金属制品,在一定的环境中,都会有若干形态之腐蚀现象。 经验表明,严重腐蚀多发生在相对湿度大于80%且温度高于0摄氏度。楼地面及基础主要受液相腐蚀介质作用。在潮湿环境条件下,混凝土保护层易被介质侵蚀而脱落或损坏。柱、梁、顶棚及屋盖主要受气相腐蚀介质作用。在外界温度及湿度等因素影响下,介质附着物通过孔隙和裂缝侵入表皮锈蚀钢筋,降低了构件承载能力。 1.分布式光伏发电系统混凝土桩基腐蚀 酸性介质能破坏混凝土保护层进而破坏钢筋表面钝化膜,以锈蚀钢筋。在干湿交替环境中,侵入混凝土内部的盐类介质因产生结晶而体积膨胀,并在水泥内部产生应力,使混凝土逐渐剥落,进而对钢筋造成腐蚀。碱性介质侵入混凝土后,当处于干湿交替作用时主要对混凝土有一定的结晶破坏作用。三者均是通过混凝土的微小孔隙与裂缝向内渗透并发生作用而生成结晶盐,或是使混凝土产生内部应力,或是进而使钢筋锈蚀膨胀,导致构件本身酥松、开裂、剥落、强度降低、弹性模量变化、主筋强度下降,最终使构件丧失承载能力。构件的腐蚀程度与混凝土保护层厚度、构件表面裂纹大小、混凝土的密实性、钢筋类型及环境因素影响等极为相关。 因在渔光互补中桩基础常年处于干湿交替作用,腐蚀始终存在,就会出现问题。 2.太阳能光伏发电系统接地螺栓、地脚螺栓腐蚀: 螺丝是金属制品,无法避免金属腐蚀问题,其使用的环境及时间不同时,腐蚀的现象亦有明显的差异。在潮湿的环境下,碳钢材料的螺栓就会被腐蚀。 图1接地螺栓被腐蚀生锈 2010年3月某电站土建处执行设备腐蚀状态检查时发现,地脚螺栓出现严重的腐蚀,锈蚀掉已接近的1/3,地脚螺栓腐蚀与地面接触腐蚀若进一步加剧,则影响设备的稳定性和抗震性,带来严重的安全隐患,将会影响电站的安全运行。

(完整版)分布式光伏屋顶租赁协议

合同编号: 光伏发电项目 屋顶租赁合同甲方(屋顶业主): 乙方(项目单位): 签约时间:年月日 签约地点:

经甲乙双方友好协商一致,双方同意签订光伏发电项目屋顶租赁合同。 基于诚实守信和公平交易原则,合同双方签字盖章如下: 甲方: 地址: 邮编: 传真: 电话: 法定代表人: 授权代表:___________________________ 日期: 乙方: 地址: 传真: 电话: 法定代表人: 授权代表:___________________________ 日期:

目录 第1节总则 (4) 第2节项目主要内容 (4) 第3节项目实施期限 (5) 第4节项目方案设计实施和项目的验收 (5) 第5节节能效益分享方式 (5) 第6节甲方的权利和义务 (7) 第7节乙方的权利和义务 (8) 第8节项目的更改 (10) 第9节资产所有权以及风险责任 (11) 第10节违约责任 (11) 第11节不可抗力 (10) 第12节合同解除 (12) 第13节其它 (13) 第14节争议的解决 (13) 第15节保密条款 (13) 第16节合同的生效及其他 (15)

第1节总则 1.1 在真实充分地表达各自意愿的基础上,根据《中华人民共和国合同法》及其他相关法律法规的规定,就乙方在甲方屋顶建设光伏发电项目(以下简称“本项目”或“项目”)签订本合同。 1.2 鉴于本项目的实际情况,双方同意由乙方在甲方的厂房屋顶投资建设本项目,乙方向甲方租赁屋顶供项目使用。乙方支付租金给甲方作为甲方的收益。 第2节项目主要内容 2.1 项目名称:光伏发电项目。 2.2 甲方同意乙方在其厂房屋顶上建设本项目,乙方负责该项目的建设和运营,本项目所生产的电力由乙方负责与当地电力公司结算,收益归乙方所有。 2.3项目主要技术方案:乙方向甲方租赁屋顶面积约平方米作为项目建设场地。乙方在该屋顶上投资建设符合电力部门高压并网发电标准(详见附件:供电部门的《电网接入批复》),且符合屋顶荷载的(详见附件:设计院提供的《承载设计报告》),光伏电站建设规模以省市发改委签发《光伏电站备函文件》所示的实际装机容量为准。 2.4 项目建设方案 2.4.1 乙方负责该项目的所有投资,完成电站设计、施工、建设;负责项目的运营、管理、维护以及过程中发生的所有费用。 2.4.2鉴于此项目的投资建设单位为乙方,经甲乙双方同意,项目租赁期为自年月日至年月日终止。租赁期届满后甲乙双方同意自动续协5年,续协期间本协议其他条件不变。本项目所涉乙方采购并安装的设备、设施和仪器等固定资产(简称“项目

