人教版中考数学模拟卷及答案
- 格式:docx
- 大小:332.38 KB
- 文档页数:20
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.12-的倒数是( ) A. B. 12 C. D.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( ) A. B. C. D. 3. 下列图形中,由AB ∥CD ,能得到∠1=∠2的是A. B. C. D. 4.如图,将RtABC 绕直角项点C 顺时针旋转90°,得到A' B'C ,连接AA',若∠1=20°,则∠B 度数是( )A. 70°B. 65°C. 60°D. 55°5.已知a b <,下列不等式中,变形正确的是( ) A. a 3b 3->- B. 3a 13b 1->- C. 3a 3b ->- D. a b 33> 6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103B. 55×103C. 0.55×104D. 5.5×104 7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 49.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于点D .若∠A =30°,AE =6 cm ,则BC 等于( )3 B. 3 cm 3 D.4 cm10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d 0022A B +,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d 223543=+,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6二.填空题11.因式分解:2ax 2﹣4axy +2ay 2=_____.12.函数2y x =-中,自变量的取值范围是 . 13.如图,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=32 ,则t 的值是________.14.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于___________.15.如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC的宽度AC是OA的一半,且OA=30 cm,则扇面ABDC的周长为__________cm.16.如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比12OAAD,若AB=1.5,则DE=_____.17.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.三.解答题19.计算:(﹣1)2020+(π﹣3)0﹣3tan30°+11()2-.20.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值. 21.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,求OM 的长.22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2面积之比为 (不写解答过程,直接写出结果).23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 面积为8,求▱ABCD 的面积.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?26.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 时AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB =BC ;(2)如果AB =10.tan ∠FAC =12,求FC 的长.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析一、选择题1.12-的倒数是( )A. B. 12C. D.【答案】A【解析】【分析】根据倒数的定义求解即可.【详解】12-的倒数是,故选A.【点睛】本题考查了倒数,分子分母交换位置是求一个数倒数的关键.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.据此可以分析.【详解】根据轴对称图形的定义可知,选项A,C,D,是轴对称图形,选项B不是轴对称图形.故选B【点睛】本题考核知识点:轴对称图形.解题关键点:理解轴对称图形的定义.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.4.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )A. 70°B. 65°C. 60°D. 55°【答案】B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.5.已知a b <,下列不等式中,变形正确的是( )A. a 3b 3->-B. 3a 13b 1->-C. 3a 3b ->-D. a b 33> 【答案】C【解析】【分析】根据不等式的性质解答即可.【详解】解:A 、不等式a b <的两边同时减去3,不等式仍成立,即33a b -<-,故本选项错误; B 、不等式a b <的两边同时乘以3再减去1,不等式仍成立,即3131a b -<-,故本选项错误; C 、不等式a b <的两边同时乘以3-,不等式的符号方向改变,即33a b ->-,故本选项正确; D 、不等式a b <的两边同时除以3,不等式仍成立,即33a b <,故本选项错误; 故选C .【点睛】本题考查了不等式的性质注意:不等式两边都乘以同一个负数,不等号的方向改变.6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103 B. 5.5×103 C. 0.55×104 D. 5.5×104 【答案】D【解析】【分析】由科学记数法公式()101<10n a a ⨯≤即可得到结果;【详解】455000=5.510⨯;故答案选D .【点睛】本题主要考查了科学记数法的表示,准确判断小数点的位置是关键.7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.【点睛】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 4【答案】A【解析】【分析】根据众数的概念进行求解即可.【详解】2出现了两次,其余数据均出现一次,2出现的次数最多,所以这组数据的众数是2,故选A.【点睛】本题考查了众数的概念,熟练掌握”众数是指一组数据中出现次数最多的数据”是解题的关键.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6 cm,则BC等于()3cm B. 3 cm 3 D. 4 cm【答案】C【解析】【分析】根据直角三角形的性质求出DE ,根据角平分线的性质求出CE ,根据正切的定义计算即可.【详解】解:在Rt △ADE 中,∠A=30°,∴DE=12AE=3,∠ABC=60°, ∵BE 平分∠ABC ,ED ⊥AB ,∠ACB=90°,∴CE=DE=3,∠EBC=30°,在Rt △CBE 中,BC=tan CE EBC =∠(cm ), 故选:C .【点睛】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d35=,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6【答案】B【解析】【分析】先将直线的解析式化为定义中的形式,再根据距离公式计算即可. 【详解】∵3544y x =-+ ∴35044x y +-= ∴点1)(3,4P 到直线3544y x =-+5454== 故选:B .【点睛】本题考查了一次函数的几何应用:点到直角的距离公式,掌握理解距离公式是解题关键.二.填空题11.因式分解:2ax2﹣4axy+2ay2=_____.【答案】2a(x﹣y)2【解析】【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:原式=2a(x2﹣2xy+y2)=2a(x﹣y)2,故答案为:2a(x﹣y)2【点睛】本题主要考查因式分解,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,掌握上述因式分解的知识点是解题的关键.12.函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= 32,则t的值是________.【答案】2 【解析】【分析】根据正切的定义即可求解.【详解】∵点A (t ,3)在第一象限,∴AB=3,OB=t ,又∵tanα=AB OB =32, ∴t=2.故答案为2.14.如图,△ABC 绕点A 顺时针旋转45°得到△A′B′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于___________.2-1【解析】【分析】由旋转的性质可得45CAC BAB ∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==可证AFB ∆',ADB ∆和BEF ∆为等腰直角三角形,分别求出ADB S ∆,BEF S ∆的值,即可求解.【详解】解:如图,设,AB B C ''交于点,BC B C '',交于点,90BAC ∠=︒,2AB AC ==45B C ∴∠=∠=︒,ABC ∆绕点顺时针旋转45︒得到△AB C '',45CAC BAB ∴∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==, AFB ∴∆'是等腰直角三角形,AD BC ∴⊥,B F AF '⊥,212AF AB ='=, 21BF AB AF ∴=-=-, 45B ∠=︒,EF BF ⊥,AD BD ⊥,ADB ∴∆和BEF ∆为等腰直角三角形,212AD BD AB ∴===,21EF BF ==-, 图中阴影部分的面积1111(21)(21)2122ADB BEF S S ∆∆=-=⨯⨯---=-, 故答案为:21-.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.15.如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30 cm ,则扇面ABDC 的周长为__________cm .【答案】(30π+30)【解析】【分析】根据题意求出OC ,根据弧长公式分别求出AB 、CD 的弧长,根据扇形周长公式计算.【详解】由题意可得:1152OC AC OA ===, 弧AB 长=12030=20180ππ⨯, 弧CD 的长=12015=10180ππ⨯, ∴扇形ABCD 的周长=()20+10+15+15=30+30cm πππ, 故答案为()30+30π. 【点睛】本题主要考查了弧长的计算,准确理解所给图形找出相关的量是解题的关键. 16.如图,在平面直角坐标系中,已知△ABC 与△DEF 位似,原点O 是位似中心,位似比12OA AD =,若AB =1.5,则DE =_____.【答案】4.5【解析】【分析】根据位似图形的性质得出AO,DO 的长,进而得出, 13OA OD =,13AB DE =求出DE 的长即可 【详解】∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB OA DE OD =, ∵12OA AD =, ∴13OA OD =, ∴13AB DE =, ∴DE =3×1.5=4.5. 故答案为4.5.【点睛】此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO 的长17.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是 cm .【答案】5<x <10.【解析】【分析】设AB=AC=x ,则BC=20﹣2x ,根据三角形的三边关系即可得出结论.【详解】∵在等腰△ABC 中,AB=AC ,其周长为20cm ,∴设AB=AC=x cm ,则BC=(20﹣2x )cm ,∴22022020x x x >-⎧⎨->⎩ , 解得5cm <x <10cm ,故答案为5<x <10.【点睛】本题考查了等腰三角形的性质,三角形三边关系,正确理解和灵活运用相关知识是解题的关键. 18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.【答案】20﹣208000=401401. 【解析】【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.三.解答题19.计算:(﹣1)2020+(π+11()2-.【答案】3.【解析】【分析】先计算有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂,再计算实数的乘法,最后计算实数的加减运算即可.【详解】原式1123=+-+1112=+-+3=.【点睛】本题考查了有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂等知识点,熟记各运算法则是解题关键.20.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.