当前位置:文档之家› “大梦杯”福建省初中数学竞赛试题 参考答案及评分标准

“大梦杯”福建省初中数学竞赛试题 参考答案及评分标准

“大梦杯”福建省初中数学竞赛试题 参考答案及评分标准
“大梦杯”福建省初中数学竞赛试题 参考答案及评分标准

2018年“大梦杯”福建省初中数学竞赛试题 考试时间 2018年3月18日 9∶00-11∶00 满分150分

一、选择题(共5小题,每小题7分,共35分)。每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)

1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )

A .3-

B .2-

C .1-

D .1

2.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。若二次函数2y ax =的图像过C 、F 两点,则

n

m

=( ) A .31+ B .21+ C .231- D .221-

3.如图,G 为ABC △的重心,点D 在CB 延长线上,且1

2

BD BC =

,过D 、G 的直线交AC 于点E ,则

AE

AC

=( ) A .2

5

B .3

5

C .3

7

D .

47

4.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=?,若ABC △外接圆的半径 为2,则AH =( )

A .23

B .22

C .4

D .31+

5.满足方程22419151x xy y -+=的整数对()x y ,

有( ) A .0对 B .2对 C .4对 D .6对

H

O

B

C

A

(第4题图)

(第2题图) E

G

(第3题图)

6.已知a ,b ,c 为正整数,且a b c >>。若b c +,a c +,a b +是三个连续正整数的平方,则222a b c ++的最小值为 。

7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。若函数4

y x

=(0x >)

的图像过D 、E 两点,则矩形ABCD 的面积为 。

8.如图,ABC △是边长为8的正三角形,D 为AB 边上一点,1O ⊙为ACD △的内切圆,

2O ⊙为CDB △的边DB 上的旁切圆。若1O ⊙、2O ⊙的半径都是r ,则r = 。

9.若实数x 满足[][][]232018x x x ++=,则[]4x = 。其中[]x 表示不超过x 的最大整数。

10.网络爬虫是一种互联网网页抓取工具。其算法与数学的一个重要分支图论有着密切的联系。图论可以追溯到大数学家欧拉提出的“哥尼斯堡七桥问题”。图论中讨论的图是由一些节点和连接这些节点的线组成的。请你回答下列问题:

把一个矩形区域划分成n 个凸多边形区域(这些凸多边形区域除公共边外,没有公共部分)。已知构成这n 个凸多边形的顶点中,恰有6个顶点在矩形内,12个顶点在矩形的边界上(含矩形的顶点);同时,任何三个顶点不共线(除矩形边界上的顶点共线外)。若围成这n 个凸多边形的线段中,恰有18条线段在矩形区域内,则这n 个凸多边形中四边形个数的最大值为 。

A

B

O 1

O 2

C

D

(第7题图) (第8题图)

11.已知二次函数224y x bx c =-+的图像交x 轴于1(0)A x ,

、2(0)B x ,两点,且211226

5

x x x x +=。若函数224y x bx c =-+在13b x b +≤≤+上的最小值为6-,求b ,c 的值。

12.如图,在圆内接四边形ABCD 中,AB AD =,M 是BC 边的中点,点N 在对角线BD 上,且满足BAN CAM ∠=∠。

求证:MN AC ∥。

(第12题图)

13.已知关于x的方程299990

--+=的两根都是素数,求k的值。

x kx k

14.一个由36个单位小方格组成的66

?的方格表中的n个小方格被染成了红色,使得任意两个红色小方格的中心之间的距离大于2,求n的最大值。

2018年“大梦杯”福建省初中数学竞赛试题参考答案及评分标准

考试时间 2018年3月18日 9∶00-11∶00 满分150分

一、选择题(共5小题,每小题7分,共35分)。每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)

1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )

A .3-

B .2-

C .1-

D .1 【答案】 A

【解答】依题意,21616(31)0m m =++=△。因此,2310m m ++=。 ∴ 231m m =--,231m m +=-。

∴ 3222442(31)44232123m m m m m m m m m ++-=--++-=+-=--=-。

2.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。若二次函数2y ax =的图像过C 、F 两点,则

n

m

=( ) A .31+ B .21+ C .231- D .221- 【答案】 B

【解答】依题意,点C 坐标为()2m

m ,,点F 的坐标为

()2

m

n n -+

,。 由二次函数2y ax =的图像过C 、F 两点,得

2

22

()2

m am m n a n ?=???

?+=-??,消去a ,得2220n mn m --=。 ∴ 2()210n n m m -?-=,解得21n

m

=+(舍负根)。

∴ 21n

m

=+。

(第2题图)

3.如图,G 为ABC △的重心,点D 在CB 延长线上,且1

2

BD BC =

,过D 、G 的直线交AC 于点E ,则AE

AC

=( ) A .25 B .35 C .37 D .47

【答案】 D

【解答】如图,连AG ,并延长交BC 于点F 。 ∵ G 为ABC △的重心,且1

2

BD BC =, ∴ F 为BC 中点,且

2

1

AG GF =,DB BF FC ==。 过点F 作FM DE ∥,交AC 于点M 。 则

13CM CF CE CD ==,2

1

AE AG EM GF ==。 设CM k =,则3CE k =,2EM k =,4AE k =。 ∴ 7AC k =,

44

77

AE k AC k ==。 另解:如图,连AG ,并延长交BC 于点F 。 ∵ G 为ABC △的重心,且1

2

BD BC =, ∴ F 为BC 中点,且2

1

AG GF =,DB BF FC ==。 ∴

23FD DC =,2

1

AG GF =。 在AFC △中,利用梅涅劳斯定理,得

1FD CE AG

DC EA GF

??=。

∴ 22131CE EA ?

