当前位置:文档之家› 储能电池补贴

储能电池补贴

储能电池补贴
储能电池补贴

储能产业补贴政策第一次征求意见结果公布2017-04-25光恒太阳能Solar

2017年2月23日中国智慧能源产业技术创新战略联盟储能专委会联合中国价格协会能源和供水价格专业委员会(国家发改委主管的中国价格协会的分支机构)召集沃太能源、CATL、北变微电网、杉杉凯励新能源、ABB、中益能等储能行业中的领军企业,召开了第一次储能电价补贴征询座谈会,听取企业对储能价格补贴等意见,反映企业需求,协助企业发展。

在刚刚闭幕的2017国际储能峰会暨展览会上召开了第二轮储能补贴政策征求意见会议,此次会议中国价格协会能源和评审专业委员会朱晋平会长汇报了第一次补贴意见。

液流电池储能补贴建议

方案一:初装费补贴,在项目建设期,元/WH补贴。

方案二:运行期度电补贴,在液流电池储能系统的运行生命周期内(10-20年)每放出1度电补贴元,补贴20年。或者每放出1度电补贴元及补贴10年。

方案三:初装+度电混合补贴。在项目建设期元/WH能源储存补贴,同时在运行期每放出1度电补贴元,补贴10年。

全钒液流电池储能补贴建议

方案一:调峰调频用大规模储能系统。

参考抽水蓄能电价政策,针对电站合理投资部分,享有准许收益;采用固定投资补贴和“两部制电价”。

方案二:风光等新能源发电侧配套储能系统。

增加收购年利用小时数,保证配套储能后的收益指标不低于配套储能前;利用财政税收价格政策给予储能系统固定投资进行补贴。

方案三:智能微网用储能系统。

针对边远地区、无电地区和海岛微网储能项目,履行国家相关补贴政策;采用固定投资补贴。

宁德时代储能补贴建议

方案一:奖励相应电力需求侧调度的储能

按照相应时间24小时、4小时和30分钟分别给予150元/千瓦、200元/千瓦、300元/千瓦的奖励。

方案二:补贴永久性转移高峰电力负荷项目

对于永久性转移高峰电力负荷项目,按储能实际发电量补贴元/KWh。

方案三:鼓励储能与电动车充电站建设结合

与充电站结合的储能系统除享受火电上网补贴外,还应享受电网过网费补贴元/KWh。

方案四:储能电站增容模式补贴

对于储能电站增容模式的,应给予100元/KW*月的容量费补贴。

力神储能补贴建议

它认为应针对在不同电力环节、用途和地区进行区分。

建议1:发电侧应用。鼓励不同地区的新能源发电制定相关的技术标准。鼓励发电企业增加储能设施,给予储能设施建设的初装费用补贴。

针对传统火电厂,首先应限制新建电厂和新建机组建设投入,鼓励使用储能系统替代用于调峰调频系统备用的机组,并给予储能基础建设的补贴。

建议2:微电网应用。针对边远地区、海岛等离网型微电网,采取鼓励性政策,在电价上给予补贴。鼓励有资质的售电公司参与运营。

建议3:用户侧储能以及独立的调峰调频电站。

鼓励独立的储能电站运营商,参与电力需求侧相应、调峰调频。制定长期稳定的储能运营保证政策,保证独立储能电站运营商的盈利。

根据电站投入运营时期,给予至少10年以上的稳定结算方式。后期投入的储能电站,经过核算,降低补贴。针对独立储能系统的补贴,可以根据储能系统的规模给予分期固定补贴和度电电价结合补贴的方式进行。不提供初装性补贴。

南都储能补贴建议

建议1:给予电站投资方补贴,按兆瓦时算,项目由当地经信委或者电力部门协同验收。

建议2:给予上储能电站的用户,在储能充电时谷电电价优惠,提升谷电利用率。

建议3:在上储能电站用户单位,因充电变压器按需交费超容部分减免。为避免骗补可以联合当地经信委和电力公司协同对项目跟踪验收。

建议4:峰谷价差低于6毛的建议给初装费补贴,峰谷差在8毛的建议按电量补贴或者充电超容量费用减免。

北京爱索能源储能补贴建议

针对储能的单向补贴必须和光伏风电的补贴一样,每度电补贴元。

理由一:储能具有市场价格无法完全反映的正外部性。

理由二:对于国家战略性新兴产业,发展初期需要大量研发投入。

理由三:通过补贴政策扩大市场规模使企业实现规模经济和降低成本,使产业最终能够完全面对市场竞争。

惠州亿纬锂能储能补贴建议

建议1:按照电池容量的大小给予建设成本一定比例的补贴。

建议2:对于弃风、弃光严重的区域,考虑按储能对提高新能源消纳的比例进行补贴。

建议3:对于储能系统在尖峰电价时段的发电量进行补贴。

建议4:明确需求侧响应政策,规定响应价格,按照储能每次响应每千瓦时进行补贴。

建议5:明确储能系统参与调频、调峰辅助服务市场的合法性,制定服务价格。

北京杉杉凯励储能补贴建议

方案一:建设补贴

三元锂电池补贴800元/KWh,铅炭电池补贴400元/KWh,

方案二:建设补贴与度电补贴结合

先期建设费用三元锂电池补贴400元/KWh,铅炭电池补贴200元/KWh。系统投运之后,按照储能系统实际使用电量,每度电补贴元,补贴5年。

方案三:度电补贴

每度电补贴元,补贴8年。

沃太能源储能补贴建议

应用场景:工商业峰谷价差套利

基本条件,工程造价3元/Wh,电池材料为磷酸铁锂,峰谷价差为元,每天循环1次,运营年限位15年,贷款利率为7%。

结果:若无补贴时,运营周期内无法收回成本。

经测算,若初始建设补贴为元/Wh,资本金内部收益率约为8%,若度电补贴为元/KWh,资本金内部收益率约为8%。

根据第一次会议的反馈,各企业储能补贴的意见有很大差异,其争论重点主要在补贴方式上。朱会长希望在座的新加入的各家企业能够多多提出建议,在年内的第三次储能补贴政策征求意见会议上进行充分讨论,形成有效的综合反馈意见,推动储能行业的发展。

