当前位置:文档之家› OH卡牌相关知识总结

OH卡牌相关知识总结

OH卡牌相关知识总结
OH卡牌相关知识总结

OH卡牌相关知识总结

OH Card 牌的起源

OH Card牌是由一位在加拿大攻读人本心理学硕士的德国人Moritz Egetmeyer和一位墨西哥裔的艺术家Ely Raman 共同研发,是一种「自由联想卡」及「潜意识投射卡」的系统。

OH Card最早应该算是由印度奥修小区的Mangala老师引进台湾,她会同时运用奥修襌卡和OH Card。

在中国,来自台湾的陈伯炜老师致力于OH卡牌在大陆的推广。

投射的常用技术:

联想法;罗夏墨迹测验

构造法;主题统觉测验(TAT)

完成法;我最喜欢……

表漏法;言谈举止

OH Card牌的组成

OH塔罗牌一共176张牌,由两组牌组成。其中一组是图画卡88张,是包含了我们生活各个层面的水彩画图案。

另一组是引导卡88张,上面有文字,可以作为这些水彩画图案的背景。

当选择任意一张图卡放进任意一张文字卡,那么就会有7744种不同的组合情况。

OH Card 牌的优势

我们借助这不同的图案和文字的组合,可以刺激我们发挥创造力和想象力,

促进认知,增强自我觉察,亲近自己的潜意识,从自己的想法里探究到真实的心理,并且可以自我治疗。

我们也可以借助OH卡,来发现、了解、训练我们的倾听和理解能力,增强我们真正听取对方意见的能力,避免批判或竞争的心态。

同时,在尊重和保护私人隐私的情况下,也可以借助OH卡交流感情、观念、心理。

OH Card 的游戏规则

规则一:玩家不想揭开自己的牌面,或是不想描述自己抽到的牌面,不需做任何解释,就可以PASS。请尊重这位玩家的选择。

规则二:请不要打扰玩家,让玩家多点时间完成自己的描述。

规则三:请不要解释玩家抽到的牌,甚至刻意凸显自己的解释比较正确。

规则四:请不要反对其它玩家的解释,甚至与对方争论不休。

规则五:请不要预设别人正在对我虎视眈眈,而让自己很不自在。请在自然和放松的状态,描述自己所抽到的牌。

OH Cards使用步骤

围绕五个问题展开探索:

1、图卡中你看到了什么?

2、在这个画面中,你在哪里?(或画面中的人或物是谁?

3、画面中的人或物跟你有什么联系?跟文字有什么联系?

4、以“我”开头说一段话或编一个故事,把画面内容和文字内容串在里面。

5、这幅画面和文字跟你的困惑或目前的状况有什么联系?(你做这样的解读背后意味着什么或能给你带来什么)

附:京师博仁《国际EFT情绪释放技术治疗师认证班第3期》招生简章

OH潜意识图像卡牌治疗师研修班

你同样需要拥有的照得见你“心灵”的“镜子”!

【一、OH潜意识图像卡牌治疗师课程优势】

1.直接准确的心境投射技术!

2.新颖有效的咨询方式:增进沟通、促进交流!

3.简单易学的沟通技术,容易上手,操作便捷!

4.台湾名师授课,助你掌握OH卡牌解读、操作、应用技巧!

5.落地实操,现场练习!

【二、OH潜意识图像卡牌】

(一)定义:

OH卡(也称作潜意识图像卡)是由德国的人本心理学硕士莫里兹·艾格迈尔(Moritz Egetmeyer)与墨西哥裔的艺术家伊利·拉曼(Ely Raman)共同创作的心理疗法卡片。OH卡是由88张图卡加上88张字卡组成,即共有176张卡片可以做图文变化。「OH Cards」系列的心灵图卡,是一种简单而实用的直觉联想工具,在用于心理咨询、自我探索、心灵沟通、潜能开发、创意联想、塔罗占卜、精神分析、亲子互动、艺术治疗与团体游戏的时候,不需要任何策略,也不涉及输赢问题。它不是塔罗牌,因为没有官方的解释,任何参与者都可以自由决定她/他手中牌卡的意义,咨询者只能引导与尊重。

(二)发展:

潜意识图像卡在1970年代被设计成「心理学的游戏」;在80年初,首度在加拿大被應用於心理治疗领域,于此,开始推广于世界各地。潜意识图像卡也陆续有相关的牌组问世,例如人像卡、伴侣卡等。至今,已经有超过21种语言的版本,在全球各地被广泛地使用著,应用于心理咨询、教育界、医疗界,甚至企业管理等范畴中。

OH卡牌,精准打开您潜意识宝库的“钥匙”!

【三、适用人群】

1.学校(大、中小学)心理老师;

2.心理咨询与治疗机构心理咨询师;

3.需要管理咨询和培训人员的企事业单位;

4.心理学、艺术学专业学生;

5. 监狱管理、社区心理援助的社会工作者;

6.期望自我探索或学以致用的心理学爱好者。OH卡牌,精确找到您生命目标的“GPS”!