?=,3

4

CE EA =。 ∴ 4

7

AE AC =。

(第3题图)

(第3题答题图)

(第3题答题图)

4.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=?,若ABC △外接圆的半径为

2,则AH =( )

A

. B

. C .4 D

1 【答案】 B

【解答】如图,连结BO 并延长交O ⊙于点D ,连HC 、CD 、

DA 。

∵ O 为ABC △的外心,

∴ BD 为O ⊙直径,DC BC ⊥,DA AB ⊥。 又H 为ABC △的垂心, ∴ AH BC ⊥,CH AB ⊥。 ∴ AH DC ∥,CH DA ∥。

∴ 四边形AHCD 为平行四边形,AH DC =。 ∵ 45BAC ∠=?,ABC △外接圆的半径为2, ∴ 45BDC BAC ∠=∠=?,4BD =。 ∴

AH DC ==

5.满足方程22419151x xy y -+=的整数对()x y ,有( ) A .0对 B .2对 C .4对 D .6对 【答案】 C

【解答】方程22419151x xy y -+=化为22(2)15115x y y -=-。 依题意,215115A y =-为完全平方数。 由2151150A y =-≥,得2151

15

y ≤

。结合y 为整数,得210y ≤。故,20y =,1,4,9。 当20y =时,215115151A y =-=,不是完全平方数。 当21y =时,215115136A y =-=,不是完全平方数。 当24y =时,21511591A y =-=,不是完全平方数。 当29y =时,2215115164A y =-==。

∴ 方程化为22

9

(2)16

y x y ?=??-=??,即23(6)16y x =??-=?,或23(6)16y x =-??+=? ∴ 364y x =??-=?,或364y x =??-=-?,或364y x =-??+=?,或3

64y x =-??+=-?。

∴ 103x y =??=?,或23x y =??=?,或23x y =-??=-?,或103x y =-??=-?

∴ 满足方程的整数对有(103),

、(23),、(23)--,、(103)--,,共4对。

(第4题图)

二、填空题(共5小题,每小题7分,共35分)

6.已知a ,b ,c 为正整数,且a b c >>。若b c +,a c +,a b +是三个连续正整数的平方,则222a b c ++的最小值为 。

【答案】 1297

【解答】依题意,设2(1)b c n +=-,则2a c n +=,2(1)a b n +=+,n 为正整数,且1n >。

∴ 2

2

2

2

2()(1)(1)32a b c n n n n ++=-+++=+,可见n 为偶数,且2322

n a b c +++=。

∴ 242n n a +=,222n b +=,242

n n

c -=。

可见,6n ≥,且当n 增大时,222a b c ++的值也随之增大。 又6n =时,30a =,19b =,6c =符合要求。 ∴ 222a b c ++的最小值为222301961297++=。

7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。若函数4

y x

=(0x >)

的图像过D 、E 两点,则矩形ABCD 的面积为 。

【答案】 8

【解答】设()D D D x y ,,()E E E x y ,,则4D D E E x y x y ==。

作EF AB ⊥于F ,由E 为AC 中点,得F 为AB 中点,且

11

22

EF BC AD =

=。 ∴ 2D E y y =。结合2E E D D D E x y x y x y ==?,得2E D x x =。 ∴ OA AF =,222D AB AF OA x ===。 ∴ 矩形ABCD 的面积28D D S AB AD x y =?==。

(第7题图)

(第7题答题图)

8.如图,ABC △是边长为8的正三角形,D 为AB 边上一点,1O ⊙为ACD △的内切圆,

2O ⊙为CDB △的边DB 上的旁切圆。若1O ⊙、2O ⊙的半径都是r ,则r = 。

【答案】

【解答】如图,设1O ⊙切ACD △的三边AC 、CD 、DA 依次于点G 、H 、E ,边DB 切2O ⊙于点F ,CD 、CB 的延长线切2O ⊙于点M 、N 。

则由1O ⊙、2O ⊙的半径都是r ,ABC △为正三角形,以及切线长性质定理,得

AG AE ==

,8CH CG ==-

,3

BF BN r ==

,83

CM CN r ==+

。 ∴

(8)(8)33

EF HM CM CH r r ==-=+

-= ∴

333

AB AE EF FB r r r =++=++=。 ∴

83

r =

,r =

9.若实数x 满足[][][]232018x x x ++=,则[]4x = 。其中[]x 表示不超过x 的最大整数。

【答案】 1346

【解答】设x a m =+,其中a 为整数,01m ≤<。

则[][][][][][][][]232()3()623x x x a m a m a m a m m ++=+++++=++。

∵ 当103m ≤<时,[][]23000m m +=+=;当11

32

m ≤<时,[][]23011m m +=+=;

1223m ≤<时,[][]23112m m +=+=;当2

13

m ≤<时,[][]23123m m +=+=。 ∴ 对任意实数x ,[][][]23x x x ++的值具有形式:6k ,61k +,62k +,63k +,k 为整数。

∵ 201863362=?+,[][][]232018x x x ++=。 ∴ 336x m =+,其中

12

23

m ≤<。 ∴ [][][]44(336)43364134421346x m m =+=?+=+=。

A

(第8题图)

A

10.网络爬虫是一种互联网网页抓取工具。其算法与数学的一个重要分支图论有着密切的联系。图论可以追溯到大数学家欧拉提出的“哥尼斯堡七桥问题”。图论中讨论的图是由一些节点和连接这些节点的线组成的。请你回答下列问题:

把一个矩形区域划分成n 个凸多边形区域(这些凸多边形区域除公共边外,没有公共部分)。已知构成这n 个凸多边形的顶点中,恰有6个顶点在矩形内,12个顶点在矩形的边界上(含矩形的顶点);同时,任何三个顶点不共线(除矩形边界上的顶点共线外)。若围成这n 个凸多边形的线段中,恰有18条线段在矩形区域内,则这n 个凸多边形中四边形个数的最大值为 。