【答案】35【解析】【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组52251x yx y--⎧⎨+-⎩=①=②,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=15,则原式=213+=555.【点睛】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.21.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,求OM的长.【答案】OM=5.【解析】【分析】作PD⊥MN于D,根据30°角所对直角边是斜边一半的性质可得OD的长,根据等腰三角形三线合一的性质求出MD,即可得出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,∠AOB=60º,OP=12,∴OD=12OP=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=12MN=1,∴OM=OD-MD=6-1=5.【点睛】本题主要考查了含30º角的直角三角形性质、等腰三角形的”三线合一”性质,过点P作PD⊥OB 是解答的关键.22.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)△A1B1C1与△A2B2C2面积之比为(不写解答过程,直接写出结果).【答案】(1)作图见解析;(2)作图见解析;(3)1:4【解析】【分析】(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.【详解】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3) ∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1∶2,∴△A1B1C1与△A2B2C2面积之比为:1∶4.【点睛】本题考查了作图-轴对称变换、作图-位似变换,熟练掌握直角坐标系中的基本作图方法是解答的关键.23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.【答案】(1)一次函数的表达式为y =-x +1,反比例函数的表达式为y =-2x ;(2)S △ABD =3. 【解析】【分析】(1)先把B 点坐标代入m y x=中求出m ,得到反比例函数解析式为2y x =-,再利用解析式确定A 点坐标,然后利用待定系数法求一次函数解析式即可;(2)先利用一次函数解析式确定()0,1C ,利用关于x 轴对称的性质得到()0,1D -,则BD x ∥轴,然后根据三角形面积公式计算即可;【详解】解:(1)∵反比例函数m y x =的图象经过点B(2,-1), ∴m =-2.……∵点A(-1,n)在2y x=-的图象上,∴n =2.∴A(-1,2). 把点A ,B 的坐标代入y =kx +b ,得221k b k b ⎧-+=⎨+=-⎩解得11k b ⎧=-⎨=⎩, ∴一次函数的表达式为y =-x +1,反比例函数的表达式为2y x =-; (2)∵直线y =-x +1交y 轴于点C ,∴C(0,1).∵点D 与点C 关于x 轴对称,∴D(0,-1).∵B(2,-1),∴BD ∥x 轴.∴S △ABD =12×2×3=3. 【点睛】本题主要考查了反比例函数与一次函数的交点问题知识点,准确理解待定系数法求解析式是关键.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 的面积为8,求▱ABCD 的面积.【答案】(1)证明见解析;(2)ABCD 的面积为100.【解析】【分析】(1)根据平行四边形的判定与性质即可得证;(2)先根据平行四边形的性质得出DF 、AD 的长和//,//AB CD BD EF ,再根据平行线的性质得出,F ADB FDG A ∠=∠∠=∠,然后根据相似三角形的判定与性质得出2()DFG ADB SDF S AD =,从而可求出ADB △的面积,由此即可得ABCD 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形∴//AD BC ,即//DF BE又∵DF =BE∴四边形BEFD 是平行四边形∴//BD EF ;(2)∵四边形ABCD 是平行四边形,4,6BE EC ==∴4,4610DF BE AD BC BE EC ====+=+=,//AB CD∴FDG A ∠=∠∵四边形BEFD 是平行四边形//BD EF ∴∴F ADB ∠=∠ ∴DFG ADB ~∴2244()()1025DFG ADB S DF SAD === ∵8DFG S =∴50ADBS=∴ABCD的面积为2250100ADBS=⨯=.【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),利用平行四边形的性质得到两个三角形相似的条件是解题关键.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?【答案】(1)高铁列车的平均时速为240千米/小时;(2)王老师能在开会之前到达.【解析】【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220-90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,122012209082.5x x--=,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+0.5=3.75(小时),从10:00到下午14:00,共计4小时>3.75小时,故王老师能在开会之前到达.【点睛】此题考查分式方程的应用,解题关键在于列出方程26.如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC =12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan ∠ABE =tan ∠FAC =12, ∵在Rt △ABE 中,tan ∠ABE =AE BE =12, ∴设AE =x ,则BE =2x , ∴AB =5x ,即5x =10,解得:x =25,∴∆ABE ≅∆CBE ,∴AC =2AE =45,BE =45,作CH ⊥AF 于点H ,∵∠HAC =∠ABE ,∴Rt △ACH ∽Rt △BAE ,∴HC AE =AH BE =AC AB ,即HC 25=AH 45=4510, ∴HC =4,AH =8,∵HC ∥AB ,∴FC FB =HC AB ,即FC FC 10+=25, 解得:FC =203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) (3,23)Q -或()3,23-或113113,22⎛⎫-+- ⎪ ⎪⎝⎭或1133313,22⎛⎫--+ ⎪ ⎪⎝⎭. 【解析】【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角关系,确定直线OQ 倾斜角,进而求解.【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, ∴CH 2则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±故点(3,3)Q -或()3,23-;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.﹣2023的相反数是()A.﹣2023B.2023C.12023 D.﹣120232.如图是由一个5个相同的正方体组成的立体图形,则这个几何体左视图是()3.截至目前,某地区的旅游收入达到43 000 000,数字“43 000 000”用科学记数法表示为()A.43×106B.4.3×107C.0.43×108D.430×1054.如图,CA⊥BE于点A,AD∥BC,若∠C=42°,则∠1的度数为()A.46°B.47°C.48°D.42°(第4题图)(第6题图)(第9题图)5.下列图形中,既是轴对称图形又是中心对称图形的是()6.如图,A,B两点在数轴上的位置如图所示,则下列式子一定成立的是()A.ab<2aB.1-7a<1-7bC.|a|>|b|D.﹣b<ab、7.从甲,乙,丙,丁四名同学随机选择两名同学去参加数学比赛,则恰好抽到甲,丙两位同学的概率是()A.16 B.14C.18D.128.若x+y=﹣2,则代数式(y 2x -x )÷x -y x的值为( )A.2B.﹣2C.12 D.﹣129.如图,在△ABC 中,∠ACB=90°,∠BA15°,分别以A ,B 为圆心,大于12AB 的长为半径画弧,两弧交于M ,N 两点,作直线MN 交AC 于点D ,若AD=2,则△ABC 的面积为( ) A.2 B.2+√32C.2+√3D.410.二次函数y=ax 2+bx ,经过点P (m ,2)当y ≤﹣1时,x 的取值范围为m -1≤x ≤﹣a -m ,则下列四个值中可能为m 的是( ) A.﹣2 B.﹣3C.﹣4D.﹣5二.填空题。
(每小题4分,共24分) 11.分解因式:9m 2-36n 2= .12.若一元二次方程x 2-3x+a=0有两个相等的实数根,则a 的值为 .13.菱形ABCD 的两条对角线的长分别是6厘米和10厘米,则菱形ABCD 的周长是 厘米. 14.如图,一块飞镖游戏板由四个全等的直角三角形和一个正方形构成,若a=1,b=2,游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中阴影部分的概率是 .(第14题图) (第15题图) (第16题图)15.一列慢车从A 地往B 地,一列快车从B 地到A 地,两车同时出发,各自抵达目的地后停止,如图所示,折线表示两车之间的距离y (km )与慢车行驶时间t (h )之间的关系,当快车到达A 地时,慢车与B 地的距离为 Km .(填序号)16.如图,矩形ABCD 中,AB=4,BC=6,点E 是BC 中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,则tan ∠DAF 的值为 .三.解答题。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________第I卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在﹣1、2、13、3这四个数中,无理数是()A. ﹣1B. 2C. 13D. 32.下列运算结果为a3的是()A. a+a+aB. a5﹣a2C. a•a•aD. a6÷a23.一个几何体的三视图如图所示,则这个几何体是()A. B. C. D. 4.人体中红细胞的直径约为0.0000077m,将数字0.0000077用料学记数法表示为()A. 57.710-⨯ B. 50.7710-⨯ C. 67.710-⨯ D. 77710-⨯5.下列事件中,是必然事件的是()A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B. 抛掷一枚普通正方体骰子,所得点数小于7 C. 抛掷一枚一元硬币,正面朝上D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块6.小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是()A. 圆子(2,3),方子(1,.3)B. 圆子(1,3),方子(2,3)C. 圆子(2,3),方子(4,0)D. 圆子(4,0),方子(2,3)7.关于x 的一元二次方程210x mx --=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 不能确定8.一次函数y =﹣2x+1的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 9.如图,抛物线y =ax 2+bx+c (a >0)过原点O ,与x 轴另一交点为A ,顶点为B ,若△AOB 为等边三角形,则b 的值为( )A. ﹣3B. ﹣23C. ﹣33D. ﹣4310.如图,点E 为ABC ∆的内心,过点E 作MN BC 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A. 3.5B. 4C. 5D. 5.5第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.11.计算:(12)﹣1+(3﹣1)0=_____.12.若一组数据1、3、x、5、8的众数为8,则这组数据的中位数为_____.13.在五边形ABCDE中,若440A B C D∠+∠+∠+∠=︒,则E∠=______︒.14.若x ay b=⎧⎨=⎩是方程组2155x yx y-=⎧⎨-+=⎩的解,则a+4b=_____.15.如图,PA切⊙O于点A,点B是线段PO的中点,若⊙O的半径为3,则图中阴影部分的面积为_____.16.在平面直角坐标系中,点A的坐标为(4,0),点B为y轴上的一动点,将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=3x的图象上,则点B的坐标为_____.三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.17.解不等式组42233xx x+≥⎧⎨-+⎩>,并将解集在数轴上表示出来.18.先化简,再求值:(a+12a-)÷221aa a-+,其中a=﹣2.19.如图,在ABC∆中,AB AC=,CD AB⊥于点D,BE AC⊥于点E.求证:BD CE=.20.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?21.如图,在ABCD中,AC与BD相交于点O,AC BC⊥,垂足为C.