【四、课程获益】

助益心理咨询师:

1.掌握一套操作简单、实用的集共时性、创造性、易掌握的特性于一体的心理投射工具,

2.快速切入来访者问题来源,轻松将个案的内在纠结和负面能量予以清理和化解,达到深刻的疗愈作用。

助益人际关系和谐:

1.增进亲子间互动与沟通;

2.增进职场人际沟通与互动;

3.帮助身边的人理清迷茫困惑,成为神秘的心灵导师。

助益自我成长:

1.通过OH卡对心境的投射,增进对自我的了解,包括身体、心理与情绪之转变;

2.促使自我悦纳自己的角色,进而关爱自己,提升自我价值;

3.开启你的直觉力、增进你的想像力、开发你无限的创造力;

3.帮助自己肯定自我、建立自信,开启智慧人生。

【五、课程讲师介绍】

陈伯炜

WMECC 世界医学最高认证中心:行政执行委员会会长

中国医学与心理学工作者学会特聘专家

SIGMA累进式教学教育中心首席心理顾问

(AAMET)能量疗法促进协会EFT情绪释放技术训练师

(ACEP)综合能量心理学协会EFT情绪释放技术训练师

(PTI)国际游戏治疗协会高级训练师

(IHNMA)国际整体暨自然医学学会EFT情绪释放技术培训师

(ASCEC)亚洲西格文化教育中心EFT情绪释放技术专家组负责人

(SPICA)英国芳香理疗学院芳香理疗师

(AOC)芳香疗法组织委员会芳香治疗师

在加拿大莱斯布里奇大学及当地社会服务机构驻点,从中累积相当稳固且扎实的临床心理咨询经验,整合了国际上各大心理学派及其治疗方法精随,灵活运用于解决各式各样的心理问题;于美国加州管理大学中充实更全方位的知识技能,统合并承袭欧美国家的风格,在心理工作领域拥有卓越的表现及贡献。尔后任聘于加拿大莱斯布里奇大学担任学生心理健康中心负责人,且在国际上各大心理学会中担任要职,在其专业领域中持续工作著。

【六、学员分享和感悟】

【幼教辅导老师陈婷】

对于语言表达还不是很流利的孩子们来说,OH卡牌是最合适的了,感觉非常神奇,卡牌的组合可以很好地反映和折射孩子们的内心想法,有时候孩子的家长也非常感兴趣,他们经常问我在哪里学的这样好的心理咨询方法,这个“京师博仁·OH潜意识图像卡牌治疗师研修班”我真是选对了。

【爱好者赵海涛】

我是一名职场的员工,想通过心理咨询来了解自己的职场中的优势和不足。我自己本身对自我探索比也比较感兴趣,起初很担心自己学不会或听不懂,但是专业人才的顾问打消了我的疑虑,事实证明课程的确非常易学,即便不会,博仁的内部QQ群还会相互交流谈论,在相互交流中可以使我们不会的知识点得以解决。

电机选型计算-个人总结版(新、选)

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) BP:丝杠螺距(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) D:小齿轮直径(mm) 链轮直径(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) J1:转盘的转动惯量(kg·m2) W:转盘上物体的重量(kg) L:物体与旋转轴的距离(mm) GL:减速比(≥1,无单位) 4 电机选型总结 电机选型中需引入安全系数,一般应用场合选取安全系数S=2。则电机额定扭矩应≥S·T b;电机最大扭矩应≥S·T。同时满足负载惯量与电机惯量之间的比值≤推荐值。 最新文件仅供参考已改成word文本。方便更改

关于内存详细说明

1 在C语言代码(文本文件)形成可执行程序(二进制文件),需要经过 预处理---编译—汇编—链接。 编译过程是把C语言文本文件生成汇编程序, 汇编过程是把汇编程序形成二进制机器代码, 链接则是将各个源文件生成的二进制代码文件组合成一个文件。 2 C语言的程序经过编译--------链接后,将形成一个统一文件,它由几个部分组成。在程序运行时又会产生其他几个部分,各个部分代表了不同的存储区域。 3 说明:C语言程序分为映像和运行时两种状态。在编译-----链接后形成映像中,将只包含代码段(Text)、只读数据段(RO Data)和读写数据段(RW Data)。在程序运行之前,将动态生成未初始化数据段BSS。在程序的运行时还将动态生成堆Heap区域和栈Stack区域。 C语言在编译链接后,将生成代码段(Text)、只读数据段(RO Data)和读写数据段(RW Data)。在运行时,除了上述三个区域外,还包括未初始化数据段BSS区域和栈Stack区域。 代码段(Text) 只读数据段(RO Data) -----const定义的变量常量 Static修饰符的变量不管在函数内部或外部全在静态区 全局变量----静态区 读写数据段(RW Data) ---已初始化的全局变量 未初始化数据段BSS ---直接定义的全局变量 堆Heap区域----malloc 栈Stack区域----主要存储以下三种:函数内部的动态变量函数参数函数返回值

int main() char *p=”tiger”,系统在栈上开辟了四个字节存储p的数值。, tiger”在只读存储区,因此tiger”的内容不能改变,*p= tiger”,char *p = “tiger” ; 表示地址赋值。因此,p指向了只读存储区,因此改变p指向p[1+=’l’; 的内容会引起段错误。但是因为P在存放在栈上,因此p的数p++ ; 值是可以改变的,因此p++是正确的。 p rintf(“%s\n”,p); } typedef char *pStr ; ----经过编译提示错误为:error:increment of read-only variable ‘p2’ int main() 1>const使用的基本形式为const char m ; 限定m不可变 { 2>替换const char *pm ; 限定*pm不可变,pm是可变的,因此c har string*6+ = “tiger” ;p1++是对的。 const char *p1 = string ; 3>替换const newType m;限定m不可变,所以p2是不可变的。const pStr p2 = string ; p2++是错误的。 p1 ++ ; const (char *) pContent;//pContent是const,*pContent是可变 p2 ++ ; p rintf(“p1=%s\np2=%s\n”,p1,p2); }