【答案】 9

【解答】设这n 个凸多边形中,有3k 个三角形,4k 个四边形,5k 个五边形,…,m k 个m 边形。

则这n 个凸多边形的内角和为

345(32)180(42)180(52)180(2)180m k k k k m ?-??+?-??+?-??++?-??L 。

另一方面,矩形内部有6个顶点,对于每个顶点,围绕它的多边形的内角和为360?。矩形边界线段内(不含矩形顶点)有8个顶点,在每个顶点处,各多边形在此汇合成一个平角,其和为180?。在矩形的每个顶点处,各多边形在此汇合成一个直角,其和为90?。因此,这n 个凸多边形的内角和为63608180490??+??+??。

∴ 345(32)180(42)180(52)180(2)180m k k k k m ?-??+?-??+?-??++?-??L

63608180490=??+??+??。

34523(2)22m k k k m k ++++-=L 。 ……… ①

再考虑这n 个凸多边形的边数。

由于每个凸m 边形有m 条边,因此,这n 个凸多边形的边数和为345345m k k k mk ++++L 。 另一方面,由条件知,在矩形内部的18条边,每条边都是两个凸多边形的公共边,应计算2次。而在矩形边界上的12个点,得到12条线段,它们都对应某个凸多边形的边。因此,这n 个凸多边形的边数和为1821248?+=。

∴ 34534548m k k k mk ++++=L 。 ………② 由①、②,消去3k ,得452(3)9m k k m k +++-=L 。 ∴ 49k ≤。

又如图所示的划分符合要求,此时,34k =,49k =。 ∴ 4k 的最大值为9,即这n 个凸多边形中,最多有9个四边形。

三、解答题(共4题,每小题20分,共80分)

11.已知二次函数224y x bx c =-+的图像交x 轴于1(0)A x ,

、2(0)B x ,两点,且211226

5

x x x x +=。若函数224y x bx c =-+在13b x b +≤≤+上的最小值为6-,求b ,c 的值。 【解答】∵ 函数224y x bx c =-+的图像交x 轴于1(0)A x ,

、2(0)B x ,两点, ∴ 1x ,2x 是方程2240x bx c -+=的两个实根。 ∴ 122x x b +=,122

c

x x =

。 ………………………… 5分 又22

22211212121212121212()2()2625

x x x x x x x x x x x x x x x x x x ++-++===-=, ∴ 2426

252

b c -=,2109b c =。………………① ………………………… 10分 ∵ 222242()2y x bx c x b c b =-+=-+-,在13b x b +≤≤+上的最小值为6-。 ∴ 1x b =+时,6y =-。

∴ 2226c b +-=- …………② ………………………… 15分 由①、②,解得10c =,3b =±。

∴ 3b =±,10c =。 ………………………… 20分

12.如图,在圆内接四边形ABCD中,AB AD

=,M是BC边的中点,点N在对角线BD 上,且满足BAN CAM

∠=∠。

求证:MN AC

∥。

【解答】∵AB AD

=,

∴ADB ABD

∠=∠。

∴ACM ADB ABD ABN

∠=∠=∠=∠。

又CAM BAN

∠=∠,

∴ABN ACM

△∽△。

∴AB BN

AC CM

=…………①。

…………………… 5分

设AC、BD相交于点E,

∵BAE CAB

∠=∠,ABE ACB

∠=∠。∴ABE ACB

△∽△。

∴AB BE

AC CB

=。…………………②

…………………… 10分

又M为BC边中点,

∴CM BM

=,结合①,得AB BN BN AC CM BM

==。

结合②,得BE AB BN CB AC BM

==,

∴BM BN

BC BE

=。…………………… 15分

∴MN EC

∥,即MN AC

∥。…………………… 20分

(第12题图)(第12题答题图)

13.已知关于x 的方程299990x kx k --+=的两根都是素数,求k 的值。 【解答】设方程299990x kx k --+=的两根分别为p 、q ,

则由韦达定理,知9999

p q k

pq k +=??=-+?,9999pq p q ++=。

∴ 44(1)(1)1000025p q ++==? ………… ① …………………… 5分 显然p ,q 都不等于2,因此,p ,q 都是奇数。 ∴ 2411

2522

p q ++?=?。 …………………… 10分 若

12p +,12q +中有一个数为奇数,不妨设12

p +为奇数,则 152

m

p +=,其中1m =,2,3,4。 当1m =时,9p =,不是素数,舍去; 当2m =时,49p =,不是素数,舍去; 当3m =时,249p =,不是素数,舍去。 当4m =时,1249p =是素数。此时,

21

22

q +=,7q =,也是素数。 ∴ 1249p =,7q =,1256k p q =+=,符合要求。 …………………… 15分 若12p +,12q +都是偶数,则4

11544p q ++?=,不妨设p q ≤,则 当0154p +=,4

154q +=时,3p =,2499q =,q 不是素数,舍去; 当1154p +=,3

154q +=时,19p =,499q =,p ,q 都是素数; 当

2154p +=,2

154

q +=时,99p =,99q =,p ,q 都不是素数,舍去; ∴ 19p =,499q =,518k p q =+=,符合要求。

综上所述,518k =,或1256k =。 …………………… 20分

14.一个由36个单位小方格组成的66?的方格表中的n 个小方格被染成了红色,使得任意两个红色小方格的中心之间的距离大于2,求n 的最大值。

【解答】n 的最大值为8。

先考虑一个33?的方格表,其中有k 个小方格被染成了红色,使得任意两个红色小方格的中心之间的距离大于2,由枚举可以知道,k 的最大值为2。 ………………… 10分