将ABC∆沿AC翻折得到AEC∆,连接DE.(1)求证:四边形ACED 是矩形;(2)若4AC =,3BC =,求sin ABD ∠的值.22.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A 、B 、C 、D 四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式 A BC D 利润(元/台) 160200 240 320表2:甲、乙两店电脑销售情况电脑款式 AB C D 甲店销售数量(台) 2015 10 5 乙店销售数量(台)8 8 10 14 18试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.23.在平面直角坐标系中,反比例函数y =k x (x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). (1)求n 值;(2)如图,直线l 为正比例函数y =x 的图象,点A 在反比例函数y =k x(x >0,k >0)的图象上,过点A 作AB ⊥l 于点B ,过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥BC 于点D ,记△BOC 的面积为S 1,△ABD 的面积为S 2,求S 1﹣S 2的值.24.如图,在菱形ABCD中,点E是BC边上一动点(不与点C重合)对角线AC与BD相交于点O,连接AE,交BD于点G.(1)根据给出的△AEC,作出它的外接圆⊙F,并标出圆心F(不写作法和证明,保留作图痕迹);(2)在(1)的条件下,连接EF.①求证:∠AEF=∠DBC;②记t=GF2+AG•GE,当AB=6,BD=63时,求t的取值范围.25.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为3,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT时,求y的最大值与最小值(用含a的式子表示).答案与解析第I 卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在﹣1、2、13 )A. ﹣1B. 2C. 13D. 【答案】D【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.13,2,﹣1是有理数, 故选D .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列运算结果为a 3的是( )A. a+a+aB. a 5﹣a 2C. a •a •aD. a 6÷a 2【答案】C【解析】【分析】根据同底数幂相乘,底数不变指数相加;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】解:A 、a+a+a =3a ,故本选项错误;B 、a 5﹣a 2不能计算,故本选项错误;C 、a •a •a =a 3,故本选项正确;D 、a 6÷a 2=a 6﹣2=a 4,故本选项错误.故选C .【点睛】本题考查了同底数幂的乘法,合并同类项法则,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.一个几何体的三视图如图所示,则这个几何体是( )A. B. C. D.【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选C .【点睛】此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.4.人体中红细胞的直径约为0.0000077m ,将数字0.0000077用料学记数法表示为( )A. 57.710-⨯B. 50.7710-⨯C. 67.710-⨯D. 77710-⨯【答案】C【解析】【分析】根据科学计数法的表示即可求解.【详解】0.0000077=67.710-⨯故选C.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知负指数幂的性质.5.下列事件中,是必然事件的是( )A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B. 抛掷一枚普通正方体骰子,所得点数小于7C. 抛掷一枚一元硬币,正面朝上D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块【答案】B【解析】【分析】根据事件发生的可能性大小即可判断.【详解】A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B. 抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C. 抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.6.小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是()A. 圆子(2,3),方子(1,.3)B. 圆子(1,3),方子(2,3)C. 圆子(2,3),方子(4,0)D. 圆子(4,0),方子(2,3)【答案】A【解析】【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:如图所示:9枚棋子组成的图案既是轴对称图形又是中心对称图形,∴这两枚棋子的坐标分别是圆子(2,3),方子(1,.3),故选A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.7.关于x的一元二次方程210--=的根的情况是()x mxA. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 不能确定【答案】A【解析】【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.8.一次函数y=﹣2x+1的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.9.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A. ﹣3B. ﹣23C. ﹣33D. ﹣43【答案】B【解析】【分析】 根据已知求出B (﹣2,24b b a a-),由△AOB 为等边三角形,得到2b 4a =tan60°×(﹣2b a ),即可求解; 【详解】解:抛物线y =ax 2+bx+c (a >0)过原点O ,∴c =0,B (﹣2,24b b a a-), ∵△AOB 为等边三角形,∴2b 4a=tan60°×(﹣2b a ), ∴b =﹣23;故选B .【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.10.如图,点E 为ABC ∆的内心,过点E 作MN BC 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A. 3.5B. 4C. 5D. 5.5【答案】B【解析】【分析】连接EB、EC,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME,同理可得NC=NE,接着证明△AMN∽△ABC,所以767MN BM-=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN的方程,然后解方程即可.【详解】连接EB、EC,如图,∵点E为△ABC的内心,∴EB平分∠ABC,EC平分∠ACB,∴∠1=∠2,∵MN∥BC,∴∠2=∠3,∴∠1=∠3,∴BM=ME,同理可得NC=NE,∵MN∥BC,∴△AMN∽△ABC,∴MN AMBC AB=,即767MN BM-=,则BM=7-76MN①,同理可得CN=5-56MN②,①+②得MN=12-2MN,∴MN=4.故选:B.【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.11.计算:(12)﹣1+﹣1)0=_____. 【答案】3【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【详解】解:原式=2+1=3.故答案为3.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.12.若一组数据1、3、x 、5、8的众数为8,则这组数据的中位数为_____.【答案】5【解析】【分析】根据众数和中位数的概念求解.【详解】解:∵数据1、3、x 、5、8的众数为8,∴x =8,则数据重新排列为1、3、5、8、8,所以中位数为5,故答案为5.【点睛】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.在五边形ABCDE 中,若440A B C D ∠+∠+∠+∠=︒,则E ∠=______︒.【答案】100【解析】【分析】根据五边形内角和即可求解.【详解】∵五边形的内角和为(5-2)×180°=540°,∴∠E=540°-(A B C D ∠+∠+∠+∠)=540°-440°=100°,故填100.【点睛】此题主要考查多边形的内角和,解题的关键是熟知多边形的内角和公式.14.若x ay b=⎧⎨=⎩是方程组2155x yx y-=⎧⎨-+=⎩的解,则a+4b=_____.【答案】6【解析】【分析】方程组两方程相加求出x+4y的值,将x与y的值代入即可求出值.【详解】解:2155x yx y-=⎧⎨-+=⎩①②,①+②得:x+4y=6,把x ay b=⎧⎨=⎩代入方程得:a+4b=6,故答案为6【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.15.如图,PA切⊙O于点A,点B是线段PO的中点,若⊙O的半径为3,则图中阴影部分的面积为_____.33π-【解析】【分析】阴影部分的面积等于三角形OAP的面积减去扇形AOB的面积.【详解】解:如图,连接OA,AB.∵PA切⊙O于点A,∴∠OAP=90°,∵点B是线段PO的中点,∴AB是直角三角形OAP斜边上的中线,∴AB=OB,∵OB=OA,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵OA=3,OP=23,∴AP=22(23)(3)-=3,∴△OAP的面积=332,扇形AOB的面积=260(3)360π⨯⨯=2π,图中阴影部分的面积为33332ππ--=.故答案为33π-.【点睛】本题考查了切线的性质定理以及30°的直角三角形的性质,三角形面积和扇形面积的计算等知识.关键是熟练运用扇形的面积计算公式,能够明确阴影部分的面积等于三角形OAP的面积减去扇形AOB的面积.16.在平面直角坐标系中,点A的坐标为(4,0),点B为y轴上的一动点,将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=3x的图象上,则点B的坐标为_____.【答案】(0,1)或(0,3)【解析】【分析】设B(0,n),根据旋转的性质可以得到CD=OB=n,BD=OA=4,得到点C的坐标是(﹣n,n﹣4),即可得到﹣n(n﹣4)=3,从而求得点B的坐标.【详解】解:设B(0,n),∵点A的坐标为(4,0),将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=3x的图象上, 易证△AOB ≌△BDC ,设B (0,n ),∴CD =OB =n ,BD =OA =4,∴点C 的坐标是(﹣n ,n ﹣4),∵C 恰好落在反比例函数y =3x的图象上, ∴﹣n (n ﹣4)=3,解得n =1,3,∴点B 的坐标是(0,1)或(0,3),故答案为(0,1)或(0,3). 【点睛】本题考查反比例函数的性质、坐标与图形的变化﹣旋转,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤. 17.解不等式组42233x x x+≥⎧⎨-+⎩>,并将解集在数轴上表示出来.【答案】﹣2≤x <3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+4≥2,得:x ≥﹣2,解不等式2x >﹣3+3x ,得:x <3,则不等式组解集为﹣2≤x <3,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.先化简,再求值:(a+12a -)÷221a a a -+,其中a =﹣2. 【答案】-32【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 【详解】解:22112a a a a a -⎛⎫+÷ ⎪-+⎝⎭ (2)1(1)2(1)(1)a a a a a a a -++=⋅-+- 22121a a a a a -+=⋅-- 2(1)21a a a a -=⋅-- (1)2a a a -=-当a =﹣2时,原式=2(21)3-222-⨯--=-- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.如图,在ABC ∆中,AB AC =,CD AB ⊥于点D ,BE AC ⊥于点E .求证:BD CE =.【答案】详见解析【解析】【分析】根据已知条件证明BCD CBE ∆≅∆,即可求解.【详解】证明:∵CD AB ⊥,BE AC ⊥,∴90BDC CEB ∠=∠=︒.∵AB AC =,∴A ABC CB =∠∠在BCD ∆与CBE ∆中,BDC CEB ∠=∠,DBC ECB ∠=∠,BC CB =,∴BCD CBE ∆≅∆.∴BD CE =.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.20.