元素知识点总结知识讲解

元素知识点总结

第四单元 物质构成的奥秘 课题1 原 子 1、原子的构成 (1)原子结构的认识 (2)在原子中由于原子核带正电,带的正电荷数(即核电荷数)与核外电子带的负电荷数(数值上等于核外电子数)相等,电性相反,所以原子不显电性 因此: 核电荷数 = 质子数 = 核外电子数 (3)原子的质量主要集中在原子核上 注意:①原子中质子数不一定等于中子数 ②并不是所有原子的原子核中都有中子。例如:氢原子核中无中子 2 、相对原子质量:⑴ ⑵相对原子质量与原子核内微粒的关系: 相对原子质量 = 质子数 + 中子数 课题2 元 素 一、 元素 1、含义:具有相同质子数(或核电荷数)的一类原子的总称。 注意:元素是一类原子的总称;这类原子的质子数相同 相对原子质

因此:元素的种类由原子的质子数决定,质子数不同,元素种类不同。 2、元素与原子的比较: 3、元素的分类:元素分为金属元素、非金属元素和稀有气体元素三种 4、元素的分布: ①地壳中含量前四位的元素:O、Si、Al、Fe ②生物细胞中含量前四位的元素:O、C、H、N ③空气中前二位的元素:N、O 注意:在化学反应前后元素种类不变 二、元素符号 1、书写原则:第一个字母大写,第二个字母小写。 2、表示的意义;表示某种元素、表示某种元素的一个原子。例如:O:表示氧 元素;表示一个氧原子。 3、原子个数的表示方法:在元素符号前面加系数。因此当元素符号前面有了系 数后,这个符号就只能表示原子的个数。例如:表示2个氢原子:2H; 2H:表示2个氢原子。 4、元素符号前面的数字的含义;表示原子的个数。例如:6.N:6表示6个氮原 子。

电子知识总结

电子知识总结 电子知识总结 1、电路的各输入端不能直接与高于5.5V或低于-0.5V的低内阻 电源连接。因为低内阻电源能提供较大电流,会由于过流而烧坏电路。 2、加入上拉或下拉电阻后,可以大大减少总线受噪声的干扰, 使总线工作在所有三态总线驱动器全部处在三态时,也不会被悬浮 起来的状态。 3、低阻终端有利于减少噪声、减少瞬时扰动、减少过冲和串扰,低阻终端还可以更快地将信号传至接收终端,然而却加大了功耗。 4、ECL电路一般用于驱动传输线,因此通常设计成射极开路输 出的形式。此时,传输线的终端匹配电阻RL即为输出负载。 5、ECL电路的功耗基本上不随频率而变化,关于这一点在高频 领域是非常重要的。 6、ECL电路的主要缺点是直流功耗大,可以说,ECL电路开关速度的提高是以牺牲功耗换取的。 7、要知道在系统上复用模块节省的面积远比在代码上小打小闹 来的实惠得多。 8、由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL转换芯片。 9、锗材料的温度敏感性很好,其稳定性远远不如硅材料。 10、为了提高信噪比,RS-232C总线标准不得不采用比较大的电 压摆幅。 11、由于电荷泵转换器不使用电感器,因此其辐射EMI可以忽略。

12、只有相同发光电压的发光二极管才可以并联使用,且不同颜色的发光电压一般不同。 13、平衡放大器有2个优点: (1)如果两个放大器中有一个坏了,另一个仍然可以工作,但是 性能将有所降低。经常用于要求高可靠性和具有容错能力的环境中。 (2)平衡放大器能比普通的放大器提供更好的匹配。因为它们的 泄露很少,这就意味着有更好的性能。 14、如果阻带不允许射频能量通过,这些能量将发生什么情况呢?它转化为热量。 15、所有的振荡器都会是有源器件。 16、无线系统的带宽越宽(即频率范围越大),在一定时间内所承载的数据就越多,所以数据速率就越高。 17、如今有两种阻抗匹配标准:射频用50欧姆和视频用75欧姆。 18、阻抗匹配电路有很多种,但是它们的目的相同:将某些射频器件的阻抗变为50欧姆。 19、“去耦”是指去掉联系,一般去耦电容多用一个容量大的和一个容量小的电容并联在电源正、负极。去耦电容的作用是为了消 除各电路因使用同一个电源相互之间产生的影响。 20、与满幅值的输出电压相比,地弹电压VGND通常很小。虽然 它不会严重地削弱发送信号,却严重干扰了接收。 21、大多数示波器采用的探头都是10pF的`输入电容和3~6in长的接地引线。这是由综合了信号完整性的多种因素而设计的。 22、对于PCB设计而言,最重要的数据是线宽与对地高度的比值。 23、对于任何电路,减小电阻阻值将消耗更多的功率,同时也减少了下降时间。

步进电机——步进电机选型的计算方法

步进电机——步进电机选型的计算方法 步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 ◎驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离× 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲]

定位时间[秒] (2)加/减速运行方式 加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 驱动脉冲速度[Hz]= 定位时间[秒]-加/减速时间[秒] ◎电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(TL) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动