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

(研发管理)MW级大容量锂电池储能电站自主研发集成报告

MW级大容量锂电池储能电站自主研发集成报告 中国智能电网在线 2011-9-20 18:55:35 (阅266次) 关键词:锂电池储能电站储能系统储能技术 MW级大容量锂电池储能电站自主研发集成报告 1 国内外大容量锂电池储能系统发展现状 近年来,储能技术的研究和发展一直受到各国能源、交通、电力、电讯等部门的重视。电能的储存形式可具体分为机械、电磁、电化学电池三大类型。其中电池储能近年来受到越来越多的关注。铅酸电池作为最早的电化学电池之一,已经历了近150年的发展历程。利用铅酸电池构建大容量储能系统接入电网,作为移峰填谷的应用,最早开始于1980年代。然而,铅酸电池循环寿命较短(平均循环寿命为500~1500次)而且在高温下寿命会缩短,能量密度和功率密度较低(30~50Wh/kg、75~300W/kg),且在制造过程中存在一定的环境污染,这使得常规电池远远满足不了大容量接入电网的要求。因此,近年来世界各国大力研究高级电池(advanced battery),例如,钠硫电池,液流电池等,其中锂离子电池是高级电池中一种有广泛应用潜力的电池。《2009年美国复苏与再投资法案》中预算20亿美元,用于鼓励高级电池在电力系统中的应用,其中,就包括锂离子电池。 随着锂离子电池性能和安全性的提高,以及成本的降低,由于其具有能量密度高、无记忆效应、无污染、自放电小、循环寿命长的特点,逐步受到业界的关注和重视。从锂离子电池使用的正极材料角度可以将目前的锂离子电池分为:(LiCoO2) 钴酸锂电池、(Li(NiCoMn)O2)三元材料电池、(LiMn2O4)锰酸锂电池以及(LiFePO4)磷酸铁锂电池等。钴酸锂电池由于在充电和高温状态下存在安全问题,且钴是稀贵资源,其成本高,因此钴酸锂电池不宜在大容量电池储能中采用。锰酸锂电池正极材料资源丰富、价格低廉,安全性好,无环境污染,近年来取得重大突破,已在电动公交车中尝试应用。三元材料锂电池是钴酸锂电池的替代产品,其相对安全、成本较低,钛酸锂电池是三元材料锂电池的一种。磷酸铁锂电池,与传统的钴酸锂电池相比,能量密度为钴酸锂电池的75%,但在制造成本、安全性、循环寿命等方面有明显的优势。 目前,锂离子电池在交通行业(电动汽车)得到了广泛应用。2007年美国锂离子电池的市场销售量为10亿美元,并且预计每年有50-60%的增长幅度。但是,锂离子电池大容量集成接入电网的应用直到2008年10月后才开始有报道。美国

储能电源的应用及其意义

储能系统可以说是调节微电源性能、保证负荷供电质量、维持电网稳定地重要环节,因此研究储能系统设计、开发储能在微网技术中地应用具有十分重要地意义. 、微网地储能技术种类及其特性 伴随着科技地发展,已发明地储能技术形式多种多样.根据微网地特点,适用于微网地储能技术可以分为物理储能、电化学储能和电磁储能,电化学储能可以分为铅酸电池、镉镍电池、氢镍电池、锂离子电池等.物理储能包括抽水蓄能、压缩空气储能、飞轮储能,电磁储能包括超级电容储能和超导磁储能等.文档来自于网络搜索 .蓄电池储能系统构成 蓄电池储能系统主要由电池组、电池管理系统( )、()、隔离变压器、双向变流器、变流器监控装置及辅助设备.系统可以满足频繁充放电及微网孤岛运行功能地需求.系统可根据上级调度指令完成各种充电、放电等高级控制策略,在微电网中应用最为广泛且最具有发展前途.文档来自于网络搜索 能量控制装置控制器通过通信信道接收后台控制指令,根据功率指令地符号及大小控制变流器对电池进行充电或放电,实现对电网有功功率及无功功率地调节. 控制器通过接口与电池管理系统通讯,获取电池组状态信息,可实现对电池地保护性充放电,确保电池运行安全.文档来自于网络搜索 .铅酸电池 铅酸电池主要由铅及其氧化物构成,电解液是硫酸溶液.荷电状态下,主要成分为二氧化铅,主要成分为铅;放电状态下,正负极地主要成分均为硫酸铅,以密度为.~./ (浓度为%~%)地硫酸溶液作为电解液,统称为铅酸蓄电池(亦称“铅蓄电池”).目前铅酸蓄电池在电力系统应用领域地研究重点是电力调峰、提高系统运行稳定性和提高供电质量.阀控铅酸电池地电化学反应式如下:文档来自于网络搜索 充电: (电解池)阳极:,一一阴极:当溶液地密度升到.时,应停止充电:放电: (电解池)负极:一一正极:一文档来自于网络搜索 .锂离子电池 目前锂离子电池地负极一般采用石墨或其嵌锂化合物,正极为氧化钴锂:、:及等过渡金属氧化物,电解液采用锂盐液态非水电解液.锂离子电池地性能主要取决于正负极材料,磷酸铁锂作为新兴地正极材料,其安全性能与循环寿命较其它正极材料具有明显优势.锂电池具有以下几个特点:能量密度高,其理论比容量为/,产品实际比容量可超过 (.,℃);储能密度高;工作电压适中(单体工作电压为.或. );寿命长;正常使用条件下,次循环后电池放电容量不低于初始容量地%;无害,不含任何对人体有害地重金属元素;充放电转化率高(%以上).但是,锂离子电池性能易受工艺和环境温度等因素地影响.文档来自于网络搜索 .超级电容器 超级电容器是一种新型储能装置,通过极化电解质来储能.由于随着超级电容器放电,正、负极板上地电荷被泄放,电解液地界面上地电荷响应减少.由此可以看出:超级电容器地充放电过程始终是物理过程,没有化学反应,因此性能是稳定地,与利用化学反应地蓄电池是不同地.超级电容器具有比功率大、充电速度快地优点,适合大电流和短时间充放电地场合,且使用寿命长,不易老化,是一种绿色能源,缺点是能量存储率有限,价格较为昂贵,还不能完全取代蓄电池提供能源,在电力系统中多用于短时间、大功率功率输出地场合.文档来自于网络搜索 .飞轮储能技术 飞轮储能以动能地形式存储能量,经过功率变换器,完成机械能一电能相互转换.飞轮储能比功率一般大于/,比能量超过/,循环使用寿命长,工作温区较宽,无噪声,无污染,