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?【答案】12【解析】【分析】设矩形的长为x 步,则宽为(60﹣x )步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x 步,则宽为(60﹣x )步,依题意得:x (60﹣x )=864,整理得:x 2﹣60x+864=0,解得:x =36或x =24(不合题意,舍去),∴60﹣x =60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.21.如图,在ABCD 中,AC 与BD 相交于点O ,AC BC ⊥,垂足为C .将ABC ∆沿AC 翻折得到AEC ∆,连接DE .(1)求证:四边形ACED 是矩形;(2)若4AC =,3BC =,求sin ABD∠的值. 【答案】(1)详见解析;(2)13sin 65ABD ∠=【解析】【分析】 (1)根据折叠性质及平行四边形的性质即可证明;(2)过点A 作AF BD ⊥于点F ,根据矩形与折叠的性质得到BE 的长,再根据在Rt BED ∆中,由勾股定理得到BD 的长,在Rt ABC ∆中,同理可得AB 的长,再由三角形的面积得到AF 的长,再利用在Rt AFB ∆中的三角函数即可求解.【详解】(1)由折叠性质得:BC CE =.在ABCD 中,BC AD =,BC AD ∥,∴CE AD =,又AD CE ,∴四边形ACED 是平行四边形.∵AC BC ⊥,∴90ACE ∠=︒.∴ACED 是矩形. (2)在矩形ACED 中,4AC DE ==,90DEC ADE ∠=∠=︒.∵90ACE ∠=︒,由折叠性质可知:B 、C 、E 三点共线,∴336BE BC CE =+=+=.在Rt BED ∆中,由勾股定理得:226452213BD +=.在Rt ABC ∆中,同理可得:5AB =. 如图1,过点A 作AF BD ⊥于点F ,∴1122ABD S BD AF AD DE ∆=⋅=⋅,∴112133422AF ⨯⋅=⨯⨯,61313AF =. 在Rt AFB ∆中,61361313sin 5AF ABD AB ∠===.【点睛】此题主要考查三角函数的应用,解题的关键是熟知矩形的性质及三角函数的定义及应用. 22.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A 、B 、C 、D 四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润 电脑款式 A BC D 利润(元/台) 160200 240 320表2:甲、乙两店电脑销售情况 电脑款式 A BC D 甲店销售数量(台) 20 1510 5 乙店销售数量(台)8 8 10 14 18试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.【答案】(1)310 (2)应对甲店作出暂停营业的决定 【解析】【分析】 (1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元), 乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元), ∵248>204,∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.23.在平面直角坐标系中,反比例函数y =k x (x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). (1)求n 的值;(2)如图,直线l 为正比例函数y =x 的图象,点A 在反比例函数y =k x(x >0,k >0)的图象上,过点A 作AB ⊥l 于点B ,过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥BC 于点D ,记△BOC 的面积为S 1,△ABD 的面积为S 2,求S 1﹣S 2的值.【答案】(1)2(2)6【解析】【分析】(1)利用反比例函数图象上点的坐标特征得到n •3n =(n+1)•2n ,然后解方程可得n 的值;(2)设B (m ,m ),利用△OBC 为等腰直角三角形得到∠OBC =45°,再证明△ABD 为等腰直角三角形,则可设BD =AD =t ,所以A (m+t ,m ﹣t ),把A (m+t ,m ﹣t )代入y =12x 中得到m 2﹣t 2=12,然后利用整体代入的方法计算S 1﹣S 2.【详解】解:(1)∵反比例函数y =k x(x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). ∴n •3n =(n+1)•2n ,解得n =2或n =0(舍去),∴n 的值为2;(2)反比例函数解析式为y =12x , 设B (m ,m ),∵OC =BC =m ,∴△OBC 为等腰直角三角形,∴∠OBC =45°,∵AB ⊥OB ,∴∠ABO =90°,∴∠ABC =45°,∴△ABD 为等腰直角三角形,设BD =AD =t ,则A (m+t ,m ﹣t ),∵A (m+t ,m ﹣t )在反比例函数解析式为y =12x 上, ∴(m+t )(m ﹣t )=12,∴m 2﹣t 2=12,∴S 1﹣S 2=2211112222m t -=⨯=6. 【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x (k ≠0)图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质. 24.如图,在菱形ABCD 中,点E 是BC 边上一动点(不与点C 重合)对角线AC 与BD 相交于点O ,连接AE ,交BD 于点G .(1)根据给出的△AEC ,作出它的外接圆⊙F ,并标出圆心F (不写作法和证明,保留作图痕迹); (2)在(1)的条件下,连接EF .①求证:∠AEF =∠DBC ;②记t=GF2+AG•GE,当AB=6,BD=63时,求t的取值范围.【答案】(1)见解析(2)①证明见解析②9≤t≤12【解析】【分析】(1)作EC的垂直平分线,其与BD的交点即为外心F;(2)连接AF,EF,利用菱形的性质及外心的定义可证明∠DBC=90°﹣∠ACB及∠AEF=90°﹣∠ACB,可推出结论;(3)先证△ABG∽△FEG,再证△EFB∽△GFE,由相似三角形的性质可推出t=GF2+AG•GE=GF2+GF•BG =GF(GF+BG)=GF•BF=EF2,在菱形ABCD中,AC⊥BD,EF=AF≥AO,∴EF2≥AO2=32=9,当点F与点O重合时,AF最大,求出此时t的最大值为12,即可写出t的取值范围.【详解】解:(1)如图1,⊙F为所求作的圆;(2)①证明:如图2,连接AF,EF,∵四边形ABCD为菱形,∴AC⊥BD,∴∠DBC=90°﹣∠ACB,∵FA=FE,∴∠AEF=∠FAE,∴∠AEF=12(180°﹣∠AFE)=90°﹣12∠AFE,又∠ACB=12∠AFE,∴∠AEF=90°﹣∠ACB,又∵∠DBC=90°﹣∠ACB,∴∠AEF=∠DBC;②解:∵四边形ABCD为菱形,∴∠ABD=∠CBD,AO=CO,BO=DO=12BD=12×6333=,在Rt△ABO中,AO=22226(33)3AB BO-=-=,又∵∠AGB=∠FGE,∠ABG=∠FEG,∴△ABG∽△FEG,AG BGGF GE∴=,∴AG•GE=GF•BG,∵∠GEF=∠FBE,∠GFE=∠EFB,∴△EFB∽△GFE,∴EF BF GF EF=,∴GF•BF=EF2,∴t=GF2+AG•GE=GF2+GF•BG=GF(GF+BG)=GF•BF=EF2,在菱形ABCD中,AC⊥BD,EF=AF≥AO,∴EF2≥AO2=32=9,如图3,当点F与点O重合时,AF最大,由题意可知:AF=BF,设AF=x,则OF=33﹣x,∵AO2+OF2=AF2,∴32+(33﹣x)2=x2,解得,x=23,∴当x=23时,t的最大值为12,∴9≤t≤12.【点睛】本题考查了尺规作图,外接圆的定义,菱形的性质,相似三角形的判定与性质等,灵活运用相似三角形的性质是解题的关键.25.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为3,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT时,求y的最大值与最小值(用含a的式子表示).【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(03(3)见解析【解析】【分析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=12AD,MT=MD,推知MD=12AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=12AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=12AT.易得H(a﹣1,0),T(2a﹣1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.需要分类讨论:(i)当2111(1)211aa a-⎧⎨----⎩,即413a<,根据抛物线的增减性求得y的极值.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,根据抛物线的增减性求得y的极值.(iii)当a﹣1>1,即a>2时,根据抛物线的增减性求得y的极值.【详解】解:(1)把点B(3,0)代入y=x2+bx﹣3,得32+3b﹣3=0,解得b=﹣2,则该二次函数的解析式为:y=x2﹣2x﹣3;(2)①∠DMT的度数是定值.理由如下:如图1,连接AD .∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4.∴抛物线的对称轴是直线x =1.又∵点D 的纵坐标为∴D (1,.由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1),∴A (﹣1,0),B (3,0).在Rt △AED 中,tan ∠DAE =2DE AE == ∴∠DAE =60°.∴∠DMT =2∠DAE =120°.∴在点T 的运动过程中,∠DMT 的度数是定值;②如图2,∵MT =12AD .又MT =MD , ∴MD =12AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上, ∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD .∵A (﹣1,0),D (1,,∴点M 的坐标是(0.(3)如图3,作MH ⊥x 于点H ,则AH =HT =12AT . 又HT =a ,∴H (a ﹣1,0),T (2a ﹣1,0).∵OH ≤x ≤OT ,又动点T 在射线EB 上运动,∴0≤a ﹣1≤x ≤2a ﹣1.∴0≤a ﹣1≤2a ﹣1.∴a ≥1,∴2a ﹣1≥1.(i )当2111(1)211a a a -⎧⎨----⎩,即14a 3时,当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;当x=1时,y最小值=4.(ii)当0112111(1)211 aaa a<-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.(iii)当a﹣1>1,即a>2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.。
九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.﹣2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图所示的几何体,从正面看是()3.2022年12月4日,神舟14号载人飞船返回舱在东风着陆场成功着陆,它在轨飞行183Tina,共飞行里程约125 000 000千米,其中“125 000 000”用科学记数法表示为()A.125×106B.1.25×109C.1.25×108D.1.25×10104.如图,AB∥CD,BE平分∠ABC,且交CD于D点,∠CDE=150°,则∠C的度数为()A.30°B.60°C.124°D.150°(第4题图)(第8题图)(第9题图)5.下列图形中既是轴对称图形又是中心对称图形的是()6.下列计算正确的是()A.(3a3)2=9a6B.a3+a2=2a5C.(a+b)2=a2+b2D.(a4)3=a77.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立春和立夏的概率是( )A.16 B.18 C.23 D.128.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ’B ’C ’,则点P 的坐标是( )A.(0,4)B.(1,1)C.(1,2)D.(2,1) 9.如图1,AD 是△ABC 的高,以点B 为圆心,适当长为半径画弧交AB 于点M ,交BC 于点N ,分别以M ,N 为圆心,大于12MN 的长为半径作弧,两弧相交于P ,作射线BP 交AD 于点E ,若∠ABC=45°,AB ⊥AC ,DE=1,则CD 的长为( )A.√2B.√2+1C.√3D.√2-110.在平面直角坐标系中,抛物线y=x 2-2mx+3与y 轴交于点A ,过点A 作x 轴的平行线与抛物线交于另一点B ,点M (m+2,3),N (0,m+3),若抛物线与线段MN 有且只有一个公共点,则m 的取值范围是( )A.0<m ≤2或m <﹣2B.0<m ≤2或m ≤﹣2C.0≤m ≤2或m ≤﹣2D.0≤m <2或m <﹣2二.填空题。