内存硬件知识汇总

为了保证所保存的数据不丢失,DRAM必须定时进行刷新,DDR3也不例外。 为了最大的节省电力,DDR3采用了一种新型的自动自刷新设计(ASR,Automatic Self-Refresh)。当开始ASR之后,将通过一个内置于DRAM芯片的温度传感器来控制刷新的频率,因为刷新频率高的话,消电就大,温度也随之升高。而温度传感器则在保证数据不丢失的情况下,尽量减少刷新频率,降低工作温度。不过DDR3的ASR是可选设计,并不见得市场上的DDR3内存都支持这一功能,因此还有一个附加的功能就是自刷新温度范围(SRT,Self-Refresh Temperature)。通过模式寄存器,可以选择两个温度范围,一个是普通的的温度范围(例如0℃至85℃),另一个是扩展温度范围,比如最高到95℃。对于DRAM内部设定的这两种温度范围,DRAM将以恒定的频率和电流进行刷新操作。 局部自刷新(RASR,Partial Array Self-Refresh)这是DDR3的一个可选项,通过这一功能,DDR3内存芯片可以只刷新部分逻辑Bank,而不是全部刷新,从而最大限度的减少因自刷新产生的电力消耗。这一点与移动型内存(Mobile DRAM)的设计很相似 FBD、XDR、XDR2内存概述 来自(https://www.doczj.com/doc/9717963594.html,/) 2009-07-14 1.FBD内存 FBD即Fully-buffer DIMM(全缓存模组技术),它是一种串行传输技术,可以提升内存的容量和传输带宽.是Intel在DDR2、DDR3的基础上发展出来的一种新型内存模组与互联架构,既可以搭配现在的DDR2内存芯片,也可以搭配未来的DDR3内存芯片。FB-DIMM可以极大地提升系统内存带宽并且极大地增加内存最大容量。 FB-DIMM与XDR相比较,虽然性能不及全新架构的XDR,但成本却比XDR要低廉得多。与现有的普通DDR2内存相比,FB-DIMM技术具有极大的优势:在内存频率相同的情况下目前能提供四倍于普通内存的带宽,并且能支持的最大内存容量也达到了普通内存的24倍,系统最大能支持192GB内存。FB-DIMM最大的特点就是采用已有的DDR2内存芯片(以后还将采用DDR3内存芯片),但它借助内存PCB上的一个缓冲芯片AMB(Advanced Memory Buffer,高级内存缓冲)将并行数据转换为串行数据流,并经由类似PCI Express 的点对点高速串行总线将数据传输给处理器。 与普通的DIMM模块技术相比,FB-DIMM与内存控制器之间的数据与命令传输不再是传统设计的并行线路,而采用了类似于PCI-Express的串行接口多路并联的设计,以串行的方式进行数据传输。在这种新型架构中,每个DIMM上的缓冲区是互相串联的,之间是点对点的连接方式,数据会在经过第一个缓冲区后传向下一个缓冲区,这样,第一个缓冲区和内存控制器之间的连接阻抗就能始终保持稳定,从而有助于容量与频率的提升。 2.XDR内存 XDR就是“eXtreme Data Rate”的缩写,这是Rambus的黄石的最终名称。XDR将Rambus之前公布了一系列新技术集中到了一起,新技术不仅带来了新的内存控制器设计和DRAM模块设计,同时可以工作在相当高的频率,带来让人难以置信的带宽。 XDR内存比较有意思,这次架构同目前实际使用的DDR、DDR II并没有太大的差别,但XDR却依旧拥有自己的知识产权。XDR在今年年内会有样品出现,明年中后期正式推广,同原来一样三星依旧是RAMBUS

几种常见元素的知识点

常温:生成白色固体(氧化钠) : 4Na +O 2=2Na 2O 加热:淡黄色固体(过氧化钠): 2Na + O 2 Na 2O 2 Na 与水离子方程式:2Na + 2H 2O = 2Na - + 2OH - + H 2 ↑ 过氧化钠与水反应 2Na 2O 2 + 2H 2O = 4NaOH + O 2 ↑ 过氧化钠与二氧化碳 2Na 2O 2 + 2CO 2 = 2Na 2CO 3 + O 2 碱性氧化物:能与酸生成盐和水,无其他产物生成。氧化钠是,过氧化钠不是。 Na 2O 2中阳离子与阴离子个数之比为2:1 过氧化钠在潮湿的空气中放置一段时间,变成白色粘稠物:2Na 2O 2+2H 2O=4NaOH+O 2 碳酸钠的溶解性、碱性、热稳定性都大于碳酸氢钠的 Al 1、铝与碱的反应:2Al +2NaOH +2H 2O = 2NaAlO 2 +3H 2↑ 2、在常温下,铁,铝遇浓硝酸,浓硫酸会在表面生成致密的氧化膜而发生钝化,从而组织内部金属的进一步发生反应。因此可以用铝制容器盛放和运输浓硫酸,浓硝酸 3、氧化铝熔点很高,可做耐火材料 4、Al 2O 3既能强酸反应,也能与强碱反应: ① 与酸反应:Al 2O 3 + 6HCl 2AlCl 3+3H 2O

② 与碱反应:Al 2O 3 + 2NaOH 2NaAlO 2 +H 2O 5、“Al 三角”:根据电荷守恒写 ① Al 3+ →AlO 2— : Al 3+ + 4OH - = AlO 2- + 2H 2O ②AlO 2— →Al 3+ : AlO 2-+ 4H + = Al 3+ + 2H 2O ③Al 3+ →Al(OH)3: Al 3+ + 3OH - = Al(OH)3 ↓ ④Al(OH)3→AlO 2— : Al(OH)3 + OH - = AlO 2- + 2H 2O ⑤Al(OH)3→Al 3+ : Al(OH)3 + 3H + = Al 3+ + 3H 2O ⑥AlO 2— →Al(OH)3: AlO 2- + H + + H 2O = Al(OH)3↓ CO2不足时: 2AlO 2- + CO 2 +3H 2O =2Al(OH)3↓ + CO 3 2- CO2过量时:AlO 2-+ CO2 + 2H2O =Al(OH)3↓+ HCO 3 - ⑦ 3AlO 2-+Al 3+ + 6H2O =4Al(OH)3↓ 6、Al 图像: 1、向AlCl 3溶液中逐滴滴入NaOH 溶液至过量 有关反应:Al 3+ + 3OH — = Al(OH)3↓ Al(OH)3 + OH — = AlO 2— + 2H 2O 现象:先产生白色沉淀,后沉淀逐渐消失 2、向AlCl 3溶液中逐滴滴入氨水至过量 有关反应:Al 3+ + 3NH 3·H 2O = Al(OH)3↓ +3NH 4+ 现象:产生白色沉淀,继续加氨水,沉淀不消失。 3、向NaAlO 2溶液中逐滴滴入盐酸至过量 有关反应: AlO 2—+ H + + H 2O = Al(OH)3↓ Al(OH)3 + 3H + = Al 3+ +3 H 2O