并且只有如下图所示的两种情况(包括对称的情形)。

将一个66?的方格表分成4个33?的方格表,由于每个33?的方格表中至多有2个红色小方格,于是248n ≤?=。 ………………………… 15分

另一方面,如下图所示的染色恰有8个红色小方格,并且任意两个红色小方格的中心之间的距离大于2。

综上所述,n 的最大值为8。 ………………………… 20分

R

R

R

R R

R

R

R

R

R

R

R

历年全国初中数学竞赛试题及参考答案

2006年全国初中数学竞赛试题及参考答案 一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且仅有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分) 1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪. 刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ) (A)36(B)37(C)55 (D)90 2.已知,,且,则a的值等于( ) (A)-5(B)5(C)-9(D)9 3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴. 若斜边上的高为h,则( ) (A)h<1 (B)h=1 (C)1<h<2 (D)h>2 4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形,则至少要剪的刀数是( ) (A)2004 (B)2005 (C)2006 (D)2007 5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q,若QP=QO,则 的值为( ) (A)(B) (C)(D) 二、填空题(共5小题,每小题6分,满分30分) 6.已知a,b,c为整数,且a+b=2006,c-a=2005. 若a<b,则a+b+c的最大值为___________. 7.如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c是整数,且b不能被任何质数的平方整除,则的值等于________.

2016年大梦杯福建初中数学竞赛试题参考答案

2016年“大梦杯”福建省初中数学竞赛试题参考答案 考试时间 2016年3月13日 9∶00-11∶00 满分150分 一、选择题(共5小题,每小题7分,共35分)。每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.在平面直角坐标系xOy 中,已知点(02)B ,,点A 在x 轴正半轴上且30BAO ∠=?。将 OAB △沿直线AB 折叠得CAB △,则点C 的坐标为( ) A .(13), B .(33), C .(33), D .(31), 【答案】 B 【解答】如图,设CD x ⊥轴于点D 。 依题意,23CA OA ==,260CAO BAO ∠=∠=?。 所以,3CD =,3AD =,3OD =。 因此,点C 的坐标为(33), 。 2.若实数a ,b 满足232a a +=,232b b +=,且a b ≠,则22(1)(1)a b ++=( ) A .18 B .12 C .9 D .6 【答案】 A 【解答】依题意,a ,b 为方程2320x x +-=的两个不同实根。 因此,由韦达定理得,3a b +=-,2ab =-。 []22(1)(1)(123)(123)9(1)(1)91()9(132)18a b a b a b a b ab ++=+-+-=--=-++=+-=。 或解:222222222(1)(1)11()2194418a b a b a b a b ab a b ++=+++=++-+=+++=。 3.若关于x 的方程22240224 x x x a x x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( ) A .6- B .30- C .32- D .38- 【答案】 D 【解答】方程 22240224 x x x a x x x +-+++=-+-化为22480x x a +++= ……………… ① 若方程①有两个相等实根,则168(8)0a =-+=△,6a =-。 6a =-时,方程①的根121x x ==-,符合要求。 若2x =是方程①的根,则8880a +++=,24a =-,此时,方程①的另一个根为4x =-,符合要求。 若2x =-是方程①的根,则8880a -++=,8a =-,此时,方程①的另一个根为0x =,符合要求。

2019年全国初中数学竞赛试题及答案

1 全国初中数学竞赛试题及答案 考试时间:2018年4月1日上午9:30—11:30 一、选择题:(共5小题,每小题6分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后括号里.不填、多填或错填都得0分) 1.方程组?????=+=+6 12y x y x 的实数解的个数为( ) (A )1 (B )2 (C )3 (D )4 解:选(A )。当x ≥0时,则有y -|y|=6,无解;当x<0时,则y +|y|=18,解得:y=9,此时x=-3. 2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ) (A )14 (B )16 (C )18 (D )20 解:选(B )。只用考虑红球与黑球各有4种选择:红球(2,3,4,5),黑球(0,1,2,3)共4×4=16种 3.已知a 、b 、c 是三个互不相等的实数,且三个关于x 的一元二次方程02 =++c bx ax , 02 =++a cx bx ,02 =++b ax cx 恰有一个公共实数根,则ab c ca b bc a 2 22++的值为( ) (A )0 (B )1 (C )2 (D )3 解:选(D )。设这三条方程唯一公共实数根为t ,则20at bt c ++=,20bt ct a ++=,2 0ct at b ++= 三式相加得:2 ()(1)0a b c t t ++++=,因为210t t ++≠,所以有a+b+c=0,从而有3333a b c abc ++=, 所以 ab c ca b bc a 222++=333 a b c abc ++=33abc abc = 4.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相 交于点D ,E .若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经 过△ABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心 解:选(B )。如图△ADE 外接圆的圆心为点F ,由题意知:⊙O 与⊙F 且弧DmE =弧DnE ,所以∠EAB =∠ABE ,∠DAC =∠ACD , 即△ABE 与△ACD 都是等腰三角形。分别过点E ,F 作AB ,AC 相交于点H ,则点H 是△ABC 的外心。又因为∠KHD =∠ACD , 所以∠DHE+∠ACD =∠DHE+∠KHD =180°,即点H ,D ,C ,E 在同一个圆上, 也即点H 在⊙O 上,因而⊙O 经过△ABC 的外心。 5.方程2563 2 3 +-=++y y x x x 的整数解x (,)y 的个数是( ) (A )0 (B )1 (C )3 (D )无穷多 解:选(A )。原方程可变形为:x(x+1)(x+2)+3x(x+1)=y(y-1)(y+1)+2,左边是6的倍数,而右边不是6的倍数。