屋顶分布式光伏电站设计及施工方案

设计方案 恒阳2017年 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充足,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充足,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。 结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害

本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp 屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V 交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009-2012中,对于屋顶活荷载的要求,方阵基础采用 C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心间距0.5m 。每横排之间间距为0.5m,便于组件后期的安装和维护。方便根据实际需要设计安装角度。

屋顶分布式光伏发电站可研报告

XX省XX市高新技术开发区XX产业园屋顶分布式光伏发电站项目 可 行 性 研 究 报 告

XXXX新能源有限公司 二零一六年十月XX 目录 一、项目名称 (1) 二、地理位置 (1) 三、太阳能资源 (1) 四、工程地质 (2) 五、区域经济发展概况 (2) 六、工程规模及发电量 (2) 七、光伏系统设计方案 (3) 八、光伏阵列设计及布置方案 (3) 九、电力接入系统方案 (3) 十、监控及保护系统 (3) 十一、消防设计 (4)

十二、土建工程 (4) 十三、工程管理设计 (4) 十四、环境保护与水土保持设计 (4) 十五、劳动安全与工业卫生 (5) 十六、节能降耗分析 (5) 十七、工程设计概算 (6) 十八、财务评价与社会效果分析 (6) 十九、结论 (7) 二十、建议 (8) 二十一、工程任务 (8) 二十二、工程建设必要性 (8)

一、项目名称 工程名称:XX省XX市高新技术开发区XX产业园屋顶分布式光伏发电站项目,以下简称本项目。 二、地理位置 XX市,为XX省地级市,位于江西省东部偏北,信江中下游。地处北纬27°35ˊ~28°41ˊ、东经116°41ˊ~117°30ˊ,面向珠江、长江、闽南三个“三角洲”,珠三角经济区和海西经济区在中部的最大最近的共同腹地,是X东北承接东南沿海产业转移第一城。是内地连接东南沿海的重要通道之一。全市总面积3556.7平方千米,辖区总人口113.4万人(2011),其中城镇常住人口56.1万人。是国家铜冶炼基地、全国商品粮基地、江西省重点产材基地、长江防护林基地、国家贮备粮基地。 本项目站址位于XX省XX市高新技术开发区XX产业园,东经116.87°,北纬28.19°。拟利用园区内厂房屋面架设支架建设光伏电站。业主提供可利用屋面面积约为35hm2,规划容量为30MWp。项目由XXXX新能源有限公司投资建设,项目资本金20%,银行贷款80%。 三、太阳能资源 XX市属中亚热带湿润季风温和气候,其特点是四季分明,气温偏高,光照充足,雨量丰沛,无霜期长。多年平均气温18.4℃,1月平均气温5.8℃,极端最低气温-10.4℃(1991年12月29日);7月平均气温29.7℃,极端最高气温41.0℃(1991年7月23日)。最低月均气温3.3℃,最高月均气温34.9℃。平均气温年较差23.3℃,最大日较差29.7℃(2007年3月21日)。生长期年平均317天,无霜期年平均267天,最长达317天,最短为240天。年平均日照时数1749.9小时,年总辐射108.5千卡/平方厘米。年平均降水量1881.8毫米,年平均降雨日数为187.7天,最多达215天(1985年),最少为135天(1978年)。极端年最大雨量2768.2毫米(1998年),极端年最少雨量1255.0毫米(1978年)。降雨集中在每年4月至6月,6月最多。由于XX市气象站暂无太阳能辐射数据,因此本次以XX站为参证站,利用收集到的气象数据推算XX站的辐射

相关主题
文本预览
相关文档 最新文档