步进电机选用计算方法

步进电机选用计算方法 步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个步距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。 选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。 选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。 选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。 选择步进电机需要进行以下计算: (1)计算齿轮的减速比 根据所要求脉冲当量,齿轮减速比i计算如下: i=(φ.S)/(360.Δ) (1-1) 式中φ ---步进电机的步距角(o/脉冲) S ---丝杆螺距(mm) Δ---(mm/脉冲) (2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。 Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2) 式中Jt ---折算至电机轴上的惯量(Kg.cm.s2) J1、J2 ---齿轮惯量(Kg.cm.s2)

动态内存管理知识总结

1.标准链接库提供四个函数实现动态内存管理: (1)分配新的内存区域: void * malloc(size_t size); void *calloc(size_t count , size_t size); (2)调整以前分配的内存区域: void *realloc(void *ptr , size_t size); (3)释放以前分配的内存区域: void free(void *ptr); 2.void * malloc(size_t size); 该函数分配连续的内存空间,空间大小不小于size 个字节。但分配的空间中的内容是未知的。该函数空间分配失败则返回NULL。 3.void *calloc(size_t count , size_t size); 该函数也可以分配连续的内存空间,分配不少于count*size个字节的内存空间。即可以为一个数组分配空间,该数组有count个元素,每个元素占size个字节。而且该函数会将分配来的内存空间中的内容全部初始化为0 。该函数空间分配失败则返回NULL。 4. 以上两个分配内存空间的函数都返回void * (空类型指针或无类型指针)返回的指针值是“分配的内存区域中”第一个字节的地址。当存取分配的内存位置时,你所使用的指针类型决定如何翻译该位置的数据。以上两种分配内存空间的方法相比较,calloc()函数的效果更好。原因是它将分配得来的内存空间按位全部置0 。 5. 若使用上述两种分配内存的函数分配一个空间大小为0 的内存,函数会返回一个空指针或返回一个没有定义的不寻常指针。因此绝不可以使用“指向0 字节区域”的指针。 6. void *realloc(void *ptr , size_t size); 该函数释放ptr所指向的内存区域,并分配一个大小为size字节的内存区域,并返回该区域的地址。新的内存区域可以和旧的内存区域一样,开始于相同的地址。且此函数也会保留原始内存内容。如果新的内存区域没有从原始区域的地址开始,那么此函数会将原始的内容复制到新的内存区域。如果新的内存区域比较大,那么多出来部分的值是没有意义的。 7. 可以把空指针传给realloc()函数,这样的话此函数类似于malloc()函数,并得到一块内存空间。如果内存空间不足以满足内存区域分配的请求,那么realloc()函数返回一个空指针,这种情况下,不会释放原始的内存区域,也不会改变它的内容。 8. void free(void *ptr); 该函数释放动态分配的内存区域,开始地址是ptr,ptr的值可以是空指针。若在调用此函数时传入空指针,则此函数不起任何作用。 9. 传入free() 和realloc()函数的指针(若不为空指针时)必须是“尚未被释放的动态分配内存区域的起始地址”。否则函数的行为未定义。Realloc()函数也可以释放内存空间,例如:Char *Ptr = (char *)malloc(20); 如只需要10个字节的内存空间,且保留前十个字节的内容,则可以使用realloc()函数。 Ptr = Realloc(ptr,10); // 后十个字节的内存空间便被释放

高考化学基础复习知识点总结:元素及其化合物

元素及其化合物 1、元素化合物知识包括金属和非金属两部分,是高中化学的基础知识之一。知识特点是作为化学基本概念、原理、实验和计算的载体,其信息量大,反应复杂,常作为综合试题的知识背景或突破思维的解题题眼。 2、注意处理好两个关系,必须先处理好元素化合物知识的内部关系,方法是:“抓重点,理关系,用规律,全考虑”。 ①抓重点:以每族典型元素为代表,以化学性质为抓手,依次学习其存在、制法、用途、检验等“一条龙”知识,做到牵一发而动全身 ②理关系:依据知识内在联系,按单质→氧化物→氧化物的水化物→盐的顺序,将零碎的知识编织成网络,建立起完整的知识结构,做到滴水不漏 ③用规律:用好化学反应特有的规律,如以强置弱等规律,弄清物质间相互反应。 ④全考虑:将元素化合物作为一个整体、一个系统理解,从而达到解综合试题时能将所需的元素化合物知识信手拈来。 另一方面是处理好元素化合物知识与本学科理论、计算或跨学科知识间的外部关系,采取的方法是“分析与综合、抽象与具体”。 ①分析:将综合试题拆分思考。 ②综合:将分散的“点”衔接到已有的元素化合物知识“块”中。 ③抽象:在分析综合基础上,提取相关信息。 ④具体:将提取出的信息具体化,衔接到综合试题中,从而完整解题。 (一)元素非金属性的强弱规律 ⑴常见非金属元素的非金属性由强到弱的顺序如下:F、O、Cl、N、Br、I、S、P、C、Si、H。 ⑵元素非金属性与非金属单质活泼性的区别: 元素的非金属性是元素的原子吸引电子的能力,影响其强弱的结构因素有:①原子半径:原子半径越小,吸引电子能力越强;②核电荷数:核电荷数越大,吸引电子能力越强;③最外层电子数:同周期元素,最外层电子越多,吸引电子能力越强。但由于某些非金属单质是双原子分子,原子是以强列的共价键相结合(如N N等),当参加化学反应时,必须消耗很大的能量才能形成原子,表现为单质的稳定性。这种现象不一定说明这种元素的非金属性弱。 ⑶非金属性强弱的判断依据及其应用 元素的非金属性的本质是元素的原子吸引电子的能力。这种能力的大小取决于原子半径、核