动力电池BMS和储能电池BMS的差异【详解】

动力电池BMS和储能电池BMS的差异 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1、大规模储能系统的应用场景 新能源电站,风力发电或者太阳能发电站,为了实现平抑输出功 率波动的目的,越来越多的发电厂开始配备储能系统。 独立储能电站,随着电力制度改革逐渐进入人们的视野,以倒卖 电力为生的独立储能电站逐渐出现。 微电网,系统内部包含分布式电源,用电负荷,储能系统和电网 管理系统的一个小型供配电网络。为了确保负荷的用电连续性和 稳定性,每个微电网都会配备储能系统。 2、储能电池管理系统(E S B M S)与动力电池管理系统(B M S) 的不同之处 储能电池管理系统,与动力电池管理系统非常类似。但动力电池 系统处于高速运动的电动汽车上,对电池的功率响应速度和功率 特性、S O C估算精度、状态参数计算数量,都有更高的要求。 储能系统规模极大,集中式电池管理系统与储能电池管理系统差 异明显,这里只拿动力电池分布式电池管理系统与其对比。

2.1电池及其管理系统在各自系统里的位置有所不同 在储能系统中,储能电池在高压上只与储能变流器发生交互,变 流器从交流电网取电,给电池组充电;或者电池组给变流器供电, 电能通过变流器转换成交流发送到交流电网上去。 储能系统的通讯,电池管理系统主要与变流器和储能电站调度系 统有信息交互关系。一方面,电池管理系统给变流器发送重要状 态信息,确定高压电力交互情况;另一方面,电池管理系统给储 能电站的调度系统P C S发送最全面的监测信息。如下图所示。 电动汽车的B M S,在高压上,与电动机和充电机都有能量交换关系;

电池储能系统在电力系统中的应用

电池储能系统在电力系统中的应用 孔令怡1,廖丽莹1,张海武2,赵家万3 (1.广西大学电气工程学院,南宁530004;2.德清县供电局,德清313200;3.遵义 供电局,遵义市563000) 摘要:电池储能系统(BESS)是一种新兴的FACTS器件。具有控制有功功率流的能力,能够同时对接入点的有功功率和无功功率进行调节,为高压输电系统提供快速的响应容量,有效提高了电力系统的稳定性、可靠性和电能质量。介绍了电池储能系统的基本原理、特点和国外的应用情况,并对它在电力系统中的不同应用进行了综述。 1引言 迄今为止,由于电力系统缺乏有效地大量储存电能的手段,发电、输电、配电与用电必须同时完成,这就要求系统始终处于动态的平衡状态中,瞬间的不平衡就可能导致安全稳定问题。大功率逆变器的出现为储能电源和各种可再生能源与交流电网之间提供了一个理想的接口。从长远的角度看,由各种类型的电源和逆变器组成的储能系统可以直接连接在配电网中用户负荷附近,构成分布式电力系统,通过其快速响应特性,迅速吸收用户负荷的变化,从根本上解决电力系统的控制问题。 可用在电力系统中的储能电源种类繁多,比较常见的有超导储能(SMES)、电池储能(BESS)、飞轮储能、超级电容器储能、抽水储能、压缩空气储能等。在各种类型的储能电源当中,电池储能系统是一种比较适合电力系统使用的储能电源,具有技术相对成熟、容量大、安全可靠、无污染、噪声低、环境适应性强、便于安装等优点。 2电池储能系统的基本原理 电池储能系统主要有电池组和变流器两部分组成,其变流器主要是基于电压源型变流器,其基本结构如图1所示。

电池组部分一般采用技术比较成熟的钠硫电池或铅酸电池,其中钠硫电池在能量密度、使用寿命、运行效率上有较明显优势,所以钠硫电池的应用更广泛。钠硫电池与铅酸电池特性参数比较如表1所示。 变流器的实质是大容量的电压逆变器,它是连接储能电池和接入电网之间的接口电路,实现了电池直流能量和交流电网之间的双向能量传递。电池储能系统的电路原理图如图2所示。 图2中电池储能系统等效为一个理想的电压源,其电压的幅值为U1,电压相角为H;串联的R、L代表总的功率损耗、线路损耗等;电池储能系统注入电力系统的电流的幅值为I L,电流相角为U;电力系统的接入点的电压幅值为U S,电压相角为D。 在电池储能系统中,电压幅值U1和电压相角H都是可以控制的,当我们需要向系统注入有功功率时,便可以控制H>D,这时电池储能系统的电压相角超前于系统接入点的电压相角,所以有功功率由电池储能系统流入系统;反之亦然。当我们需要向系统注入无功功率时,便可以控制U1>U S,这时电池储能系统的电压幅值高于系统接入点的电压幅值,所以无功功率由电池储能系统流入系统;反之亦然。可见,适当的调整换流器来控制电池储能系统的电压幅值U1和相角H,便可以实现电池储能系统与接入的电力系统之间的有功功率和无功功率的交换。 3电池储能系统在电力系统中应用的目的 电池储能系统在电力系统中有着极为广泛的应用,因为它本身可以快速的对接入点的有功功率和无功功率进行调节,所以可以用来提高系统的运行稳定性、提高供电的质量,当其容量足够大时,甚至可以发挥电力调峰的作用。

储能电站成本与效益比较分析 哪种电池更为经济

储能电站成本与效益比较分析哪种电池更为经济? 2017-02-07 09:25:44 关键词:储能电站电池技术储能市场 现以三种不同电池,按照500kW-8h(4000kWh)储能电站,分别比较储能电站成本与效益。见下表1~表2。

表1 三种不同电池储能电站参数表 对表1的参数说明如下: 铅碳电池使用放电深度为60%DOD,所以4000kWh储能电站电池容量需要按照4000kWh/0.6=6667kWh配置; 锂电池使用放电深度为90%DOD,电池容量按照4000kWh/0.9=4445kWh 配置; 动力电容电池使用放电深度为90%DOD,但电池容量有约11.6%裕度,故电池容量按照4000kWh配置。 需要更换电池次数,是按照储能系统每天充放电1次,电池循环次数10000次计算,累计折合运行27年;锂电池和铅碳电池循环次数3000次,需要更换电池3次。

表2 储能电站投资成本与效益比较表 上表2用以下参数计算储能电站投资成本与效益: 商业峰谷电价差,按照以北京1.01元/KWh计算; 储能系统每年电价差收益按照365天计算; 储能系统累计收益年份按照电池使用循环次数10000次计算,为27年。从上表2看,以全寿命使用周期27年计算,有如下结论: 动力电容电池每度电储能成本最低,其次是铅碳电池和锂电池; 动力电容电池储能系统累计总收益高于铅碳电池储能系统; 动力电容电池系统设备累计投资最低,其次是铅碳电池和锂电池。

