当前位置:文档之家› 矩阵位移法的计算步骤及标准规定样式

矩阵位移法的计算步骤及标准规定样式

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法 一、是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 ? 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 — 3、单元i j 在图示两种坐标系中的刚度矩阵相比:

和积法计算最大特征向量实例

已知66?判断矩阵11141 1/2112411/211/21531/21/41/41/5 11/31/3111/3311222311????????=??????????B ,利用和积法计算其最大特征向量。 1将判断矩阵的每一列元素作归一化处理得'B : []61 6.25 5.75 6.53207.33 3.83ij i b ==∑1,2,,6j = 则: '0.160.170.150.200.140.130.160.170.300.200.140.130.160.090.150.250.420.130.04 0.040.030.050.050.090.160.170.050.150.140.260.320.340.300.150.140.26????????=?????????? B 2将每一列经归一化处理后的判断矩阵按列相加得'w : []T 'T 0.95 1.10 1.200.300.93 1.51=w 61 5.99j j w ==∑ 3对向量'w 作归一化处理得最大特征向量w : []T T 0.160.180.200.050.160.25=w 4计算判断矩阵最大特征根max λ: []T T ()=1.025 1.225 1.3050.309 1.066 1.64Bw max 111 1.025 1.225 1.3050.309 1.066 1.64==() 6.3560.160.180.20.050.160.25n i i BW n w λ=?+++++=∑ 5判断矩阵一致性指标C.I.(Consistency Index ):

max 6.356C.I.=0.07161 n n λ--==-- 6随机一致性比率C.R.(Consistency Ratio ): C.I.0.07C.R.=0.0560.10R.I. 1.24 ==< 满足要求。

《结构力学习题集》-矩阵位移法习题及答案

第八章 矩阵位移法 – 老八校 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 12 3l l 4 l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l 1 3 4 2 A , I A A /222A I , 2A 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 :

《结构力学习题集》下矩阵位移法习题及答案 2

第七章 矩阵位移法 一、就是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性与奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 就是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它就是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义就是变形连续条件与位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数与。 10、矩阵位移法中,等效结点荷载的“等效原则”就是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,就是: A.非对称、奇异矩阵; B.对称、奇异矩阵; C.对称、非奇异矩阵; D.非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A.完全相同; B.第2、3、5、6行(列)等值异号;

权重确定方法归纳解读

权重确定方法归纳 多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。 按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。下面就对当前应用较多的评价方法进行阐述。 一、变异系数法 (一)变异系数法简介 变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。是一种客观赋权的方法。此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。 由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。各项指标的变异系数公式如下:

矩阵位移法练习题

结构力学自测题(第八单元) 矩阵位移法 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 ( ) 2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有 K ij = K ji ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 () 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 113 24=/ 。 ( ) EI l l EI 212 x y M , θ 附: ????? ?????????? ?????????? ???? ?--- -----l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA 460260612061200000260460 6120612000002 22323222323 4、在 任 意 荷 载 作 用 下 ,刚 架 中 任 一 单 元 由 于 杆 端 位 移 所 引 起 的 杆 端 力 计 算 公 式 为 :{} [][]{}F T K e e e =δ 。 ( ) 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且 各 杆 单 元 类 型 相 同 时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 : (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3) (1,0,2) (0,0,0) (0,0,0) (1,0,3) (0,0,0) (0,1,2) (0,0,0) (0,3,4) A. B. C. D. 2 1 3 4 1 2 3 4 1 2 3 4 1 2 3 4 x y M , θ ( ) 2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵 []k 66?, 就 其 性 质 而 言 ,是 : ( ) A .非 对 称 、奇 异 矩 阵 ; B .对 称 、奇 异 矩 阵 ; C .对 称 、非 奇 异 矩 阵 ; D .非 对 称 、非 奇 异 矩 阵 。 3、单 元 i j 在 图 示 两 种 坐 标 系 中 的 刚 度 矩 阵 相 比 : A . 完 全 相 同 ; B . 第 2、3、5、6 行 (列 ) 等 值 异 号 ; C . 第 2、5 行 (列 )等 值 异 号 ; D . 第 3、6 行 (列 ) 等 值 异 号 。 ( ) i j y x i j y x M , θ M , θ 4、矩 阵 位 移 法 中 ,结 构 的 原 始 刚 度 方 程 是 表 示 下 列 两 组 量 值 之 间 的 相 互 关 系 : ( ) A .杆 端 力 与 结 点 位 移 ; B .杆 端 力 与 结 点 力 ; C .结 点 力 与 结 点 位 移 ; D .结 点 位 移 与 杆 端 力 。 5、单 元 刚 度 矩 阵 中 元 素 k ij 的 物 理 意 义 是 : A .当 且 仅 当 δi =1 时 引 起 的 与 δj 相 应 的 杆 端 力 ; B .当 且 仅 当 δj =1时 引 起 的 与 δi 相 应 的 杆 端 力 ; C .当 δj =1时 引 起 的 δi 相 应 的 杆 端 力 ; D .当 δi =1时 引 起 的 与 δj 相 应 的 杆 端 力。 () 6、用 矩 阵 位 移 法 解 图 示 连 续 梁 时 ,结 点 3 的 综 合 结 点 荷 载 是 : A .[]-ql ql 2 12 T 132 ; B .[]ql ql 2132 12T -; C .[]--ql ql 2112 12T ; D .[]ql ql 2112 12T 。 ( ) 123 l /2 l l ql 2 q 4 ql l /2 x y M , θ 7、用 矩 阵 位 移 法 解 图 示 结 构 时 ,已 求 得 1 端 由 杆 端 位 移 引 起 的 杆 端 力 为 {}[] T F 461--=,则 结 点 1 处 的 竖 向 反 力 Y 1 等 于 : A .6-; B .-10; C .10 ; D .14 。 ( ) 2m 4m 12 3 M 1 Y 20kN/m 1 x y M , θ 三、填 充 题 ( 将 答 案 写 在 空 格 内) 1、图 示 桁 架 结 构 刚 度 矩 阵 有 个 元 素 ,其 数 值 等 于 。 2m 3m 3m A B C D EA EA EA x y M , θ 2、图 示 刚 架 用 两 种 方 式 进 行 结 点 编 号 ,结 构 刚 度 矩 阵 最 大 带 宽 较 小 的 是 图 。 3 5 641 2 7 1 2345 6 7 (a) (b) 3、图 示 梁 结 构 刚 度 矩 阵 的 主 元 素 K K 1122== , 。 l l 2EI EI 1 2 x y M , θ 四、图 a 、b 所 示 两 结 构 ,各 杆 EI 、l 相 同 ,不 计 轴 向 变 形 , 已 求 得 图 b 所 示 结 构 的 结 点 位 移 列 阵 为 {}?=-???? ? ?ql EI ql REI ql EI 34396192192 T 。试 求 图 a 所 示 结 构 中 单 元 ① 的 杆 端 力 列 阵。 q 1 2 3 4(a) ql 2 ② ③ ① 1 2 34 (b) ② ③ ① x y M , θ 五、图 a 所 示 结 构 (整 体 坐 标 见 图 b ),图 中 圆 括 号 内 数 码 为 结 点 定 位 向 量 (力 和 位 移 均 按 水 平 、竖 直 、转 动

(完整word版)单纯形法的解题步骤

三、单纯形法的解题步骤 第一步:作单纯形表. )(1)把原线性规划问题化为标准形式; )(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵; )(3)目标函数非基化; )(4)作初始单纯形表. 第二步:最优解的判定. (1) 若所有检验数都是非正数,即,则此时线性规划问题已取 得最优解. (2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划 问题无最优解. 如果以上两条都不满足,则进行下一步. 第三步:换基迭代. ,并确定所在列的非基变量为进基变量. (1)找到最大正检验数,设为 (2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号. 主元是最大正检验数 所在列,用常数项与进基变量所对应的列向 量中正分量的比值最小者; 替换出基变量,从而得到新的基变量.也就是主元所在 (3)换基:用进基变量 (4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表; (5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止. 例3 求.