电脑故障诊断卡的详细使用方法介绍

电脑故障诊断卡的详细使用方法介绍(图文教程) 诊断卡使用方法 一、用户必读; 二、智能型笔记本电脑诊断卡使用方法; 三、智能型四位诊断卡使用方法; 四、智能型并口诊断卡L50使用方法. 一、用户必读: ⑴. 诊断卡也叫PC Analyzer或POST (Power On Self Test )卡,其工作原理是利用主板中BIOS 内部自检程序的检测结果,通过代码一一显示出来,结合本书的代码含义速查表就能很快地知道电脑故障所在。尤其在PC机不能引导操作系统、黑屏、喇叭不叫时,使用本卡更能体现其便利,使您事半功倍。BIOS 在每次开机时,对系统的电路、存储器、键盘、视频部分、硬盘、软驱等各个组件进行严格测试,并分析系统配置,对已配置的基本I/O设置进行初始化,一切正常后,再引导操作系统。其显著特点是以是否出现光标为分界线,先对关键性部件进行测试。关键性部件发生故障强制机器转入停机,显示器无光标,则屏幕无任何反应。然后,对非关键性部件进行测试,如有故障机器也继续运行,同时显示器显示出错信息,当机器出现故障,尤其是出现关键性故障,屏幕上无显示时,将本卡插入扩弃槽内。根据卡上显示的代码,表示的故障原因和部位,就可清楚地知道故障所在。 ⑵. 注意分辨“故障代码”与“起始码;起始码是无意义的,只有故障代码才能准确指出故障所在。 ⑶. 故障代码含义速查表是按代码值从小到大排序,卡中出码顺序由主板BIOS 确定。 ⑷. 未定义的代码表中未能列出。 ⑸对于不同BIOS (常用的AMI 、Award 、Phoenix )同一代码所代表的意义不同,因此应弄清您所检测的电脑是属于哪一种类型的BIOS, 您可查阅您的电脑使用手册,或从主板上的BIOS 芯片上直接查看,也可以在启动的屏幕中直接看到。 ⑹.有少数主板的PCI 槽只有一部分代码出现,但ISA 槽则有完整自检代码输出。且目前已发现有极个别原装机主板的ISA 槽无代码输出,而PCI 槽则有完整代码输出,故建议您在查看代码不成功时,将本双槽卡换到另一种插槽试一下。另外,同一块主板的不同PCI 槽,有的槽有完整代码送出,如DELL810 主板只有靠近CPU 的一个PCI槽有完整代码显示,一直变化到“00 ”或“FF ”,而其它PCI 槽走到“38 ”后则不继续变化。 ⑺. 复位信号所需时间ISA 与PCI 不一定同步,故有可能ISA 开始出代码,但PCI 的复位灯还未熄,故PCI 代码停在起始代码上。 ⑻. 由于主板品种和结构的多样性及BIOS POST 代码不断更新,令紧接在代码后面的查找故障部件和范围的准确性受到影响,故《代码含义速查表》中说明的故障部件和范围只能作为参考。 ⑼. 根据经验:两位代码的卡用在P Ⅱ300 以下的主板中可信,而用在P Ⅱ300 以上的板中会死机、不走码或出假码,故建议您购买PI0050A智能型四位代码诊断卡,该卡到目前为止,还没有收到过用户的不良反映。 ⑽十六进制字符表:

电工学下册电子技术知识点总结

电子技术知识点总结 模拟电路处理模拟信号,数字电路处理数字信号 第14 章半导体器件 1.本征半导体概念 2.N 型和P 型半导体的元素、多数载流子和少数载流子、“复合”运动 3.PN 结的单向导电性,扩散运动,漂移运动 4.二极管的伏安特性、等效电阻 5.稳压二极管的工作区 6.三极管的放大电流特性(非放大电压)、输出特性曲线(放大区、截止 区、饱和区),判断硅管和锗管、PNP 型和NPN 型 第15 章基本放大电路 1.共发射极放大电路的组成、静态分析、动态分析,计算电压放大倍数(远 大于1,输入输出电压反相)、输入电阻(高)、输出电阻(低) 2.静态工作点的稳定:分压式偏置放大电路的组成 3.非线性失真:饱和失真(静态工作点高)、截止失真(静态工作点低) 4.射极输出器的组成、静态分析(估算法、图解法)、动态分析(微变等效 电路法、图解法),计算电压放大倍数(接近1,但小于1,输入输出电压同相)、输入电阻(高)、输出电阻(低) 5.多级放大电路的放大倍数,耦合方式三种:变压器耦合、阻容耦合(静态 工作点相对独立)、直接耦合(静态工作点相互影响,零点漂移)