最新人教版中考数学仿真模拟试卷(附解析)一、选择题(每个小题4分,10个小题共40分)1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于()A.85°B.95°C.105°D.115°【考点】平行线的性质.【分析】根据平行线的性质得出∠4=∠3,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∴∠4=∠3,∵∠1+∠2=∠4,∴∠3=∠1+∠2=95°.故选B.3.已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A.﹣2 B.﹣1 C.1 D.2【考点】根与系数的关系.【分析】根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣=2.故选D.4.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD 的长为()A.2 B.3 C.D.2【考点】菱形的性质.【分析】首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【解答】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×=,∴BD=2.故选:D.A.64元B.65元C.66元D.67元【考点】二元一次方程组的应用.【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.计算1|2|2--+的结果是() A. 112-B. 0C. 112D. 1222.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A 58.5810⨯B. 60.85810⨯C. 58.5810-⨯D. 385810⨯3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.4.在下列图形中,既是轴对称图形,又是中心对称图形的是() A. 等边三角形B. 直角三角形C. 正五边形D. 矩形5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分一组D. 打开电视,正在播放动画片 6.下列运算中正确的是() A. 623a a a ÷=B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形B. 六边形C. 七边形D. 八边形8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A 0a b +>B. 0a c +>C. 0b c +>D. 0ac <9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<二、填空题11.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 13222则这些队员投中次数众数为___________.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0ky k x=≠的图像上,当ABC ∆的面积最小时,的值__________.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.18.先化简,再求值:11221x x x x ⎛⎫÷-+ ⎪++⎝⎭,其中2x =.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE ADAC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________; (2)若点,,在同一直线上,求tan ABA '∠的值.21.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元. 公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表: 消耗墨盒数 22 23 24 25 打印机台数 1441(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值. 23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,CD =求O 半径的长.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -. (1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x = ①求,所满足的数量关系式; ②当OP=OA 时,求线段PN 的长度.答案与解析一.选择题1.计算1|2|2--+的结果是() A. 112- B. 0C. 112D. 122【答案】D 【解析】 【分析】先化简绝对值和负整数指数幂,然后再计算. 【详解】解:111|2|2=2+=222--+ 故选:D .【点睛】本题考查负整数指数幂的的计算,掌握计算法则正确计算是解题关键.2.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A. 58.5810⨯ B. 60.85810⨯C. 58.5810-⨯D. 385810⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于858000有6位,所以可以确定n=6-1=5. 【详解】解:858000=8.58×105. 故选:A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.【答案】C 【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;4.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 直角三角形C. 正五边形D. 矩形【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得.【详解】解:A.等边三角形轴对称图形,不是中心对称图形,不符合题意;B.直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C.正五边形是轴对称图形,不是中心对称图形,不符合题意;D.矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D.【点睛】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分在一组D. 打开电视,正在播放动画片【答案】C【解析】A.点数之和不一定是6;B.还可能是背面朝上;C.是必然事件;D.不一定,也可能会是其它节目. 故选C.6.下列运算中正确的是() A. 623a a a ÷= B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=【答案】B 【解析】 【分析】根据同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方法则进行计算,逐个判断即可. 【详解】解:A. 624a a a ÷=,故此选项不符合题意; B. 23a a a ⋅=,正确;C. 2222a a a -=,故此选项不符合题意;D. ()22439a a -=,故此选项不符合题意;故选:B .【点睛】本题考查同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方,掌握运算法则正确计算是解题关键.7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形 B. 六边形C. 七边形D. 八边形【答案】C 【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A. 0a b +>B. 0a c +>C. 0b c +>D. 0ac <【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】解:a b =,原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 【答案】B 【解析】 【分析】根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的27x +和5x,进而得出等式. 【详解】设甲乙经过x 日相逢,可列方程:2175x x++=. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两人所走路程所占百分比解题关键. 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<【答案】D 【解析】利用a是关于x的一元二次方程(x-m)(x-n)+1=0的根得到(a-m)(a-n)=-1<0,进而判断出m<a<n,同理判断出m<b<n,即可得出结论.【详解】解:∵a是关于x的一元二次方程(x-m)(x-n)+1=0的根,∴(a-m)(a-n)+1=0,∴(a-m)(a-n)=-1<0,∵m<n,∴m<a<n,同理:m<b<n,∵a<b,∴m<a<b<n.故选:D.【点睛】此题主要考查了一元二次方程的解的定义,不等式的性质,判断出(a-m)(a-n)<0是解本题的关键.二、填空题11.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .【答案】110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数为___________.【答案】5【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中5是出现次数最多的,故众数是5;故答案为:5.【点睛】本题考查了众数的定义,能够熟记众数的定义是解答本题的关键,难度不大.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.【答案】16【解析】【分析】由平行四边形的性质得出BO=DO ,AO=CO=12AC=4,由含30°角直角三角形的性质得出OB ,即可得出结果.【详解】解:∵▱ABCD 的对角线AC 与BD 相交于点O ,∴BO=DO ,AO=CO=12AC=4, ∵∠BOC=120°,∴∠AOB=180°-∠BOC=180°-120°=60°,∵AB ⊥AC ,∴∠BAO=90°,∠ABO=30°,∴OB=2AO=2×4=8, ∴BD=2OB=2×8=16, 故答案为:16.【点睛】本题考查了平行四边形的性质、平角、含30°角的直角三角形的性质等知识;熟练掌握平行四边形的性质是解题的关键.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.【答案】40°【解析】【分析】设∠A=3k ,∠ABC=5k ,∠BCD=6k ,根据圆内接四边形的性质得到k=20°,求得∠A=60°,∠ABC=5k=100°,∠D=80°,根据三角形的内角和即可得到结论.【详解】解:∵∠A :∠ABC :∠BCD=3:5:6,设∠A=3k ,∠ABC=5k ,∠BCD=6k ,∵∠A+∠BCD=180°,∴3k+6k=180°,∴k=20°,∴∠A=60°,∠ABC=5k=100°,∴∠D=80°,∴∠P=180°-∠A-∠D=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质,三角形的内角和,熟练掌握圆内接四边形的性质是解题的关键. 15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0k y k x=≠的图像上,当ABC ∆的面积最小时,的值__________.【答案】-3【解析】【分析】当等边三角形ABC 的边长最小时,△ABC 的面积最小,点A ,B 分别在反比例函数y=1x图象的两个分支上,则当A 、B 在直线y=x 上时最短,即此时△ABC 的面积最小,根据反比例函数图象的对称性可得OA=OB ,设OA=x ,则AC=2x ,x ,根据等边三角形三线合一可证明△AOE ∽△OCF ,根据相似三角形面积比等于相似比的平方可得结论.【详解】解:根据题意当A 、B 在直线y=x 上时,△ABC 的面积最小,函数y=1x图象关于原点对称, ∴OA=OB ,连接OC ,过A 作AE ⊥y 轴于E ,过C 作CF ⊥y 轴于F ,∵△ABC 等边三角形,∴AO ⊥OC ,∴∠AOC=90°,∠ACO=30°,∴∠AOE+∠COF=90°,设OA=x ,则AC=2x ,,∵AE ⊥y 轴,CF ⊥y 轴,∴∠AEO=∠OFC=∠AOE+∠OAE=90°,∴∠COF=∠OAE ,∴△AOE ∽△OCF ,∴221()3AOE OCF S OA S OC ===, ∵顶点A 在函数y=1x 图象的分支上, ∴S △AOE =12, ∴S △OCF =32, ∵点C 在反比例函数y=k x (k≠0)图象上, ∴k=-3,故答案为-3.【点睛】本题考查了综合运用反比例函数图象上点的坐标特征,反比例函数图象关于原点对称,相似三角形的判定与性质及等边三角形等知识点,难度不大,属于中档题.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来. 【答案】31x -≤<,数轴见解析.【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:127112x x -≤⎧⎪⎨+<⎪⎩①② 解不等式①,得3x ≥-解不等式②,得1x <不等式组的解集在数轴上表示为:∴不等式组的解集为:31x -≤<.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.