动力电容电池系统设备初始投资最高,其次是锂电池和铅碳电池。 4000kWh不同电池所建成的储能电站主要存在一下几点差异: 1.由于动力电容电池的充放电效率高, 所以在相同的功率下动力电容电池的配置容量是最小的,起到了节约资源的作用。 2.铅碳电池的每千瓦时电池价格最低,其次是锂电池;动力电容电池每千瓦价格最高。动力电容电池比铅碳电池高5倍多。 3.动力电容电池的循环次数是铅碳电池和锂电池的3倍多。所以在储能电站的27年的使用时间内动力电容电池不需要更换电池,而铅碳电池和锂电池需要更换至少3次以上的电池。 4.动力电容电池的全寿命周期每度电储能成本比铅碳电池、锂电池低很多。 基于以上优势,动力电容电池一定会在储能领域得到广泛应用。 现在常用的化学储能电站主要以锂电池储能电站和铅碳电池储能电站为主。近几年由于国家对与化学储能电站的重视虽然取得了一些进展,但是也暴露出了一系列问题,其中主要阻碍化学储能电站的推广的原因则是没有一种符合人们要求的电池。于是在社会的热切期盼之下动力电容电池应运而生。 西安德源纳米储能技术有限公司是电力储能电站、储能电源、后备电源、纯电动汽车与混合动力汽车动力电容电池集成设备、不间断电源、应急电源、充电设备、动力电容电池集成设备、电池管理系统的研究开发、生产、销售为一体的高新技术企业。其推出的动力电容电池具有:安全性好、寿命超长、适温性宽、优化设计、充电快速、环保高效、电池回收等七大优势。 安全性好优势:动力电容电池通过了挤压、针刺、短路、加热、震动等安全测试,电池不燃烧、不爆炸。

9_已阅_全钒液流电池储能进展与应用

中国储能网讯:作为解决可再生能源大规模接入、传统电力系统削峰填谷、分布式区域能源系统负荷平衡的关键支撑技术,大容量储能技术已成为世界未来能源技术创新的制高点。由于产业链长、产业规模大,储能产业已成为战略性新兴产业,得到了工业发达国家产业界的重点关注。 2016年4月1日国家能源局颁布的《2016年能源工作指导意见》中明确提出“加快全钒液流电池”等领域技术定型。这些无疑为全钒液流电池储能技术的研究开发和商业化应用的提供了重大机遇。 技术特点 对于大规模储能技术而言,由于系统功率和容量大,有其自身的技术要求,主要包括以下三个方面:安全性好;生命周期的性价比高(生命周期的经济性好);生命周期的环境负荷小(生命周期的环境友好)。全钒液流电池储能技术能很好地满足上述要求。

对规模储能技术而言,由于系统功率和容量大,发生安全事故造成的危害和损失大,因此规模储能技术的首要要求是安全可靠性。 全钒液流电池是通过钒离子的价态变化,实现化学能到电能的往复转换,从而实现电能存储与释放的一种储能技术。与其他储能技术相比,全钒液流电池储能技术具有以下优点: 安全性好:全钒液流电池的储能活性物质为钒离子的水溶液,常温常压运行,不会发生燃烧。经过长时间运行,即使离子传导膜发生破裂,正负极活性物质发生互混,也不会发生爆炸和燃烧。系统运行过程中,电解液在电堆和电解液储罐之间循环流动,电堆产生的热量可以有效排出,热管理简单。全钒液流电池体系的技术特性使得单体电池间一致性好,消除了像锂离子电池那样因为一致性差而导致的系统安全性问题。 循环寿命长:全钒液流储能电池的充放电循环寿命可达13000次以上,日历寿命超过15年。由于全钒液流储能电池的活性物质——钒离子存在于液态的电解液中,在电池反应过程中,钒离子仅发生价态变化,而无相变,且电极材料本身不参与反应,因此电池寿命较长。日本住友电工制造的25kW的全钒液流电池模块在实验室中运行,充放电循环次数超过16000次。与风电场配合使用的4MW/6MWh电池系统,在3年的应用中实现充放电循环27万次。在1MW/5MWh全钒液流电池储能系统中,电解液的成本约占整个成本的45%,由于电解液可循环使用,所以生命周期的性价比高。

换电站储能有序充放电及梯次动力电池循环利用研究与应用

换电站储能有序充放电及梯次动力电池循环利用研究与应用摘要:分布式光伏系统减少了矿产资源等非可再生能源的生产和消费,对环境 起到一定的保护作用;国家“十二五”规划明确提出大力发展光伏及新能源产业。相继出台《关于促进光伏行业健康发展的若干意见》、《支持分布式光伏发电金融服务的意见》等一系列利好政策;在未来,可再生能源、绿色能源的应用将逐渐普及;自发自用、余电上网,环保节能、享受政府补贴。分布式太阳能光伏发电的应用,利国利民,将成为未来太阳能行业主流发展方向。 关键词:换电站;储能;梯次动力;研究; 近日,国务院办公厅印发《关于加快电动汽车充电基础设施建设的指导意见》,部署加快推进电动汽车基础设施建设工作。文件强调了新建住宅配建车位应100%建设充电设施或预留建设安装条件,大型公共建筑物配建停车场、社会公共停车位建设充电设施或预留建设安装条件的车位比例不低于10%,每2000辆电动汽车至少配套建设一座公共充电站。鼓励建设占地少、成本低、见效快的机械式与立体式停车充电一体化设施。 一、运行模式 一体化站在正常情况下并网运行并为电动汽车提供充换电服务。当上级电网出现紧急状态时需要调整运行方式,提供必要的支持;若上级电网崩溃时则需离网运行,防比电站设备损坏。由此可见,一体化电站的具体运行模式与接入点电网的状态紧密联系。研究中将电网状态划分为正常、警戒、紧急/严重紧急、崩溃以及恢复5个状态。 1.正常运行模式 一体化电站的常规状态为正常运行模式,该模式适用于电力系统正常运行状态甚至告警状态。一体化电站处于正常运行模式时,电网各项指标仍处于正常范围内,此时,一体化电站运行以经济优化作为主要目标,利用峰谷时差电价对电动汽车的充放电采取优化控制,同时适当提供包括无功补偿、谐波治理等辅助服务。在正常运行模式下,充放储一体化电站可能的运行子状态包括:充电站充电/放电/不动作和梯次站充电/放电/不动作共9种组合方式。 2.保护运行模式 一体化站非常规状态为保护运行模式,该模式适用于电力系统出现紧急甚至严重紧急状态,即系统各项运行指标处于稳定边缘。在该运行模式下,一体化站不再以经济目标为主要运行目标,因为若一体化站仍以经济调度方式运行,可能加剧系统的各项指标越限,导致系统失稳。因此,一体化站应调整运行模式,进入保护运行模式,利用一体化电站变流装置的技术优势,采取包括快速有功功率无功功率支持在内的紧急支持措施,协助电网恢复正常运行状态。 3.孤岛(自治)运行模式 一体化站的特殊运行状态为孤岛运行模式,也称自治运行模式,适用于电力系统崩溃及系统恢复状态。采用该运行模式时,电力系统各项指标己经严重偏离稳定限值,若一体化站仍并网运行将严重损害一体化站电力设备,因此一体化站应迅速解列进入离网运行状态。 二、规程的制定 1.总则 一体化站的单站容量为2.5 MW,随着电动汽车的发展,一体化站的需求量将