2018年“大梦杯”福建省初中数学竞赛试题参考答案

2018年“大梦杯”福建省初中数学竞赛试题参考答案及评分标准 一、选择题(共5小题,每小题7分,共35分) 01.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32 442m m m ++-的值为( A ) A .3- B .2- C .1- D .1 【解答】依题意,2 1616(31)0m m D =++=,∴2 310 m m ++=,∴231m m =--,2 31m m +=-。 ∴3 2 2 2 442(31)44232123m m m m m m m m m ++-=--++-=+-=--=-。 02.如图,正方形ABCD 和正方形DEFG 的边长分别为()m n m n <、 。原点O 为AD 的中点,A D E 、、在y 轴上。若二次函数2 y ax =的图像经过C F 、 两点,则n m =( B ) A 1 B 1 C .1 D .1 【解答】依题意,点C 的坐标为()2m m ,,点F 的坐标为()2 m n n -+,。 由二次函数2 y ax =的图像经过C F 、两点得22 2()2 m am m n a n ì=??í?+=-??, 消去a 得22 20n mn m --=。 ∴2210n n m m 骣-?=琪桫 ,解得1n m =(舍负根)。∴ n m =03.如图,G 为ABC △的重心,点D 在CB 延长线上且12BD BC =,直线 A .25 B .35 C .37 D .4 7 ( D ) F B D F B 【解答】如图,连AG ,并延长交BC 于点F 。 ∵G 为ABC △的重心且12BD BC = ,∴F 为BC 中点且21 AG GF =,DB BF FC ==。 过点F 作FM DE ∥,交AC 于点M ,则13CM CF CE CD ==,2 1 AE AG EM GF ==。 设CM k =,则3CE k =,2EM k =,4AE k =,∴7AC k =,44 77AE k AC k ==。 另解:如图,连AG ,并延长交BC 于点F 。∵G 为ABC △的重心且1 2 BD BC =, ∴F 为BC 中点且21AG GF =,DB BF FC ==,∴23FD DC =,2 1 AG GF =。 在AFC △中,由梅涅劳斯定理得1FD CE AG DC EA GF 鬃=,22131CE EA 鬃=,34CE EA =,∴4 7 AE AC =。 (第03题答题图2) (第03题答题图1) (第03题图)

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是 两两不同的实数,则2 22 23y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )3 5 . 答( ) 2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是 (A ) 251±; (B )25 1±-; (C ) 251±或251±-; (D )2 5 1±-±. 答( ) 4. 已知:)19911991(2 11 1 n n x --=(n 是自然数).那么n x x )1(2+-,的值是 (A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5. 若M n 1210099321=?????Λ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.

答( ) 6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S , 32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 8. 在锐角ΔABC 中, 1= AC ,c AB =,ο60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤2 1 ; 答( ) (C )c > 2; (D )c = 2. 答( ) 二、填空题 1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a c b 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,q p n m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( . 4.四边形ABCD 中,∠ ABC ο135=,∠BCD ο120=,AB 6=,BC 35-=, CD = 6,则AD = . 第二试 1 1=S 3S =1 32=S

大梦杯福建省初中数学竞赛试题参考答案及评分标准

大梦杯福建省初中数学竞赛试题参考答案及评分标 准 The latest revision on November 22, 2020

2018年“大梦杯”福建省初中数学竞赛试题 考试时间 2018年3月18日 9∶00-11∶00 满分150分 一、选择题(共5小题,每小题7分,共35分)。每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( ) A .3- B .2- C .1- D .1 2.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。坐标原点O 为 AD 的中点,A 、D 、E 在y 轴上。若二次函数2y ax =的图像过C 、F 两点,则n m =( ) A .31+ B .21+ C .231- D .221- 3.如图,G 为ABC △的重心,点D 在CB 延长线上,且1 2 BD BC =,过D 、G 的直线交AC 于点E ,则 AE AC =( ) A .2 5 B .3 5 C . 3 7 D . 47 4.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=?,若ABC △外接圆的半径 为2,则AH =( ) A .23 B .22 C .4 D .31+ 5.满足方程22419151x xy y -+=的整数对()x y , 有( ) H O B C A (第4题图) (第2题图) E G B D (第3题图)

初中数学竞赛试题汇编

初中数学竞赛试题汇编文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

C (第2 题 中国教育学会中学数学教学专业委员会 2013年全国初中数学竞赛九年级预赛试题 (本卷满分120分,考试时间120 分钟) 一、选择题(本大题共6个小题,每小题5分,共30分) 在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分. 1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够 组成等腰三角形的概率是( ) A .4 1 B .31 C .2 1 D .1 2.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( ) A .38 B .39 C .40 D . 41 3.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则y x 的值等于( ) A .9 5 B .59 C .52011- D .9 2011 - 4.已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带 斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接 近图中两个弓形(带点的阴影图形)面积之和的是( ) A .6 B . 7 C .8 D .9 5.设a ,b ,c 是△ABC 的三边长,二次函数2 2 (2b a cx x b a y ----=在1=x 时取最小值 b 5 8-,则△ABC 是( ) A .等腰三角形 B .锐角三角形 C .钝角三角形 6 照“先进后出”的原则,如图,堆栈(1)中的2 据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3数据e ,d ,c ,取出数据的顺序是c ,d ,e ,现在要从这两个堆栈中取出5 个数据(每次取出1个数据),则不同顺序的取法的种数有( ) (1) (第6题

2017福建省中考数学卷及答案

A B C D (第 7 2017年福建省中考数学卷 一、选择题(共40分) 1、 3的相反数是( ); A . B . C . D .3 2、 三视图。下面三个并排正方体,压一个正方体,问左视图; 3、 用科学计数法表示136000的结果是( ); A .0.136×106 B .1.36×105 C .136×103 D .1.36×106 4、 化简 的结果是( )A . B . C . D . 5、 下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称图形,又是中心对称图形; B .正三角形既是轴对称图形,又是中心对称图形 ; C .线段是轴对称图形,但不是中心对称图形 ; D .菱形是中心对称图形,但不是轴对称图形。 6、 不等式组: 的解集是( ) A . B . C . D . 7、 某校举行“汉字听写比赛”,5个班代表队的正确答题数 如图。这5个正确答题数所组成的一组数据中的中位数和 众数是( ); A .10,15 B .13,15 C .13,20 D .15,15 8、 如图,是直径,C 、D 是⊙O 上位于异侧的两点, 正