【答案】证明见解析【解析】【分析】根据菱形的性质得出AD=CD,进而利用全等三角形的判定和性质解答即可.【详解】解:∵四边ABCD是菱形,∴AD=CD,∵AE=CF,∴AD-AE=CD-CF,即DE=DF,∵∠D=∠D,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE.【点睛】此题考查菱形的性质,关键是根据全等三角形的判定和性质解答.18.先化简,再求值:11221xxx x⎛⎫÷-+⎪++⎝⎭,其中2x=.【答案】12x;2.【解析】【分析】分式的混合运算,先做括号里面的,然后再做除法进行化简,然后将x的值代入计算即可.【详解】解:11221 xxx x⎛⎫÷-+⎪++⎝⎭=(1)(1)1 2211 x x xx x x+-⎡⎤÷+⎢⎥+++⎣⎦=211() 2211 x xx x x-÷++++=212(1)x x x x ++ =12x当2x =时,原式=12=422. 【点睛】本题考查分式的混合运算及二次根式的化简,掌握运算法则正确计算是解题关键.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE AD AC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.【答案】(1)作图见解析;(2)2【解析】【分析】(1)在AB 的右侧作∠ADE=∠B ,则DE ∥BC ,故AE AD AC AB=; (2)依据∠A=∠A ,∠ADE=∠B ,即可得到△ADE ∽△ABC ,再根据相似三角形的性质,即可得出DE 的长.【详解】解:(1)如图,点E 就是所求作的点.(2)∵∠A=∠A ,∠ADE=∠B ,∴△ADE ∽△ABC ,∴2()ADEABC S DE S BC = ,即21()69DE =. 解得:DE=2.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________;(2)若点,,在同一直线上,求tan ABA '∠的值.【答案】(15π;(251-. 【解析】【分析】(1)由题意可知点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长,然后用勾股定理求得BD 的长,再利用弧长公式求解即可;(2)由AB=m ,根据平行线的性质列出比例式求出m 的值,根据正切的定义求出tan ∠BA′C ,根据∠ABA′=∠BA′C 解答即可.【详解】解:(1)由题意可知,点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长, ∴连接'BD B D ,,当m=1时,AB=1,在矩形ABCD 中,AD=BC=2∴在Rt △ABD 中,225BD AB AD =+= ∴此时点所经过的路径的长为9055=1802ππ 5π. (2)由题意AB=m ,则CD=m ,A′C=m+2,∵AD∥BC,∴'''C D A DBC A C=,即222mm=+,解得,151m=,251m=-(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C=51'2512BCA C==-+,∴tan∠51 -,【点睛】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.21.某印刷厂打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表:消耗墨盒数22 23 24 25打印机台数 1 4 4 1(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?【答案】(1)910;(2)每台应统一配23盒墨更合算【解析】【分析】(1)直接利用概率公式求解即可;(2)分别求出购买23盒墨,24盒墨的费用即可判断.【详解】解:(1)因为10台打印机正常工作五年消耗的墨盒数不大24的台数为1+4+4=9,所以10台打印机正常工作五年消耗的墨盒数不大24的频率为910, 故可估计10台打印机正常工作五年消耗的墨盒数不大24的概率为910;(2)每台应统一配23盒墨更合算,理由如下:10台打印机五年消耗的墨盒数的平均数为:110414212323.510x ⨯+⨯+⨯+⨯=+= (盒), 若每台统一配买盒墨,则这台打印机所需费用为:23×150×10+(23.5-23)×220×10=35600(元); 若每台统一配买盒墨,则这台打印机所需费用为:24×150×10=36000(元). 因35600<36000,所以每台应统一配23盒墨更合算.【点睛】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【答案】(1)y=-10x 2+320x-2200;(2)销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【解析】【分析】(1)根据总利润=单件利润×销售量列出函数解析式即可;(2)把y=-10x 2+320x-2200化为y=-10(x-16)2+360,根据二次函数的性质即可得到结论.【详解】解:(1)y=(x-10)[100-10(x-12)=(x-10)(100-10x+120)=-10x 2+320x-2200;(2)y=-10x 2+320x-2200=-10(x-16)2+360,∴12≤x≤15时,∵a=-10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,∴当x=15时,y 取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点睛】本题考查的是二次函数的应用、掌握二次函数的性质是解题的关键.23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,45CD =求O 半径的长.【答案】(1)证明见解析;(2)5【解析】【分析】(1)连接CE ,依据题意和圆周角定理求得△ABC 是等腰直角三角形,然后根据圆周角定理和等腰三角形三线合一的性质求解即可;(2)连接DO 并延长,交CE 于点M ,交O 于点G ,利用三角形外角的性质求得2=EAC ACD AOD ∠=∠∠,从而判定DG ∥AE ,得到90DMC AEC ∠=∠=,从而根据垂径定理可得EM=CM ,根据三角形中位线定理可求132OM AE ==,然后设圆的半径为x ,根据勾股定理列方程求解即可. 【详解】解:连接CE∵BC 与O 相切∴∠ACB=90°∵45ABC ∠=︒∴45ABC CAB ∠=∠=︒∴CA=CB又∵以AC 为直径的O 交边AB 于点,∴∠CEA=90° ∴根据等腰三角形三线合一的性质可知,CE 是底边AB 的中线∴AE=BE(2)连接DO 并延长,交CE 于点M ,交O 于点G 由(1)可知,∠CEA=90°∵2=EAC ACD AOD ∠=∠∠∴DG ∥AE∴90DMC AEC ∠=∠=∴EM=CM∴在△AEC 中,132OM AE == 设圆的半径为x ,在Rt △OMC 中,2223CM x =-在Rt △DMC 中,222(45)(3)CM x =-+∴22223(45)(3)x x -=-+,解得5x =或8x =-(负值舍去)∴O 半径的长为5.【点睛】本题考查切线的性质,圆周角定理,垂径定理的应用,题目难度不大,但有一定的综合性,正确添加辅助线利用勾股定理列方程求解圆的半径是解题关键.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -.(1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x =①求,所满足的数量关系式;②当OP=OA 时,求线段PN 的长度.【答案】(1)(12,0);(2)①3p a =;②. 【解析】【分析】(1)利用待定系数法,将()1,0A -,点()0,P p -,2a p =代入函数解析式,求得b p =,从而求得函数解析式及对称轴,然后根据数轴上的对称性求得点B 的坐标;(2)①由抛物线的对称轴求得12b a-=,求得2b a =-,然后将点()1,0A -,点()0,P p -代入函数解析式求得p 与a 的数量关系;②由OP=OA 时,分情况讨论当P (0,1)或(0,-1),求得p 的值,从而确定二次函数和一次函数解析式,然后求其交点坐标,利用勾股定理求PN 的长度. 【详解】解:(1)将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩当2a p =时,可得20p b p --=,解得:b p =∴此时抛物线解析式为:22y px px p =+-,抛物线对称轴为1224p x p =-=-⨯ 设B 点坐标为(x ,0) ,则此时1124x -+=-,解得:12x = ∴B 点坐标为(12,0) (2)①将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩有题意可知:12b a-=,则2b a =- ∴(2)0a a p ---=,解得3p a =②当OP=OA 时,P (0,1)或(0,-1)当P (0,1)时,-p=1,即p=-1,则3=-1a ,解得13a =- ∴此时抛物线解析式为:212133y x x =-++ 又∵直线y x m =-+与抛物线交于P N ,两点∴一次函数解析式为:1y x =-+ 由此2121331y x x y x ⎧=-++⎪⎨⎪=-+⎩,解得01x y =⎧⎨=⎩或5-4x y =⎧⎨=⎩ ∴此时P (0,1)),N (5,-4)∴=当P (0,-1)时,-p=-1,即p=1,则3=1a ,解得13a = ∴此时抛物线解析式为:212133y x x =-- 又∵直线y x m =-+与抛物线交于P N ,两点 ∴一次函数解析式为:1y x =-- 由此2121331y x x y x ⎧=--⎪⎨⎪=--⎩,解得01x y =⎧⎨=-⎩或10x y ⎧⎨⎩=-= ∴此时P (0,-1)),N (-1,0)∴=∴综上所述,PN的长度为.【点睛】本题考查二次函数与一次函数的综合,掌握函数的图像性质,利用数形结合思想解题是关键.。
最新人教版中考数学仿真模拟考试卷含答案一、单选题1.2的相反数是()A.2B.C.﹣2D.﹣2.下列运算正确的是()A.a6÷a2=a3B.3a2b﹣a2b=2C.(﹣2a3)2=4a6D.(a+b)2=a2+b23.设直线是函数(,,是实数,且)图象的对称轴,则正确的结论是().A.若,则B.若,则C.若,则D.若,则4.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠2=25°,那么∠1的度数是()A.30°B.25°C.20°D.15°5.数据70、71、72、73的标准差是()A.B.2C.D.6.已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.7.将一个直角三角形三边扩大3倍,得到的三角形一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上三种情况都有可能8.下图是由7个相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.9.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB=2,∠B=60时,AC的长是()A.B.C.D.10.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题11.已知直线:和直线:,其中k为不小于2的自然数.当、3、4,,2018时,设直线、与x轴围成的三角形的面积分别为,,,,,则__________.12.如图,AD是△ABC的中线,△ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.13.在一个不透明的盒子中装有个除颜色外完全相同的球,这个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在左右,则的值大约为___.14.分解因式:2x2-12xy+18y2=__________.15.不等式组的解集是_________.16.数据70700用科学计数法可表示为___________________.用四舍五入法,50.2462≈__________(精确到0.01).三、解答题17.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC =2S△A′BC,求所有满足条件的抛物线L′的表达式.18.张老师为了解学生课前预习的情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)张老师一共调查了名同学?(2)C类女生有名,D类男生有名;(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好都是男同学的概率.19.无锡火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往徐州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A型货箱的节数为x (节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.13-的相反数是( ) A. 13 B. 13- C. 3 D. -32.下列图形中,不是轴对称图形的是( )A. B.C. D.3.结果为a 2的式子是( )A. a 6÷a 3B. a 4·a -2C. (a -1)2D. a 4-a 2 4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角 5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <y B. x >y C. x≤y D. x≥y6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.7.