6.差分(差动)放大电路:针对缓慢变化的信号,采用直接耦合,共模信 号,差模信号,抑制零点漂移,电路对称性要好 7.功率放大电路状态:甲类、甲乙类、乙类,为避免交越失真,需工作在甲 乙类状态下 第16 章集成运算放大器 1.理想运算放大器的理想化条件:开环电压放大倍数乂,差模输入电阻乂, 开 环输出电阻0,共模抑制比乂,工作区:线性区和饱和区 2.虚短、虚断 3.运算放大器的比例运算、加法运算和减法运算 4.电压比较器 第17章电子电路中的反馈 1.负反馈对放大电路工作性能的影响:降低放大倍数、提高放大倍数的稳 定性、改善波形失真 2.深度负反馈的条件(AF>>1 ) 第18章直流稳压电源 1.整流电路的作用 2.滤波器的作用 3.稳压环节的作用 第20 章门电路和组合逻辑电路 1.二进制、十六进制和十进制的转化 2.基本逻辑门电路概念:与、或、非

电脑内存知识

本文详细介绍了虚拟内存的设置和相关问题的解决方法。 内存在计算机中的作用很大,电脑中所有运行的程序都需要经过内存来执行,如果执行的程序很大或很多,就会导致内存消耗殆尽。为了解决这个问题,Windows中运用了虚拟内存技术,即拿出一部分硬盘空间来充当内存使用,当内存占用完时,电脑就会自动调用硬盘来充当内存,以缓解内存的紧张。举一个例子来说,如果电脑只有128MB 物理内存的话,当读取一个容量为200MB的文件时,就必须要用到比较大的虚拟内存,文件被内存读取之后就会先储存到虚拟内存,等待内存把文件全部储存到虚拟内存之后,跟着就会把虚拟内里储存的文件释放到原来的安装目录里了。 当系统运行时,先要将所需的指令和数据从外部存储器(如硬盘、软盘、光盘等)调入内存中,CPU再从内存中读取指令或数据进行运算,并将运算结果存入内存中,内存所起的作用就像一个“二传手”的作用。当运行一个程序需要大量数据、占用大量内存时,内存这个仓库就会被“塞满”,而在这个“仓库”中总有一部分暂时不用的数据占据着有限的空间,所以要将这部分“惰性”的数据“请”出去,以腾出地方给“活性”数据使用。这时就需要新建另一个后备“仓库”去存放“惰性”数据。由于硬盘的空间很大,所以微软Windows操作系统就将后备“仓库”的地址选在硬盘上,这个后备“仓库”就是虚拟内存。在默认情况下,虚拟内存是以名为Pagefile.sys的交换文件

保存在硬盘的系统分区中。 手动设置虚拟内存 在默认状态下,是让系统管理虚拟内存的,但是系统默认设置的管理方式通常比较保守,在自动调节时会造成页面文件不连续,而降低读写效率,工作效率就显得不高,于是经常会出现“内存不足”这样的提示,下面就让我们自已动手来设置它吧。 ①用右键点击桌面上的“我的电脑”图标,在出现的右键菜单中选择“属性”选项打开“系统属性”窗口。在窗口中点击“高级”选项卡,出现高级设置的对话框. ②点击“性能”区域的“设置”按钮,在出现的“性能选项”窗口中选择“高级”选项卡,打开其对话框。 ③在该对话框中可看到关于虚拟内存的区域,点击“更改”按钮进入“虚拟内存”的设置窗口。选择一个有较大空闲容量的分区,勾选“自定义大小”前的复选框,将具体数值填入“初始大小”、“最大值”栏中,而后依次点击“设置→确定”按钮即可,最后重新启动计算机使虚拟内存设置生效。

模拟电子技术基础知识点总结

模拟电子技术复习资料总结 第一章半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6.杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。 7. PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性 二. 半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

2) 等效电路法 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

元素知识点总结范文

第四单元 物质构成的奥秘 课题1 原 子 1、原子的构成 (1)原子结构的认识 (2)在原子中由于原子核带正电,带的正电荷数(即核电荷数)与核外电子带的负电荷数(数值上等于核外电子数)相等,电性相反,所以原子不显电性 因此: 核电荷数 = 质子数 = 核外电子数 (3)原子的质量主要集中在原子核上 注意:①原子中质子数不一定等于中子数 ②并不是所有原子的原子核中都有中子。例如:氢原子核中无中子 2 ⑴ ⑵相对原子质量与原子核内微粒的关系: 相对原子质量 = 质子数 + 中子数 课题2 元 素 一、元素 1、 含义:具有相同质子数(或核电荷数)的一类原子的总称。 注意:元素是一类原子的总称;这类原子的质子数相同 因此:元素的种类由原子的质子数决定,质子数不同,元素种类不同。 4、元素的分布: ①地壳中含量前四位的元素:O 、Si 、Al 、Fe ②生物细胞中含量前四位的元素:O 、C 、H 、N 相对原子质量=