退役动力电池储能系统梯次应用研究

退役动力电池储能系统梯次应用研究 摘要:随着电动汽车的广泛应用,大量退役动力电池不仅严重地污染环境,也 造成能源与资源的严重浪费。本文分析了退役动力电池储能系统梯次应用研究。 随着新能源汽车快速发展,尤其是动力电池的广泛应用,虽然极大地减少了汽车 尾气的排放,但导致退役的动力电池数量急剧上升,若得不到妥善的处理,会导 致严重的环境污染问题。 关键词:退役动力电池;储能系统;梯次利用 一、梯次利用动力电池储能的特点与挑战 1.梯次利用动力电池储能的特点与优势。传统的电池储能系统解决方案一般 采用电化学蓄电池作为储能介质,常用的应用于大规模电力储能的储能电池包括 钠硫电池、液流电池和锂离子电池等。其中,锂离子电池作为储能媒介,具有能 量密度高、效率高等特点,非常适用于功率较高、能量用量中等的储能系统,目 前已用于负荷平滑、削峰填谷与能源反馈等。然而高昂的锂电池成本成为动力电 池用于储能系统的主要障碍,因而,人们开始考虑利用车载动力电池作为电力储 能的介质:一是采取V2G(vehicle-to-grid)等模式,通过电动汽车接入电网,使 得电动汽车内的车载动力电池作为储能功能,实现储能的目的;二是对退运的车 载动力电池进行梯次利用,重组成安全、高效的电池系统作为储能系统。实际上,无论是新电池用于储能,还是其他形式的动力电池储能,都可以看作是对车用动 力电池在其生命周期的充分利用目前,V2G模式已有成功的商业运营案例,还形 成了V2H、V2B等模式,使得电动汽车车载电池储能的实际应用更为广泛。 2.梯次利用动力电池储能的价值。(1)发电侧。储能系统能够配合分布式能 源实现高效稳定运行,能够提高新能源发电站和分布式电站的发电效率、可靠性 和经济性。光伏和太阳能发电等新型清洁可再生能源技术日益成熟、应用日益广泛,但其离网运行具有不稳定性和不连续性的特点,而并网运行又会给电网运行 的安全和调度带来很大的负面影响,因此,新能源发电需要通过储能系统来弥补 其随机性和波动性,实现平滑输出,从而使大规模风电及太阳能发电更安全、更 可靠地并入常规电网或离网运行,提高新能源电站的利用效率、减少备用电厂的 建设,为国家节约输配电设备的巨额投资。(2)电网侧。储能系统作为智能电 网技术的关键一环,储存并稳定可再生能源发电系统,提高电网设备的利用效率,降低其对电网造成的负面影响。可再生能源的大规模应用也使智能电网面临着挑战,这些分布式电源接入电网后,将给配电网乃至输电网的电压、电能质量、系 统保护和调度运行等带来一系列的影响。通过利用储能系统,智能电网可以集成 可再生能源,使其安全接入电力系统,并采取计算机远程控制、信息自动化管理 等手段,使得分散的储能系统可以为能源消费者提供能源,从而响应能源供需不 平衡导致的波动性问题,实现智能电网的智能性。(3)用户侧。储能系统可以 平衡峰期谷期用电,降低峰谷差压力,降低发电企业和电网企业的运行成本,减 少用户的用电费用。储能系统还可以通过削峰填谷来满足电量供需之间的动态变化,并为能源供应商与消费者节约相应的成本。对于电网企业和终端的用电用户,储能系统可以通过夜间储电、日间放电,从峰谷电价差中优化资源配置,获得大 量经济效益。此外,实现分布式储能后,电网发生故障和检修的部分情况下,用 户可以通过储能系统保证供电,用户用电的安全可靠性大大提高,停电概率和停 电损失也将大幅减少。(4)储能系统有助于应对未来战略性新兴产业大规模用 电需求对电网所造成的冲击。战略性新兴产业的大力发展将会催生大规模的用电

锂电池储能领域用途

锂电池储能领域应用 锂电池储能系统可以作为多种电力能源与稳定的电力需求之间的缓冲器,可以增加像风能、太阳能等不稳定电源的发电能力。风力发电系统由于风速的变化而导致输出功率振荡,而储能系统可以通过快速的响应速度、几乎相等的充放电周期等特性为风机输出提供稳定性以及无功补偿。与此同时,储能系统可以调节电压并在离网发电系统中控制系统频率。 从经济的意义上来讲,不确定功率输出带来的直接后果就是顾客支付意愿的下降或者由此导致的资本信用降低。为风力发电机配臵储能系统将波动性并向电网提供稳定的电力输出,这将提升风力发电的电价水平。 铁锂电池系统组件 控制系统 铁锂电池能量存储系统由可编程逻辑控制器(PLC)和人机界面(HMI)进行控制。PLC系统的关键功能之一是控制储能系统的充电时