函数13xyx+=-中自变量x取值范围是()A. x≥B. x≠3C. x≥且x≠3D. 1x<-8.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 39.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,则⊙O的半径为()A. 5 cmB. 4 cmC. 3 cmD. 2 cm10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 111.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A 2 B. 3 C. 5 D. 612.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示为 .14.因式分解:34a a -=_______________________.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.16.如图,已知双曲线(0)k y x x=>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.三、解答题17.计算:1011()(3)2cos 45221π---+-+- 18.解方程:11322x x x-=---. 19.我校数学社团成员想利用所学知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 直径,AE ⊥CD 交CD 的延长线于点E ,DA 平分∠BDE . ⑴求证:AE 是⊙O 的切线;⑵若AE =4cm ,CD =6cm ,求AD 的长.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:脐橙品种 A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(百元) 12 16 10(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.答案与解析一、选择题1.13-的相反数是()A. 13B.13- C. 3 D. -3【答案】A 【解析】试题分析:根据相反数的意义知:13-的相反数是13.故选A.【考点】相反数.2.下列图形中,不是轴对称图形的是( )A. B.C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点睛】本题考查轴对称的定义,牢记定义是解题关键.3.结果为a2的式子是()A. a6÷a3B. a4·a-2C. (a-1)2D. a4-a2【答案】B【解析】【分析】根据同底数幂的乘除法以及幂的乘方公式,即可求得答案.【详解】解:A. a 6÷a 3=633a a -=,错误; B. a 4·a -2= a 4-2=2a ,正确;C. (a -1)2=2a -,错误;D .a 4-a 2≠a 2,错误.故选B .【点睛】本题考查整式的乘法,涉及的知识点有同底数幂的乘除法以及幂的乘方,熟练掌握整式乘法的运算法则是解题的关键.4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <yB. x >yC. x≤yD. x≥y【答案】B【解析】 【详解】解:根据题意得,他买黄瓜每斤平均价是302050x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱 则302050x y +>2x y + 解之得,x >y .所以赔钱的原因是x >y .故选B .6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.【答案】C【解析】根据浮力的知识,铁块露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.因为小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度. 故选C .7.函数1x y +=x 的取值范围是( ) A. x ≥B. x ≠3C. x ≥且x ≠3D. 1x <-【答案】C【解析】【详解】解:根据被开方数为非负数和分母不分0列不等式:10{30x x +≥-≠, 解得:x ≥且x ≠3.故选C .【点睛】本题考查函数自变量的取值范围.8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 3【答案】A【解析】【分析】本题可先求出a 的值,再代入方差的公式即可.【详解】∵3、6、a 、4、2的平均数是5,∴a=10, ∴方差22222211[35651054525]40855S =-+-+-+-+-=⨯=()()()()(). 故选A . 【点睛】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数. 9.如图,⊙O 是△ABC 的外接圆,∠C =30°,AB =2 cm ,则⊙O 的半径为( )A. 5 cmB. 4 cmC. 3 cmD. 2 cm【答案】D【解析】【分析】 连接OA 、OB ,根据一条弧所对的圆周角等于它所对的圆心角的一半,可知△OAB 是等边三角形,即可求得⊙O 的半径OA=OB=AB=2.【详解】解:如图:连接OA 、OB ,则OA 、OB 即为半径,∵∠C=30°,∴∠AOB=60°,又∵OA=OB,∴△OAB为等边三角形,且AB=2 cm,∴OA=OB= AB=2 cm.故选D.【点睛】本题考查圆周角与三角形的综合运用,熟练掌握圆周角定理,作出辅助线是解题的关键.10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出四边形AEDF是平行四边形,故①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;如果AD平分∠BAC,通过等量代换可得∠EAD=∠EDA,可得平行四边形AEDF的一组邻边相等,即可得到四边形AEDF是菱形,故③正确;由AD⊥BC且AB=AC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,故④正确;进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA∴四边形AEDF是平行四边形,①正确;若∠BAC=90°∴平行四边形AEDF为矩形,②正确;若AD平分∠BAC∴∠EDA=∠FAD又DE∥CA,∴∠EAD=∠EDA,∴AE=DE.∴平行四边形AEDF为菱形,③正确;若AD⊥BC,AB=AC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,④正确;故选A.【点睛】本题考查四边形与三角形结合的相关知识,熟练掌握平行四边形、矩形、菱形的判定定理是解答本题的关键.11.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A. 2B. 3C. 5D. 6【答案】D【解析】【分析】根据∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO△COD,进而可以证明AP=CO,即可解题.【详解】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD,∴∠APO=∠COD,在△APO和△COD中A CAPO CODOD OP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APO △COD (AAS ),即AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为6.【点睛】本题是全等三角形与旋转的综合题型,理解题意,找出全等的三角形,再通过代换求得答案是解题的关键.12.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④【答案】B【解析】【分析】 根据抛物线的开口方向可以判断a 与0的关系,由抛物线与y 轴交点判断c 与0的关系,然后根据对称轴以及抛物线与x 轴交点情况进行推理,进而得到结论. 【详解】解:∵抛物线的开口向上,∴a 0>当x=0时,可得c 0<,∵对称轴x=- 02b a<,∴a 、0b b >同号,即,∴abc <0,故①正确;当x=1时,即a++c=2故②正确;当x=-1时,a-+c 0<,又a++c=2,∴a+c=2-,将上式代入a-+c 0<,即2-2b 0<,∴b 1>.故④错误;∵对称轴x=- 12b a >-, 解得 2b < a , 因为b 1>, ∴a 12>, 故③正确.故选B .【点睛】本题是二次函数图像的综合题型,掌握二次函数的定义,对称轴等相关知识是解题的关键,是中考的必考点.二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示 .【答案】9.5×710【解析】【分析】实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n 的形式时,其中1≤|a|<10,n 为比整数位数少1的数,而且a×10n (1≤|a|<10,n 为整数)中n 的值是易错点.【详解】解:根据题意95 000 000=9.5×107. 故答案为:9.5×107. 【点睛】本题考查科学计数法,在a×10n 中,a 的整数部分只能取一位整数,且n 的数值比原数的位数少1,95 000 000的数位是8,则n 的值为7.14.因式分解:34a a -=_______________________.【答案】(2)(2)a a a +-【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a -=-=+-【点睛】本题考查因式分解,掌握因式分解方法是关键.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.【答案】76【解析】【分析】仔细观察可发现规律:第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2,然后按此公式求得上下底,再利用面积公式计算面积就行了.【详解】解法①:从图中可以看出,第一个黑色梯形的上底为1,下底为3,第2个黑色梯形的上底为5=1+4,下底为7=1+4+2,第3个黑色梯形的上底为9=1+2×4,下底为11=1+2×4+2,则第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2, ∴第10个黑色梯形的上底=1+(10﹣1)×4=37,下底=1+(10﹣1)×4+2=39, ∴第10个黑色梯形面积S 10=12×(37+39)×2=76. 解法②根据图可知:S 1=4,S 2=12,S 3=20,以此类推得Sn =8n ﹣4,S 10=8×10﹣4=76.【点睛】本题是找规律题,找到第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2是解题的关键.16.如图,已知双曲线(0)k y x x =>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.【答案】2【解析】【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值. 【详解】解:∵双曲线(0)k y x x =>经过矩形OABC 边AB 中点 设F (x ,y ),E (a ,b ),那么B (x ,2y ),∵点E 在反比例函数解析式上,∴S △COE =12ab=12k , ∵点F 在反比例函数解析式上, ∴S △AOF =12xy=12k ,即xy=k ∵S 四边形OEBF =S 矩形ABCO -S △COE -S △AOF ,且S 四边形OEBF =2,∴2xy-12k-12xy=2, ∴2k-12k-12k=2, ∴k=2.故答案为:2.【点睛】本题的难点是根据点F 的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.三、解答题17.计算:101()(3)2cos 45221π--+-+-【答案】-2.【解析】【分析】原式利负指数幂法则,零指数幂,特殊角的三角函数,分母有理化,进行计算即可解答【详解】原式=2(21)12--+++=-2. 【点睛】此题考查了零指数幂,负整数指数幂,三角函数,解题关键在于掌握运算法则18.解方程:11322x x x-=---. 【答案】无解 【解析】【详解】解:方程两边同乘(2)x -,得1(1)3(2)x x =----.解这个方程,得2x =.检验:当2x =时,20x -=,所以2x =是增根,原方程无解.解分式方程步骤:去分母转化成一元一次方程即可,但需要特别注意,需要检验方程的根是否是原方程的增根19.我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)535-米 【解析】【分析】设AP=NP=x ,在Rt △APM 中可以求出3,在Rt △BPM 中,∠MBP=30°,求得x ,利用MN =MP -NP 即可求得答案.【详解】解:∵在Rt △APN 中,∠NAP =45°,∴PA =PN ,在Rt△APM中,tan∠MAP=MP AP,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=3x,在Rt△BPM中,tan∠MBP=MP BP,∵∠MBP=30°,AB=5,∴33=3x5x+,∴x=52,∴MN=MP-NP=3x-x=5352-.