③空气中前二位的元素:N 、O 注意:在化学反应前后元素种类不变 二、元素符号 1、 书写原则:第一个字母大写,第二个字母小写。 2、 表示的意义;表示某种元素、表示某种元素的一个原子。例如:O :表示氧元素;表示 一个氧原子。 3、 原子个数的表示方法:在元素符号前面加系数。因此当元素符号前面有了系数后,这个 符号就只能表示原子的个数。例如:表示2个氢原子:2H ;2H :表示2个氢原子。 4、 元素符号前面的数字的含义;表示原子的个数。例如:6.N :6表示6个氮原子。 三、元素周期表 1、 发现者:俄国科学家门捷列夫 2、 结构:7个周期16个族 3、 元素周期表与原子结构的关系: ①同一周期的元素原子的电子层数相同,电子层数=周期数 ②同一族的元素原子的最外层电子数相同,最外层电子数=主族数 4、 原子序数=质子数=核电荷数=电子数 5、 元素周期表中每一方格提供的信息: 课题3 离子 一、核外电子的排布 1、原子结构图: ①圆圈内的数字:表示原子的质子数 ②+:表示原子核的电性 ③弧线:表示电子层 ④弧线上的数字:表示该电子层上的电子数 1、 核外电子排布的规律: ①第一层最多容纳2个电子; ②第二层最多容纳8个电子; ③最外层最多容纳8个电子(若第一层为最外层时,最多容纳2个电子) 3、元素周期表与原子结构的关系: ①同一周期的元素,原子的电子层数相同,电子层数=周期数 ②同一族的元素,原子的最外层电子数相同,最外层电子数=主族数 4、元素最外层电子数与元素性质的关系 金属元素:最外层电子数<4 易失电子 非金属元素:最外层电子数≥4 易得电子 稀有气体元素:最外层电子数为8(He 为2) 不易得失电子 最外层电子数为8(若第一层为最外层时,电子数为2)的结构叫相对稳定结构 因此元素的化学性质由原子的最外层电子数决定。当两种原子的最外层电子数相同,则这两种元素的化学性质相似。(注意:氦原子与镁原子虽然最外层电子数相同,但是氦原子最外 质子数

电脑故障诊断卡的详细使用方法

诊断卡使用方法 一、用户必读; 二、智能型笔记本电脑诊断卡使用方法; 三、智能型四位诊断卡使用方法; 四、智能型并口诊断卡L50使用方法. 一、用户必读: ⑴. 诊断卡也叫PC Analyzer或POST (Power On Self Test )卡,其工作原理是利用主板中BIOS 内部自检程序的检测结果,通过代码一一显示出来,结合本书的代码含义速查表就能很快地知道电脑故障所在。尤其在PC机不能引导操作系统、黑屏、喇叭不叫时,使用本卡更能体现其便利,使您事半功倍。BIOS 在每次开机时,对系统的电路、存储器、键盘、视频部分、硬盘、软驱等各个组件进行严格测试,并分析系统配置,对已配置的基本I/O设置进行初始化,一切正常后,再引导操作系统。其显著特点是以是否出现光标为分界线,先对关键性部件进行测试。关键性部件发生故障强制机器转入停机,显示器无光标,则屏幕无任何反应。然后,对非关键性部件进行测试,如有故障机器也继续运行,同时显示器显示出错信息,当机器出现故障,尤其是出现关键性故障,屏幕上无显示时,将本卡插入扩弃槽内。根据卡上显示的代码,表示的故障原因和部位,就可清楚地知道故障所在。 ⑵. 注意分辨“故障代码”与“起始码;起始码是无意义的,只有故障代码才能准确指出故障所在。 ⑶. 故障代码含义速查表是按代码值从小到大排序,卡中出码顺序由主板BIOS 确定。

⑷. 未定义的代码表中未能列出。 ⑸对于不同BIOS (常用的AMI 、Award 、Phoenix )同一代码所代表的意义不同,因此应弄清您所检测的电脑是属于哪一种类型的BIOS, 您可查阅您的电脑使用手册,或从主板上的BIOS 芯片上直接查看,也可以在启动的屏幕中直接看到。 ⑹.有少数主板的PCI 槽只有一部分代码出现,但ISA 槽则有完整自检代码输出。且目前已发现有极个别原装机主板的ISA 槽无代码输出,而PCI 槽则有完整代码输出,故建议您在查看代码不成功时,将本双槽卡换到另一种插槽试一下。另外,同一块主板的不同PCI 槽,有的槽有完整代码送出,如DELL810 主板只有靠近CPU 的一个PCI槽有完整代码显示,一直变化到“ 00 ”或“ FF ”,而其它PCI 槽走到“ 38 ”后则不继续变化。 ⑺. 复位信号所需时间ISA 与PCI 不一定同步,故有可能ISA 开始出代码,但PCI 的复位灯还未熄,故PCI 代码停在起始代码上。 ⑻. 由于主板品种和结构的多样性及BIOS POST 代码不断更新,令紧接在代码后面的查找故障部件和范围的准确性受到影响,故《代码含义速查表》中说明的故障部件和范围只能作为参考。 ⑼. 根据经验:两位代码的卡用在P Ⅱ300 以下的主板中可信,而用在P Ⅱ300 以上的板中会死机、不走码或出假码,故建议您购买PI0050A智能型四位代码诊断卡,该卡到目前为止,还没有收到过用户的不良反映。 ⑽十六进制字符表:

电机选型计算公式总结

For personal use only in study and research; not for commercial u s e 电机选型计算公式总结功率:P=FV(线性运动) T=9550P/N(旋转运动) P——功率——W F——力——N V——速度——m/s T——转矩——N.M 速度:V=πD N/60X1000 D——直径——mm N——转速——rad/min 加速度:A=V/t A——加速度——m/s2 t——时间——s

力矩:T=FL

惯性矩:T=Ja L ——力臂——mm (圆一般为节圆半径R ) J ——惯量——kg.m2 a ——角加速度——rad/s2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ?? ??=π (kgf·cm·s 2) 角加速度a=2πn/60t v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 2 2 1????? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2);

相关主题
文本预览
相关文档 最新文档