下列四个角中,一定与∠互余的角是( ) A .∠ B .∠ C .∠ D .∠ 9、若直线过经过点(m ,3)和(1, ), 且 ,则n 的值可以是( ) A .3 B .4 C .5 D .6 10、如图,网格纸上正方形小格的边长为1。图中线段和 点P 绕着同一个点做相同的旋转,分别得到线段和 点,则点 所在的单位正方形区域是( ) A .1区 B .2区 C .3区 D .4区 二、填空题:(共24分) 11、 12、△中,E 、F 分别是、的中点,连线,若3, 则; 13、一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球。 现添加同种型号的1个球,使得从中随机取1个球。这三种颜色 的球被抽到的概率都是,那么添加的球是 14、已知A 、B 、C 是数轴上的三个点,且C 在B 的右侧。点A 、B 表示的数分别是1、3。如图所示,若2,则点C 表示的数是 15、两个完全相同的正五边形都有一边在直线l 上,则∠等于度 A B C D E (第12

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. . 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不 同的实数,则22223y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35 . 答( ) . 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) . 方程0 12=--x x 的解是 (A )251±; (B )25 1±-; (C )251±或251±-; (D )251±-± . 答( ) . 已知:)19911991(21 1 1n n x --=(n 是自然数).那么 n x x )1(2+-,的值是 (A)11991-; (B)1 1991--; (C)1991)1(n -; (D)1 1991)1(--n . 答( ) . 若M n 1210099321=????? ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除. 答( ) . 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) . 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和 1 3=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 1 1=S

(完整版)【2019年整理】初中数学竞赛试题及答案,推荐文档

全国初中数学竞赛(海南赛区) 初 赛 试 卷 (本试卷共 4 页,满分 120 分,考试时间:3 月 22 日 8:30——10:30) 题号 一 二 三 总分 (1—10) (11—18) 19 20 得分 一、选择题(本大题满分 50 分,每小题 5 分) 在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号下的方格内 题号 1 2 3 4 5 6 7 8 9 10 答案 1. 方程 1 - 1 x = 0 的根是2009 A. - 1 2009 B. 1 C. -2009 D. 2009 2009 2. 如果 a + b < 0 ,且b > 0 ,那么 a 2 与b 2 的关系是 A. a 2 ≥ b 2 B. a 2 > b 2 C. a 2 ≤ b 2 D. a 2 < b 2 3. 如图所示,图 1 是图 2 中正方体的平面展开图(两图中的箭头位置和方向是一致的),那么,图 1 中的线段 AB 在图 2 中的对应线段是 A. k B . h C . e D . d 4. 如图,A 、B 、C 是☉O 上的三点,OC 是☉O 的半径,∠ABC=15°,那么∠OCA 的度数是 A .75° B .72° C .70° D .65° A 图 2 (第 3 题图) (第 4 题图) 5. 已知2a =3, 2b =6, 2c =12,则下列关系正确的是 A B C O B 图 1

y 2 A. 2a = b + c B. 2b = a + c C. 2c = a + b D. c = 2a + b 6. 若实数 n 满足 (n-2009 )2 + ( 2008-n )2 =1,则代数式(n-2009 ) ( 2008-n )的值是 D.1 1 B . 2 C .0 D. -1 7. 已知△ABC 是锐角三角形,且∠A>∠B>∠C,则下列结论中错误的是 A .∠A>60° B .∠C<60° C .∠B>45° D .∠B+∠C<90° 8.有 2009 个数排成一行,其中任意相邻的三个数中,中间的数总等于前后两数的和,若第一个数是 1,第二个数是-1,则这 2009 个数的和是 A .-2 B .-1 C .0 D .2 9.⊙0 的半径为 15,在⊙0 内有一点 P 到圆心 0 的距离为 9,则通过 P 点且长度是整数值的弦的条数是 A .5 B .7 C .10 D .12 10.已知二次函数 y = ax 2 + bx + c (a ≠ 0) 的图象如图所示,记 p = 2a + b , q = b - a ,则下列结论正确的是 A . p > q >0 B . q > p >0 C . p >0> q D . q >0> p (第 10 题图) 二、填空题(本大题满分 40 分,每小题 5 分) 11. 已知 | x |=3, =2,且 x + y <0,则 x y = . 1 1 12. 如果实数 a , b 互为倒数,那么 1 + a 2 + 1 + b 2 = . 13. 口袋里只有红球、绿球和黄球若干个,这些球除颜色外,其余都相同,其中红球 4 个, 2 绿球 6 个,又知从中随机摸出一个绿球的概率为 5 ,那么,随机从中摸出一个黄球的 概率为 . 14. 如图,在直线 y = -x + 3 上取一点 P ,作 PA ⊥ x 轴, PB ⊥ y 轴,垂足分别为 A 、B ,若矩形 OAPB 的面积为 4,则这样的点 P 的坐标是 . 15. 如图,AD 是△ABC 的角平分线,∠B=60°, E, F 分别在 AC 、AB 上,且 AE=AF ,∠CDE=∠BAC,那么,图中长度一定与 DE 相等的线段共有 条 .