间和速率。例如:PLC可以接收用电价格的真实时间数据,并且根据允许的最大用电需求、充电状态以及用电高峰/非高峰时的价格对比,决定怎样快速地给电池系统重新充电。这个决策是动态的而且能够根据具体情况优化。通过标准化的通信输入、控制信号和电力供应,它与系统其余部分集成在一起。它可以通过拨号或因特网进行访问。它有多重防卫层以限制对它的不同功能的访问,并且为远程监控提供定制的报告和报警功能。 电力转换系统(PCS) 电力转换系统的功能是对电池进行充电和放电,并且为本地电网提供改善的供电质量、电压支持和频率控制。它有一个能进行复杂而快速地动作、多象限、动态的控制器(DSP),带有专用控制算法,能够在设备的整个范围内转换输出,即循环地从全功率吸收到全功率输出。对无功功率以及有功与无功功率的任意需求组合,它都能正常工作。 铁锂电池电堆 电堆是由若干单电池组成。铁锂电池能源存储系统能够经济地存储并按照需求提供大规模电力,主要模式是固定方式。它是一种长寿命、少维护、高效率的技术,支持电力与储能容量的无级扩展。储能系统对于可再生能源供应商、电网企业和终端用户尤为有效。铁锂电池储能系统能够应用于电力供应价值链的各个环节,可将诸如风能、太阳能等间歇性可再生能源电力转化为稳定的电力输出;偏远地区电力供应的最优化解决方式;

锂离子电池储能技术在电力系统中的应用

锂离子电池储能技术在电力系统中的应用 (四川大学, 四川省成都市610065) 摘要: 能源的大规模储存能力对于发展新能源至关重要,锂离子电池在大规模储能领域有着很好的应用前景。本文论述了锂离子电池的基本原理、基本特点及其关键技术,重点论述了锂离子电池储能在电动汽车和新能源发电等方面的应用。 关键词: 储能技术; 锂离子电池; 电动汽车; 应用 0引言 近几十年来,储能技术的研究和发展一直受到各国能源、交通、电力、电讯等部门的重视,随着电力系统逐渐由传统电力系统向现代电力系统的过渡与发展,储能技术将扮演着越来越重要的角色。电力系统的运行就是在满足安全、稳定、经济等约束条件下,发电与负荷的平衡,一旦这种供需要平衡被打破,电能质量将得不到保证,能源得不到充分利用,甚至将引起电网的崩溃。然而现代电力系统中,由于发电侧除了有传统的火电、水电、核电等,还允许一定容量的新能源发电或分布式发电的接入,这就导致了发电侧的随机性和不易控,加上负荷侧的随机性,再要维持供需平衡就越发困难,甚至不可能实现。这时,如果能在发、输、用等环节引入大规模储能装置,提供电能的补偿与平滑,将有利于功率平衡的控制。 另一方面,随着智能电网概念的不断深入,对现代电网也提出的更高的要求,不仅要能提供优质的电能,还要允许各种新能源及分布式能源的柔性接入,然而这两个要求本来又是相互矛盾的,比如风电、光伏发电具有很大的随机性和间歇性,接入电网后必然后影响电能质量。那么,要实现风电、光伏发电等的接入而同时能保证电能质量的目标,在发电环节接入大规模储能装置无疑是行之有效的办法。 电能的存储是伴随着电力工业发展一直存在的问题,尽管到现在为止也没有一种非常完美的储能技术,但经过几代科学家的努力,一些比较成熟的储能技术已经在电力行业发挥着重要的作用。大规模储能技术已然成为电网运行过程中“采–发–输–配–用–储”六大环节中的重要组成部分[1-5]。 收稿日期: 2013-5-20;修回日期: xxx xxx基金资助项目(基金编号); xxxx研究项目(项目编号)。1 储能技术分类 电能可以转换为化学能、势能、动能、电磁能等形态存储,按照其具体方式可分为物理、电磁、电化学和相变储能四大类型。其中物理储能包括抽水蓄能、压缩空气储能和飞轮储能;电磁储能包括超导、超级电容和高能密度电容储能;电化学储能包括铅酸、镍氢、镍镉、锂离子、钠硫和液流等电池储能;相变储能包括冰蓄冷储能等。本文着重讨论锂离子电池储能技术。 2锂离子电池储能技术 2.1 锂离子电池原理 锂离子电池是一种新型的环保的高性能的电池,它最初的应用体现在小容量的电池应用方面,相对于铅酸电池和镍氢电池,它具有体积小、容量高、无污染、安全性好的几大优点,随着新型的锂离子正极材料的出现,锂离子电池的应用范围不断拓展,已经从单一的手机电池应用拓展到大中小型电动汽车、电力储能、后备电源、电动工具与航模等各个领域。 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池,是现代高性能电池的代表[6]。 其反应的化学方程式为: 6 212 6x i x x C Li xe C Li L CoO Li CoO xLi xe +- +- - ++ ++ 负极: 正极: 2.2 锂离子电池特点 锂离子电池由于兼具高比能量和高比功率的显 — 1 —

动力储能-动力电池-锂电池

动力储能-动力电池-锂电池 一、锂电池概述 锂电池通常分两大类: 锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。 锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。 两者差异:虽然锂金属电池的能量密度高,理论上能达到3860瓦/公斤。但是由于其性质不够稳定而且不能充电,所以无法作为反复使用的动力电池。而锂离 子电池由于具有反复充电的能力,被作为主要的动力电池发展。 通常我们说得最多的动力电池主要有磷酸铁锂电池、锰酸锂电池、钴酸锂电池以及三元锂电池(三元镍钴锰) 二.锂电池产业链结构 上游 (1)正极材料(钴酸锂、锰酸锂、磷酸铁锂和三元材料等) 简介:成本占30%,正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。