解(1)化标准型:令 ,引进松弛变量 ,其标准型为 求 (2)作单纯形表:在约束方程组系数矩阵中 的系数构成单位矩阵,故取 为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8

(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为 目标函数取得最优值. 原线性规划问题的最优解为:.目标函数的最优值为14,即. 例4 用单纯形方法解线性规划问题. 求. 解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出 ,, 代入目标函数 , 经整理后,目标函数非基化了. 作单纯形表,并进行换基迭代(见表6.9). 最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变出基,非基变量进基. 换,基变量

单纯形法的计算方法

第4章 单纯形法的计算方法单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。这就是迭代,直到目标函数实现最大值或最小值为止。 4.1 初始基可行解的确定 为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。 (1)第一种情况:若线性规划问题 max z = 从Pj ( j = 1 , 2 , ? , n)中一般能直接观察到存在一个初始可行基 (2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。经过整理, 重新对 及 ( i = 1 , 2 , ? , m; j = 1 , 2 , ? , n)进行编号, 则可得下列方程组 显然得到一个m×m单位矩阵 以B 作为可行基。将上面方程组的每个等式移项得 令由上式得 又因 ≥0, 所以得到一个初始基可行解 (3)第三种情况:对所有约束条件是“ ≥”形式的不等式及等式约

束情况, 若不存在单位矩阵时, 就采用人造基方法。即对不等式约束减去一个非负的剩余变量后, 再加上一个非负的人工变量; 对于等式约束再加上一个非负的人工变量, 总能得到一个单位矩阵。 4.2 最优性检验和解的判别 对线性规划问题的求解结果可能出现唯一最优解、无穷多最优解、无界解和无可行解四种情况, 为此需要建立对解的判别准则。一般情况下, 经过迭代后可以得到: 将上代入目标函数,整理后得 令 于是 再令 则 (1) 最优解的判别定理 若为对应于基B的一个基可行解,且对于一切 且有则 为最优解。称为检验数。 (2) 无穷多最优解的判别定理 若为一个基可行解, 且对于一切 且有 又存在某个非基变量的检验数,则线性规划问题有无穷多最优解。 (3) 无界解判别定理 若为一个基可行解,有一个> 0 ,并且对i = 1 , 2 , ?, m,有≤0 , 那么该线性规划问题具有无界解(或称无最优解)。 4.3 基变换

和积法具体计算步骤

和积法具体计算步骤 1将判断矩阵的每一列元素作归一化处理: '1 ij ij n ij i b b b == ∑ ,1,2,,i j n =K 2将每一列经归一化处理后的判断矩阵按列相加: ' '1n i ij j w b ==∑ 1,2,,i n =K 3对向量''''T 12(,,,)n W w w w =K 作归一化处理: ' '1 i i n i i w w w == ∑ 1,2,,i n =K 得到T 12(,,,)n W w w w =K 即为所求特征向量的近似解。 4计算判断矩阵最大特征根max λ: max 11=n i i BW n w λ=∑ 5判断矩阵一致性指标C.I.(Consistency Index ): max C.I.= 1 n n λ-- 6随机一致性比率C.R.(Consistency Ratio ): C.I. C.R.= R.I. 对于多阶判断矩阵,引入平均随机一致性指标R.I.(Random Index ),下表给出了1-15阶正互反矩阵计算1000次得到的平均随机一致性指标,当C.R.0.10时,便认为判断矩阵具有可以接受的一 致性。