-2017年大梦杯福建省初中数学竞赛试题

2017年“大梦杯”福建省初中数学竞赛试题参考答案 考试时间 2017年3月19日 9∶00-11∶00 满分150分 一、选择题(共5小题,每小题7分,共35分)。每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.设a =1 a a + 的整数部分为( ) A .1 B .2 C .3 D .4 【答案】 B 【解答】由2226a =+-=,知a = 于是1 a a + =2111()62866a a +=++=+,214()9a a <+<。 因此,1 a a + 的整数部分为2。 (注: a ==== 2.方程2 2( )32 x x x +=-的所有实数根之和为( ) A .1 B .3 C .5 D .7 【答案】 A 【解答】方程2 2( )32 x x x +=-化为2222(2)3(2)x x x x -+=-。 即3251060x x x -+-=,2(1)(46)0x x x --+=。 解得1x =。经检验1x =是原方程的根。 ∴ 原方程所有实数根之和为1。 3.如图,A 、B 、C 三点均在二次函数2y x =的图像上,M 为线段AC 的中点,BM y ∥轴,且2MB =。设A 、C 两点的横坐标分别为1t 、2t (21t t >),则21t t -的值为( ) A .3 B . C .± D .【答案】 D 【解答】依题意线段AC 的中点M 的坐标为22 1212 ()22 t t t t ++,。 (第3题)

由BM y ∥轴,且2BM =,知B 点坐标为22 1212 (2)22t t t t ++-,。 由点B 在抛物线2 y x =上,知22 212122()22 t t t t ++-=。 整理,得2222 121122 2282t t t t t t +-=++,即221()8t t -=。 结合21t t > ,得21t t -= 4.如图,在Rt ABC △中,90ABC ∠=?,D 为线段BC 的中点,E 在线段AB 内,CE 与AD 交于点F 。若A E E F =,且7AC =,3FC =,则c o s A C B ∠的值为( ) A .37 B . C .314 D 【答案】 B 【解答】如图,过B 作BK AD ∥与CE 的延长线交于点K 。 则由AE EF =可得,EBK EAF AFE BKE ∠=∠=∠=∠。 ∴ EK EB =。 又由D 为BC 中点,得F 为KC 中点。 ∴ 3AB AE EB FE EK KF FC =+=+===。 ∴ BC === ∴ cos 7 BC ACB AC ∠= = 。 或解:对直线AFD 及BCE △应用梅涅劳斯定理得, 1BD CF EA DC FE AB ??=。 由D 为线段BC 的中点,知BD DC =。 又AE EF =,因此,3AB CF ==。 结合7AC =,90ABC ∠=? ,利用勾股定理得,BC = 所以,cos 7 BC ACB AC ∠==。 D B A E (第4题) K

历年初中数学竞赛试题精选(含解答)

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是() A. m(1+a%)(1-b%)元 B. m?a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 解:选C。设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。 解:出发1小时后,①、②、③号艇与④号艇的距离分别为 各艇追上④号艇的时间为 对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。 解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则 由①②得,代入③得: ∴,故n的最小整数值为23。 答:要在2小时内抽干满池水,至少需要水泵23台 解:设第一层有客房间,则第二层有间,由题可得 由①得:,即 由②得:,即 ∴原不等式组的解集为 ∴整数的值为。

答:一层有客房10间。 解:设劳动竞赛前每人一天做个零件 由题意 解得 ∵是整数∴=16 (16+37)÷16≈3.3 故改进技术后的生产效率是劳动竞赛前的3.3倍。 初中数学竞赛专项训练(2) (方程应用) 一、选择题: 答:D。 解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程: ,化简得,解得不合题意舍去)。应选D。 答:C。 解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为 所以,生产第9档次产品获利润最大,每天获利864元。 答:C。 解:若这商品原来进价为每件a元,提价后的利润率为, 则解这个方程组,得,即提价后的利润率为16%。 答:B。

初中数学2018年福建省中考数学试卷a卷

2018年福建省中考数学试卷(A卷) 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)(2018?福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π 2.(4.00分)(2018?福建)某几何体的三视图如图所示,则该几何体是() A.圆柱B.三棱柱C.长方体D.四棱锥 3.(4.00分)(2018?福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 4.(4.00分)(2018?福建)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6 5.(4.00分)(2018?福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E 在线段AD上,∠EBC=45°,则∠ACE等于() A.15°B.30°C.45°D.60° 6.(4.00分)(2018?福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻

有1到6的点数,则下列事件为随机事件的是() A.两枚骰子向上一面的点数之和大于1 B.两枚骰子向上一面的点数之和等于1 C.两枚骰子向上一面的点数之和大于12 D.两枚骰子向上一面的点数之和等于12 7.(4.00分)(2018?福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6 8.(4.00分)(2018?福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是() A.B. C.D. 9.(4.00分)(2018?福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC 交⊙O于点D,若∠ACB=50°,则∠BOD等于() A.40°B.50°C.60°D.80° 10.(4.00分)(2018?福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是() A.1一定不是关于x的方程x2+bx+a=0的根

历届“大梦杯”福建省初中数学竞赛试题及答案

1 2016年“大梦杯”福建省初中数学竞赛试题参考答案 考试时间 2016年3月13日 9∶00-11∶00 满分150分 一、选择题(共5小题,每小题7分,共35分)。每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.在平面直角坐标系xOy 中,已知点(02)B ,,点A 在x 轴正半轴上且30BAO ∠=?。将 OAB △沿直线AB 折叠得CAB △,则点C 的坐标为( ) A .(1 B .3) C .(3 D .1) 2.若实数a ,b 满足232a a +=,232b b +=,且a b ≠,则22(1)(1)a b ++=( ) A .18 B .12 C .9 D .6 3.若关于x 的方程22240224 x x x a x x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( ) A .6- B .30- C .32- D .38- 4.如图,在ABC △中,6AB =,3BC =,7CA =,I 为ABC △的内心,连接CI 并延长交AB 于点D 。记CAI △的面积为m , DAI △的面积为n ,则 m n =( ) A .32 B .43 C .53 D .74 5.已知x ,y 为实数,且满足2244x xy y -+=,记224u x xy y =++的最大值为M ,最小 A B C D I