目前已批量应用于锂电池的正极材料主要有钴酸锂、镍酸锂、锰酸锂、钴镍锰酸锂(三元材料)以及磷酸铁锂。 钴酸锂:研究始于1980 年,20 世纪90 年代开始进入市场。它属于α-NaFeO2型层状岩盐结构,结构比较稳定,是一种非常成熟的正极材料产品,目前占据锂电池正极材料市场的主导地位。但由于其高昂的价格和较差的抗过充电性,使其使用寿命较短,而且钴有放射性,不利于环保,因此发展受到限制。 镍酸锂:氧化镍锂的价格较钴酸锂便宜,理论能量密度达276mAh/g,但制作难度大,且安全性和稳定性不佳。技术上采用掺杂Co、Mn、Al、F 等元素来提高其性能。由于提高镍酸锂技术研究需考察诸多参数,工作量大,目前的进展缓慢。 锰酸锂:锰资源丰富、价格便宜,而且安全性较高、易制备,成为锂离子电池较为理想的正极材料。早先较常用的是尖晶石结构的LiMn2O4,工作电压较高,但理论容量不高,与电解质的相容性不佳,材料在电解质中会缓慢溶解。近年新发展起来层状结构的三价锰氧化物LiMn2O4,其理论容量为286mAh/g,实际容量已达200mAh/g 左右,在理论容量和实际容量上都比LiMn2O4 大幅度提高,但仍然存在充放电过程中结构不稳定,以及较高工作温度下的溶解问题。 钴镍锰酸锂:即现在常说的三元材料,它融合了钴酸锂和锰酸锂的优点,在小型低功率电池和大功率动力电池上都有应用。但该种电池的材料之一——钴是一种贵金属,价格波动大,对钴酸锂的价格影响较大。钴处于价格高位时,三元材料价格较钴酸锂低,具有较强的市场竞争力;但钴处于价格低位时,三元材料相较于钴酸锂的优势就大大减小。随着性能更加优异的磷酸铁锂的技术开发,三元材料大多被认为是磷酸铁锂未大规模生产前的过渡材料。 磷酸铁锂:在所有的正极材料中,LiFePO4 正极材料做成的锂离子电池在理论上是最便宜的。它的另一个特点是对环境无污染。此外,它在大电流放电率放电(5~10C 放电)、放电电压平稳性、安全性、寿命长等方面都比其它几类材料好,是最被看好的电

动力电池和储能电池有什么优缺点

动力电池和储能电池有什么优缺点 储能主要是指电能的储存。储能又是石油油藏中的一个名词,代表储层储存油气的能力。储能本身不是新兴的技术,但从产业角度来说却是刚刚出现,正处在起步阶段。 到目前为止,中国没有达到类似美国、日本将储能当作一个独立产业加以看待并出台专门扶持政策的程度,尤其在缺乏为储能付费机制的前提下,储能产业的商业化模式尚未成形。 电池储能大功率场合一般采用铅酸蓄电池,主要用于应急电源、电瓶车、电厂富余能量的储存。小功率场合也可以采用可反复充电的干电池:如镍氢电池,锂离子电池等。本文跟随小编一起来了解一下九种电池储能的优缺点。 电池储能的优缺点(九种储能电池解析) 一、铅酸电池 优点: 1、原料易得,价格相对低廉; 2、高倍率放电性能良好; 3、温度性能良好,可在-40~+60℃的环境下工作; 4、适合于浮充电使用,使用寿命长,无记忆效应; 5、废旧电池容易回收,有利于保护环境。 缺点: 1、比能量低,一般30~40Wh/kg; 2、使用寿命不及Cd/Ni电池; 3、制造过程容易污染环境,必须配备三废处理设备。 二、镍氢电池 优点: 1、与铅酸电池比,能量密度有大幅度提高,重量能量密度65Wh/kg,体积能量密度都有所提高200Wh/L; 2、功率密度高,可大电流充放电; 3、低温放电特性好; 4、循环寿命(提高到1000次);

5、环保无污染; 6、技术比较锂离子电池成熟。 缺点: 1、正常工作温度范围-15~40℃,高温性能较差; 2、工作电压低,工作电压范围1.0~1.4V; 3、价格比铅酸电池、镍氢电池贵,但是性能比锂离子电池差。 三、锂离子电池 优点: 1、比能量高; 2、电压平台高; 3、循环性能好; 4、无记忆效应; 5、环保,无污染;目前是最好潜力的电动汽车动力电池之一。 四、超级电容 优点: 1、功率密度高; 2、充电时间短。 缺点: 能量密度低,仅1-10Wh/kg,超级电容续航里程太短,不能作为电动汽车主流电源。 电池储能的优缺点(九种储能电池解析) 五、燃料电池 优点: 1、比能量高,汽车行驶里程长; 2、功率密度高,可大电流充放电; 3、环保,无污染。 缺点: 1、系统复杂,技术成熟度差; 2、氢气供应系统建设滞后; 3、对空气中二氧化硫等有很高要求。由于国内空气污染严重,在国内的燃料电池车寿命较短。

储能电源的应用及其意义

储能电源的应用及其意义 储能系统可以说是调节微电源性能、保证负荷供电质量、维持电网稳定的重要环节,因此研究储能系统设计、开发储能在微网技术中的应用具有十分重要的意义。 1、微网的储能技术种类及其特性 伴随着科技的发展,已发明的储能技术形式多种多样。根据微网的特点,适用于微网的储能技术可以分为物理储能、电化学储能和电磁储能,电化学储能可以分为铅酸电池、镉镍电池、氢镍电池、锂离子电池等。物理储能包括抽水蓄能、压缩空气储能、飞轮储能,电磁储能包括超级电容储能和超导磁储能等。 1.1蓄电池储能系统构成 蓄电池储能系统主要由电池组、电池管理系统(BM S)、(PCS)、隔离变压器、双向变流器、变流器监控装置及辅助设备。系统可以满足频繁充放电及微网孤岛运行功能的需求。系统可根据上级调度指令完成各种充电、放电等高级控制策略,在微电网中应用最为广泛且最具有发展前途。 能量控制装置PCS控制器通过LAN通信信道接收后台控制指令,根据功率指令的符号及大小控制变流器对电池进行充电或放电,实现对电网有功功率及无功功率的调节。PC S控制器通过CA N接口与电池管理系统通讯,获取电池组状态信息,可实现对电池的保护性充放电,确保电池运行安全。 1.2铅酸电池 铅酸电池主要由铅及其氧化物构成,电解液是硫酸溶液。荷电状态下,主要成分为二氧化铅,主要成分为铅;放电状态下,正负极的主要成分均为硫酸铅,以密度为1.28~1.32 g/m L(浓度为27%~37%)的硫酸溶液作为电解液,统称为铅酸蓄电池(亦称“铅蓄电池”)。目前铅酸蓄电池在电力系统应用领域的研究重点是电力调峰、提高系统运行稳定性和提高供电质量。阀控铅酸电池的电化学反应式如下: 充电:2 PbSO 4+2 H 2O=PbO 2+Pb+2 H 2 SO 4(电解池)阳极:PbSO 4+2 H,O一 2 e=PbO+4 H S0 4 2一阴极:PbSO 4+2 e=Pb+SO 4 z当溶液的密度升到1.28 m L时,应停止充电:放电:PbO 2+Pb+2 H SO 4=2 PbSO 4+2 0(电解池)负极:Pb+S0 4 2一一2 e-=PbSO 4正极:PbO 2+4 H S0 4一+2 e~PbSO 4+2 H 2O 1.3锂离子电池