方根法具体计算步骤 1将判断矩阵的每一行元素相乘: 1n i ij j m b ==∏ 1,2,,i n =K 2计算i m 的n 次方根'i w : 'i w = 1,2,,i n =K 3对向量''''T 12(,,,)n W w w w =K 作归一化处理: ' '1 i i n i i w w w == ∑ 1,2,,i n =K 得到T 12(,,,)n W w w w =K 即为所求特征向量的近似解。

《结构力学习题集》(下)-矩阵位移法习题及答案

第八章 矩阵位移法 1、(O) 2、(X) 3、(O) 4、(X) 5、(X) 6、(O) 7、(O) 8、(X) 9、(O) 10、(O) 11、(A) 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234x y M , θ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 123l l 4l l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) x y M , θ EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l (0,0,1) (0,5,0) (2,3,4) l ① ② 123x y M , θ 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l l 1 3 4 2A , I A A /222A I , 2A x y M , θ 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 3 12① ② ③ [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 : 4x y M , θ

第9章 矩阵位移法 例题

第9章 矩阵位移法 习 题 9-1:请给图示结构编号(同时用先处理法和后处理法)及建立坐标。 题9-1图 9-2:求图示连续梁的整体刚度矩阵。 题9-2图 9-3:求图示刚架的整体刚度矩阵。 (c ) (e )

题9-3图 9-4:求图示组合结构的整体刚度矩阵。 题9-4图 9-5:求图示桁架结构的整体刚度矩阵,所有杆件的EA 均相同。 题9-5图 9-6:求图示排架结构的整体刚度矩阵。 题9-6图 9-7:求图示结构的等效结点荷载,请利用结构的对称性。 1kN/m

题9-7图 9-8:求图示结构的等效结点荷载,请利用结构的对称性。 题9-8图 9-9:求图示结构的等效结点荷载。 题9-9图 9-10:求出图示结构的荷载列阵。 题9-10图 9-11:求出图示结构的荷载列阵,请分别用先处理法和后处理法进行编号。 q q

题9-11图 9-12:求图示结构的荷载列阵,考虑轴向变形。 题9-12图 9-13:求图示结构的荷载列阵。 题9-13图 9-14:图示连续梁中间支座发生了下向的移动a ,请求出其整体刚度方程。 题9-14图 10kN/m q

9-15:请求出图示连续梁的整体刚度方程。 题9-15图 9-16:求图示连续梁的整体刚度矩阵。 题9-16图 9-17:图示结构温度发生了变化,请求出整体刚度方程。杆件的EI 、EA 相同。 题9-17图 9-18:图示结构温度发生了变化,请求出整体刚度方程。 题9-18图 9-19:图示结构发生了支座移动,请画出结构的内力图。 00

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都就是非负的(否则无解),接下来的m 列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都就是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题就是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量与主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格与新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0)、把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行与列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化与处理(本程序所用的实例用的就是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组、用于很难预先估计矩阵的行与列,所以在程序中才了动态的内存分配、需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行就是否全部为非负数,最后一列不作考虑 这个函数用来判断就是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列就是否全部为负数或零 这个函数用来判断线性规划就是否就是无解的 bool Is_column_all_Positive(int col); //判断col列中就是否全部为正(不包括目标行)

《结构力学习题集》-矩阵位移法习题及标准答案

第八章 矩阵位移法 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 12 3l l 4 l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l 1 3 4 2 A , I A A /222A I , 2A 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 :