2 值为m ,则M m +=( ) A .403 B .64 15 C .13615 D .315 二、填空题(共5小题,每小题7分,共35分) 6.在平面直角坐标系内有两点(11)A ,,(23)B ,,若一次函数2y kx =+的图像与线段AB 有公共点,则k 的取值范围为 。 7.如图,在ABC △中,D 为BC 边上一点,E 为线段AD 上一点,延长BE 交AC 于点F 。若 25BD BC =,12AE AD =,则AF AC = 。 8.设1x ,2x ,3x ,…,n x 是n 个互不相同的正整数,且1232017n x x x x ++++=L ,则n 的最大值是 。 9.如图,AB 是O ⊙的直径,AC 是O ⊙的切线,BC 交O ⊙于E 点,若 OA CE =,则AE AB = 。 E O A B C F B C A D E

最新福建省初三中考数学试卷

福建省中考数学试卷 一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)3的相反数是() A.﹣3 B.﹣C.D.3 2.(4分)如图,由四个正方体组成的几何体的左视图是() A.B.C. D. 3.(4分)用科学记数法表示136 000,其结果是() A.0.136×106 B.1.36×105C.136×103D.136×106 4.(4分)化简(2x)2的结果是() A.x4B.2x2C.4x2D.4x 5.(4分)下列关于图形对称性的命题,正确的是() A.圆既是轴对称图形,又是中心对称图形 B.正三角形既是轴对称图形,又是中心对称图形 C.线段是轴对称图形,但不是中心对称图形 D.菱形是中心对称图形,但不是轴对称图形 6.(4分)不等式组:的解集是() A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3 7.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()

A.10,15 B.13,15 C.13,20 D.15,15 8.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是() A.∠ADC B.∠ABD C.∠BAC D.∠BAD 9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n 的值可以是() A.3 B.4 C.5 D.6 10.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是() A.1区B.2区C.3区D.4区 二、填空题:本题共6小题,每小题4分,共24分. 11.(4分)计算|﹣2|﹣30= . 12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连线DE.若DE=3,则线段BC的长等于.

全国初中数学竞赛试题及答案79416

中国教育学会中学数学教学专业委员会 全国初中数学竞赛试题 一、选择题(共5小题,每小题6分,共30分.) 1(甲).如果实数a,b,c在数轴上的位置如图所示,那 22 ||()|| a a b c a b c ++-++可以化简为(). (A)2c a-(B)22 a b -(C)a-(D)a 1(乙).如果22 a=- 1 1 1 2 3a + + + 的值为(). (A)2 -(B)2(C)2 (D) 22 2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数 y = x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为(). (A)(2,3)(B)(3,-2)(C)(-2,3) (D)(3,2) 2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x +2y的整数点坐标(x,y)的个数为(). (A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b <<,那么

1121 a a b a b ++++,, ,这四个数据的平均数与中位数之差的 绝对值是( ). (A )1 (B ) 214a - (C )12 (D )1 4 3(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=?,AD = 3,BD = 5, 则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 4(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ). (A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程 2 0x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的 个数是( ). (A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则 0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p 5(乙).黑板上写有1 11123100 , , ,, 共100个数字.每次操作先从黑板上的数中选取2个数 a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数 是( ). (A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行 从“输入一个值x ”到“结果是否>487?”为一次

最新全国初中数学竞赛试题及答案

全国初中数学竞赛试题及参考答案 一.选择题(5×7'=35') 1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ). A .0 B .1 C .3 D .5 【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C . 2.已知关于x 的不等式组??????? <-+->-+x t x x x 2 353 52恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2 116.-≤≤-t D 【分析】20232 35352<<-????????<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x . 注意到15=x 时,只有4个整数解.所以 2116152314-≤<-?<-≤t t ,本题选C 3.已知关于x 的方程x x x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4 【分析】422222222+-=?--=-+-x x a x x x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根: ⅲ)对04222=-+-a x x ,270)4(84= →=--=?a a ,当21,272,1==x a . 故27, 8,4=a ,2 1,1,1-=x 共3个.本题选C .

2017年福建省初中数学教学与考试指导意见

数学 一、课程理念、教育教学原则 (一)彰显育人价值 初中数学课程应全面贯彻党的教育方针,落实《国家中长期教育改革和发展规划纲要(2010—2020年)》和教育部《关于全面深化课程改革落实立德树人根本任务的意见》的有关要求;以《义务教育数学课程标准(2011版)》为依据,按照德育为先、能力为重、面向全体、个性发展的总要求,正确处理好面向全体学生与关注学生个体差异的关系,以学生发展为本,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展;遵循学生身心发展规律,结合数学学科特点,有机融入社会主义核心价值观教育和中华优秀传统文化教育,有意识地引导学生了解数学与人类发展的相互作用,体会数学的科学价值、文化价值和应用价值,体会数学对于人类文明发展的贡献,培养学生的理性精神和科学精神,形成正确的世界观、人生观和价值观,充分彰显“数学育人”的价值。 (二)发展核心素养 初中数学教学要以发展学生数学核心素养为导向,帮助学生学会用数学眼光观察世界,用数学思维分析世界,用数学语言表达世界。要创设有利于学生数学核心素养发展的教学情境,引导学生把握数学本质,感悟数学思想。要根据数学学科的特点,发展运算能力、推理能力、空间观念、数据分析观念和模型思想,注重发展学生的应用意识和创新意识,关注数学概念的理解和解释,关注数学规则的选择和运用,关注数学问题的发现与解决,关注知识技能、数学思考、问题解决、情感态度等目标的整体实现,使学生学会用数学眼光观察世界,用数学思维分析世界,用数学语言表达世界。通过初中数学学习,学生应能获得适应社会生活和进一步发展所必需的数学基础知识、基本技能、基本思想、基本活动经验;能体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力;了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。 (三)突出数学本质 初中数学应注重知识与素养两条主线的交融、协调,从整体上把握教学内容,突出数学本质,发挥各种能力和思想方法对初中数学知识的统摄作用,保持能力发展的逻辑连贯性和思想方法的前后一致性。教学时要凸显不同知识、不同单元之间存在的

相关主题
文本预览
相关文档 最新文档