换电站储能有序充放电及梯次动力电池循环利用研究与应用

换电站储能有序充放电及梯次动力电池循环利用研究与应用 发表时间:2018-08-20T10:58:47.280Z 来源:《电力设备》2018年第14期作者:张巍曲军李彦君 [导读] 摘要:分布式光伏系统减少了矿产资源等非可再生能源的生产和消费,对环境起到一定的保护作用;国家“十二五”规划明确提出大力发展光伏及新能源产业。相继出台《关于促进光伏行业健康发展的若干意见》、《支持分布式光伏发电金融服务的意见》等一系列利好政策;在未来,可再生能源、绿色能源的应用将逐渐普及;自发自用、余电上网,环保节能、享受政府补贴。分布式太阳能光伏发电的应用,利国利民,将成为未来太阳能行业主流发展方 (国网山西省电力公司晋中供电公司山西省晋中市 030600) 摘要:分布式光伏系统减少了矿产资源等非可再生能源的生产和消费,对环境起到一定的保护作用;国家“十二五”规划明确提出大力发展光伏及新能源产业。相继出台《关于促进光伏行业健康发展的若干意见》、《支持分布式光伏发电金融服务的意见》等一系列利好政策;在未来,可再生能源、绿色能源的应用将逐渐普及;自发自用、余电上网,环保节能、享受政府补贴。分布式太阳能光伏发电的应用,利国利民,将成为未来太阳能行业主流发展方向。 关键词:换电站;储能;梯次动力;研究; 近日,国务院办公厅印发《关于加快电动汽车充电基础设施建设的指导意见》,部署加快推进电动汽车基础设施建设工作。文件强调了新建住宅配建车位应100%建设充电设施或预留建设安装条件,大型公共建筑物配建停车场、社会公共停车位建设充电设施或预留建设安装条件的车位比例不低于10%,每2000辆电动汽车至少配套建设一座公共充电站。鼓励建设占地少、成本低、见效快的机械式与立体式停车充电一体化设施。 一、运行模式 一体化站在正常情况下并网运行并为电动汽车提供充换电服务。当上级电网出现紧急状态时需要调整运行方式,提供必要的支持;若上级电网崩溃时则需离网运行,防比电站设备损坏。由此可见,一体化电站的具体运行模式与接入点电网的状态紧密联系。研究中将电网状态划分为正常、警戒、紧急/严重紧急、崩溃以及恢复5个状态。 1.正常运行模式 一体化电站的常规状态为正常运行模式,该模式适用于电力系统正常运行状态甚至告警状态。一体化电站处于正常运行模式时,电网各项指标仍处于正常范围内,此时,一体化电站运行以经济优化作为主要目标,利用峰谷时差电价对电动汽车的充放电采取优化控制,同时适当提供包括无功补偿、谐波治理等辅助服务。在正常运行模式下,充放储一体化电站可能的运行子状态包括:充电站充电/放电/不动作和梯次站充电/放电/不动作共9种组合方式。 2.保护运行模式 一体化站非常规状态为保护运行模式,该模式适用于电力系统出现紧急甚至严重紧急状态,即系统各项运行指标处于稳定边缘。在该运行模式下,一体化站不再以经济目标为主要运行目标,因为若一体化站仍以经济调度方式运行,可能加剧系统的各项指标越限,导致系统失稳。因此,一体化站应调整运行模式,进入保护运行模式,利用一体化电站变流装置的技术优势,采取包括快速有功功率无功功率支持在内的紧急支持措施,协助电网恢复正常运行状态。 3.孤岛(自治)运行模式 一体化站的特殊运行状态为孤岛运行模式,也称自治运行模式,适用于电力系统崩溃及系统恢复状态。采用该运行模式时,电力系统各项指标己经严重偏离稳定限值,若一体化站仍并网运行将严重损害一体化站电力设备,因此一体化站应迅速解列进入离网运行状态。 二、规程的制定 1.总则 一体化站的单站容量为2.5 MW,随着电动汽车的发展,一体化站的需求量将逐步上升,若区域电网的一体化站规模扩大至10个站以上,一体化站总容量将达25 MW以上,这对区域电网的安全稳定运行有着重要影响。 2.调度中心 ①装置说明。调度中心是充放储一体化站的指挥中心,监控主机位于监控室,调度中心完成3大功能:监视站内配电系统、充电装置、电池系统、能量转换系统以及电网系统的状态;处理下级数据采集系统上传的信息;根据监测数据制定一体化站的充放电计划,控制一体化站各个子系统的运作。 ②运行流程。现场监控装置分布于站内各子系统,获取电池充换系统的电池储能水平状态、充电区域以及换电区域的运行状态、梯次电池储能系统的储能水平状态、电网的运行状态,并通过车载终端获取当前车辆运行信息,包括电池电量状态以及电能需求等;中央处理机根据以上信息制定电池充换系统以及梯次电池储能系统的充电放电计划,发送控制指令控制切换能量转换系统的运行状态,从而控制一体化站与电网之间的能量流动。 ③操作和注意事项。采用自动化系统,站内繁多的状态信息数据通过局域网传输到主机,主要包括电气设备、保护装置、测控单元等,这些装置与主机实现实时通信。同时,主机通过通信网络将本站调度信息数据实时上传至上级电网调度中心。 3.变流装置 ①装置说明。多用途变流装置是连接电网和一体化站的能量通道,已通过多组整流/逆变器以及直流变换器实现交流电网与站内直流系统之间的能量转换。采用nc/nc-nc/ac拓扑结构的变流装置具有适应性强、控制独立等优点,能满足一体化站的运行控制需求,便于对电池系统进行灵活充放电控制与管理以及并网控制。 ②运行流程。变流装置接收来自调度中心的指令,根据指令控制变流装置的运行模式:充电站充电/梯次站充电;充电站充电/梯次站不动作;充电站充电/梯次站放电;充电站不动作/梯次站充电;充电站不动作/梯次站不动作;充电站不动作/梯次站放电;充电站放电/梯次站不动作;充电站放电/梯次站放电。 4.电池充换系统 ①装置说明。电池充换系统是一体化站对电动汽车用户的服务窗口,同时具有电池更换系统和快慢充电装置,适应不同需求。电池充

相关主题
文本预览
相关文档 最新文档