权重确定和计算

3.3评价因素权重确定的基本理论 权重是一个相对的概念,在评价因素体系中每个因素对实现评价目标和功能的相对重要程度就是该因素的权重。权重是综合评价的重要信息,一组评价指标体系相对应的权重组成权重体系。一组权重体系{i w |i=1,2,…,n } 必须满足下 述两个条件: (1)0 < wi ≤1,i=1,2,…,n。 (3-1) (2)11=∑=n i i w (3-2) 其中n 是权重指标的个数 一级指标和二级指标权重的确定: 设某一评价的一级指标体系为{i v |i=1,2,…,n } 其对应权重体系为{i w |i=1,2,…,n } 则有: (1)0 < w i ≤1,i=1,2,…,n。 (3-3) (2)11=∑=n i i w (3-4) 如果该评价的二级指标体系为{ij v |i=1,2,…,n;j=1,2,…,m },则其对应的权重体系为{ij w |i=1,2,…,n;j=1,2,…,m }应满足: (1)0< w i ≤1,i=1,2,…,n。 (3-5) (2)11=∑=n i i w (3-6) (3)∑∑==n i m j ij i w w 11 = 1 (3-7) 对于三级、四级指标可以以此类推。权重体系是相对指标体系来确定的。首先必须有指标体系,然后才有相应权重系数。指标权重的选择实际也是对系统评价指标进行排序的过程,而且权重值的构成应符合以上的条件。

3.4权重确定的方法 权重确定的方法很多,主要有主成分分析法、德尔菲法(Delphi )、层次分析法(AHP )。本文中主要运用层次分析法来确定评价因素的权重。 层次分析法通过分析复杂系统所包含的因素及相关关系,将系统分解为不同的要素,并将这些要素划规不同层次,从而客观上形成多层次的分析结构模型。将每一层次的各要素进行两两比较判断,按照一定的标度理论,得到其相对重要程度的比较标度,建立判断矩阵。通过计算判断矩阵的最大特征值极其相应的特征向量,得到各层次要素的重要性次序,从而建立权重向量5【】。 层次分析法确定权重的步骤: (1)建立树状层次结构模型。在本文中,该模型就是安全评价因素体系。 (2)确立思维判断定量化的标度。在两个因素相互比较时,需要有定量的标度,假设使用前面的标度方法,则其含义如表4-1所示, 按表4-1标度方法来确定标度。 表3-1层次分析法判断标度确定原则 标度 含义 1 表示两个因素相比具有等性 3 表示两个因素相比一个因素比另一个因素稍微重要 5 表示两个因素相比一个因素比另一个因素明显重要 7 表示两个因素相比一个因素比另一个因素强烈重要 9 表示两个因素相比一个因素比另一个因素极端重要 2、4、6、8 为上述相邻判断的中值 (3)构造判断矩阵。运用两两相比的方法,对各相关元素进行两两相比较评分,根据中间层若干指标,可得到若干两两比较判断矩阵。 (4)计算权重。这一步将解决n 个元素1A ,2A ,…n A 权重的计算问题,对于表4-2的两两比较的方法得到矩阵A ,解矩阵特征根,计算权重向量和特征根 m ax λ的方法有“和积法”、“方根法”、和“根法”。 本文选用了计算较为简便的“和积法”,其计算步骤如下: ①对A 按列规范化,即对判断矩阵A 每一列正规化: ∑== n i ij ij ij a a a 1 (i,j =1,2,…,n ) (3-8)

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 这个函数用来判断是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零 这个函数用来判断线性规划是否是无解的 bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)

结构力学习题集矩阵位移法习题及答案老八校

第八章 矩阵位移法 – 老八校 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。 ,cos α=C ,sin α=S ,C C A ?= S S D S C B ?=?=,,各杆EA 相同。

单纯形法求解原理过程

单纯形法 需要解决的问题: 如何确定初始基本可行解; 如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降; 如何判断一个基本可行解是否为最优解。 min f(X)=-60x1-120x2 s.t. 9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 x i≥0 (i=1,2,3,4,5) (1) 初始基本可行解的求法。当用添加松弛变量的方法把不等式约 束换成等式约束时,我们往往会发现这些松弛变量就可以作为 初始基本可行解中的一部分基本变量。 例如:x1-x2+x3≤5 x1+2x2+x3≤10 x i≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10 x i≥0 (i=1,2,3,4,5) 令x1=x2=x3=0,则可立即得到一组基本可行解 x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵 中可以看出其中有个标准基,即 与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成 X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x2 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 X0=[0,0,360,300,200] T 判别初始基本可行解是否是最优解。此时可将上式代入到目标函数中,得:

F(X)=-60x1-120x2 对应的函数值为f(X0)=0。 由于上式中x1,x2系数为负,因而f(X0)=0不是最小值。因此所得的解不是最优解。 (2) 从初始基本可行解X0迭代出另一个基本可行解X1,并判断X1是否 为最优解。从一个基本可行解迭代出另一个基本可行解可分为 两步进行: 第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量; 第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。 选择进基和离基变量的原则是使目标函数值得到最快的下降和使所有的基本变量值必须是非负。 在目标函数表达式中,非基变量x1,x2的系数是负值可知,若x1,x2不取零而取正值时,则目标函数还可以下降。因此,只要目标函数式中还存在负系数的非基变量,就表明目标函数还有下降的可能。也就还需要将非基本变量和基本变量进行对换。一般选择目标函数式中系数最小的(即绝对值最大的负系数)非基变量x2换入基本变量,然后从x3,x4,x5中换出一个基本变量,并保证经变换后得到的基本变量均为非负。 当x1=0,约束表达式为: X3=360-4x2≥0 x4=300-10x2≥0 x5=200-5x2≥0 从上式中可以看出,只有选择 x2=min{}=30 才能使上式成立。由于当x2=30时,原基本变量x4=0,其余x3和x5都满足非负要求。因此,可以将x2,x4互换。于是原约束方程式可得到:4x2+x3=360-9x1 10x2 =300-3x1-x4 5x2+x5=200-4x1 用消元法将上式中x2的系数列向量变[4,10,5]T换成标准基向量[0,1,0]T。其具体运算过程如下: -*4/10 : x3=240-78x1/10+4 x4/10 /10 : x2 =30-3x1/10-x4/10

数学解题方法谈5:一些特殊数和式的求和积法

数学解题方法谈5: 一些特殊数和式的求和积法 (一)、倍数型求法: 解:设原式=S ,则2S=1+2+3+…+59=1770,∴原式=S=885. 3、计算: 1+22+23+24+…+22015 解: 记S=1+22+23+24+...+22015 (1) 则2S=2+22+23+24+...+22016 (2) ∴ (2)-(1) 可得:S=22016-1 4、20+21+22+23+…+22008 . 解:令W=20+21+22+3+...+22008 (1) 则2W=21+22+23+24+...+22009 (2) ∴原式=W=(2)-(1)=22009-1 (二)拆数型求法 1、31×2-52×3+73×4-94×5+115×6-…+199×10 . 解:原式=1+21×2-2+32×3+3+43×4-4+54×5+5+65×6-…+9+109×10 =1+12-12+13-13+14-14+…+110=1110 .

解:原式=(1-12+1)+(1-13+1+12)+(1-14+1+13)+…+(1-110+1+19) =1-12+1+1-13+1+12+1-14+1+13+…+1-110+1+19 =9×2-110+1=18910 3、11×2+12×3+13×4+…+199×100 . 解:原式=1-12+12-13+13+…+199-1100=1-1100=99100 4、1+11×2+52×3+113×4+…+899×10 . 解:原式=1+1-11×2+1-12×3+1-13×4+…+1-19×10=9+110=9110 5、31×2×3×4+32×3×4×5+33×4×5×6+…+38×9×10×11 . 解:原式= 11×2×3-12×3×4+12×3×4-13×4×5+…+18×9×10-19×10×11 =16-1990=164990=82495 =(1+2+3+…+9)-12( 1+2+3+…+8)+13( 1+2+3+…+7)-…-18(1+2)+19 =45-18+283-214+5-106+67-38+19=335504 7、14+128+170+1130+…+18554 . 解:原式=11×4+14×7+17×10+110×13+…+191×34

相关主题
文本预览
相关文档 最新文档