答:广告牌的宽MN的长为5352-米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析 (3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已”建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD交CD的延长线于点E,DA平分∠BDE.⑴求证:AE是⊙O的切线;⑵若AE=4cm,CD=6cm,求AD的长.【答案】(1)证明见解析;(2)AD=25.【解析】【分析】(1)根据等边对等角得出∠ODA=∠OAD,进而得出∠OAD=∠EDA,证得EC∥OA,从而证得AE⊥OA,即可证得AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE=4cm,根据垂径定理得出DF=12CD=3cm,在Rt△ODF中,根据勾股定理即可求得⊙O的半径,得出ED,根据勾股定理即可求得AD.【详解】(1)证明:连结OA.∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°∴四边形AOFE是矩形.∴OF=AE=4cm. EF=OA,又∵OF⊥CD,∴DF=12CD=3cm.在Rt△ODF中,22OF DF=5cm,即⊙O的半径为5cm,∴EF=OA=5cm,∴ED=EF-DF=5-3=2cm,在Rt△AED中,【点睛】此题考查等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用,熟练掌握性质定理和作辅助线是解题的关键.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值【答案】(1)y=20-2x;(2)详见解析;(3)当装运A种脐橙4车、B种脐橙12车、C种脐橙4车时,获利最大,最大利润为14.08万元.【解析】【分析】(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数≥4;(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.【详解】解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20-x-y),则有:6x+5y+4(20-x-y)=100整理得:y=-2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,-2x+20,x.由题意得42204 xx⎧⎨-+⎩解得:4≤x≤8因x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)设利润为W(百元)则:W=6x×12+5(-2x+20)×16+4x×10=-48x+1600∵k=-48<0∴W的值随x的增大而减小.要使利润W最大,则x=4,故选方案一W最大=-48×4+1600=1408(百元)=14.08(万元)答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.【点睛】解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;【答案】(1)34;(2)2∶3;(3)3<a≤6.【解析】【分析】(1)由题意可知,t =1秒时,BN=BM=1,又因为PM ⊥BC ,所以△ANB ∽△APM ,根据相似三角形的性质,即可求得PM ;(2)根据题意,当△PNB ∽△PAD 时,对应边之比等于高之比,即NB BM AD AM=,进而可以求出时间t 以及相似比;(3)设BN=t ,则0t 3≤≤,则BM=t ,再用t 表示出PM ,就可以用t 表示出两个梯形的面积,求出t 的值,进而求出a 的取值范围.【详解】解:(1)当t =1时,MB =1,NB =1,AM =4-1=3,∵PM ∥BN ,∴△ANB ∽△APM , ∴PM AM NB AB=, ∴PM =34. (2)作出△PNB 和△PAD ,则BM 和AM 分别是它们的高,若△PNB ∽△PAD ,则NB BM AD AM =, 即35t t t=-,解得t=2, 即t =2时,使得△PNB ∽△PAD ,∴相似比为2∶3.(3)∵PM ⊥AB ,CB ⊥AB ,∠AMP =∠ABC ,△AMP ∽△ABN , ∴PM AM NB AB =,即PM a t t a-=, ∴()PM t a t a -=,∴()QP 3t a t a -=-,当梯形PMBN 与梯形PQDA 的面积相等时,即()()()()()332222t a t t a t a t t t a QP AD DQ MP BN BM a ⎛⎫-⎛⎫-+- ⎪-+ ⎪++⎝⎭⎝⎭===, 化简得t =66a a +, ∵t3, ∴636a a≤+,则a6, ∴3a6.【点睛】本题是矩形中动点与相似三角形的的综合问题,难度一般,根据所求正确的找出相似三角形,再利用对应边成比例是解题的关键,是中考的重要考点.24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.【答案】(1)y=-x2+2x+3;(2)存在,N(2,3),N′(-2,3);(3)点Q不在抛物线L2上.【解析】【分析】(1)由于是平移,所以抛物线的开口方向和开口大小不变,先求出L1与x轴的交点,再求出L2与x轴的交点,即可求出抛物线L2的解析式;(2)因为是平移,根据平移的性质,连接各组对应点的线段平行且相等,故存在符合条件的点N,即可求得N 点坐标;(3)先设出L1上的点(x1,y1),进而求得关于原点的对称点(-x1,-y1),再将(-x1,-y1)代入函数L2的解析式,成立则在图像上,不成立则不在图像上.【详解】解:(1)令y=0,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0) ,∵抛物线L1向右平移2个单位得抛物线L2,∴C(-1,0),D(3,0),a=-1,∴抛物线L 2为y =-(x +1)(x -3) .即y =-x 2+2x +3.(2)存在;令x =0,得y =3,∴M(0,3),∵抛物线L 2是L 1向右平移2个单位得到的,∴点N(2,3)在L 2上,且MN =2,MN ∥AC ,又∵AC =2,∴MN =AC ,∴四边形ACNM 为平行四边形.同理,L 1上的点N′(-2,3)满足N′M ∥AC ,N′M =AC ,∴四边形ACMN′是平行四边形.∴N(2,3)或N′(-2,3)即所求.(3)设P(x 1,y 1)是L 1上任意一点(y 1≠0),则点P 关于原点的对称点Q(-x 1,-y 1),且211123y x x =--+,将点Q 的横坐标代入L 2,得:2111123Q y x x y y =--+=≠-∴点Q 不在抛物线L 2上.【点睛】本题目是二次函数的综合题型,涉及的知识点有平移、平行四边形的判定、对称等相关知识,是中考的常考点,同学们需要熟练掌握解题技巧方能快速解题.。
人教版中考数学模拟考试题(附参考答案)(时间120分钟满分120分)姓名_______成绩________一、选择题(在下列各题的四个选项中,只有一项符合题意.本题共10个小题,每小题3分,共30分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是()A.a2+a3=a5B.(a+b)2=a2+b2C.(2ab2)3=6a3b6D.(x-a)(x-b)=x2-(a+b)x+ab3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.不等式2x-1≥x+1,x+8≤4x-1)的解集是()A.x≥3 B.x≥2 C.2≤x≤3 D.空集5.已知三角形的两边长是方程x2-5x+6=0的两个根,则该三角形的周长L的取值范围是()A.1<L<5 B.2<L<6 C.5<L<9 D.6<L<106.反比例函数y=2x的两个点为(x1,y1),(x2,y2),且x1>x2,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7.在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F在BC边上,连接DE,DF,EF.则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等的是()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A.13B.23C.19D.129.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要()A.12 120元B.12 140元C.12 160元D.12 200元二、填空题(本题共6个小题,每小题3分,共18分)11.因式分解:x3-9x=__________.12.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.13.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图象上,则菱形的面积为__________.14.从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6,a,b,9的中位数是__________.15.从-1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是________.16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E =CF,③DF=FC,④AD=CE,⑤A1F=CE.。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的相反数是()A. 2B.22C. 2D. -22.中国领空面积约为1260000平方公里,将1260000用科学记数法表示为( )A. 0.126×107B. 1.26×106C. 126×105D. 126×1043.下列运算正确是()A. (m3)2=m5B. m3 m 2=m6C. m2-1=(m+1)(m-1)D. (m+1)2=m2+14.图中几何体的主视图是()A. B. C. D.5.如图,把一个直角三角尺的直角顶点放在直尺的一边上,则∠1与∠2之间关系一定成立的是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1=∠2D. ∠1+∠2=90°6.某中学12个班级参加春季植树,其中2个班各植60棵,3个班各植100棵,4个班各植120棵,另外三个班分别植70棵、80棵、90棵,下列叙述正确的是()A. 中位数是100,众数是100B. 中位数是100,众数是120C. 中位数90,众数是120D. 中位数是120,众数是1007.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A. 是中心对称图形,但不是轴对称图形B. 是轴对称图形,但不是中心对称图形C. 既是中心对称图形,又是轴对称图形D. 既不是中心对称图形,又不是轴对称图形8.我国古代数学著作《九章算术》卷七有下列问题:”今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-= D.3487y y-+=9.矩形ABCD的边BC上有一动点E,连接AE、DE,以AE、DE为边作▱AEDF.在点E从点B移动到点C 的过程中,▱AEDF的面积()A. 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变10.抛物线24(0)y ax x c a经过点(x0,y0),且x0满足关于x的方程20ax+=,则下列选项正确的是( )A. 对于任意实数x都有y≥ y0B. 对于任意实数x都有y≤y0C. 对于任意实数x都有y>y0D. 对于任意实数x都有y<y0二、填空题:本大题共6小题11.分解因式:ab a-=______.12.如图,等边三角形ABC的边长为2,DE是它的中位线则DE的长为________.13.我市某校开展”我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图在抽查的学生中,喜欢足球运动的人数为________.14.一个扇形圆心角为 120°,半径为 2,则这个扇形的弧长为____.15.小艾在母亲节给妈妈送了一束鲜花,出差在外爸爸问小艾送了些什么花.小艾调皮地说:”考考你,花束是由象征爱的康乃馨、玫瑰和百合组成.康乃馨的支数比玫瑰多,但比百合的两倍少,玫瑰的支数比百合多.”请帮小艾爸爸算一算,这束花的总支数至少为________.16.如图,在平面直角坐标系中,平行四边形OABC 的对角线交于点D ,双曲线y=k x (x >0)经过C 、D 两点,双曲线y=8x(x >0)经过点B ,则平行四边形OABC 的面积为________.三、解答题:本大题共9小题,解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.计算: 2312sin 30(1)--+-___________.18.先化简,再求值:(x +21x x +)÷(x+1),其中x=3. 19.如图,ABC ADE ,均是顶角为42°的等腰三角形,BC 、DE 分别是底边.图中ACE △可以看成由哪个三角形通过怎样的旋转得到的?证明这两个三角形全等.20.已知边长为a 的正方形ABCD 和∠O=45°.(1)以∠O 为一个内角作菱形OPMN ,使OP=a (要求:尺规作图,不写作法,保留作图痕迹)(2)设正方形ABCD 的面积为S 1,菱形OPMN 的面积为S 2,求12S S 的值. 21.如图,AB 是⊙O 的直径,D 是BC 的中点,弦DH ⊥AB 于点E ,交弦BC 于点F ,AD 交BC 于点G ,连接BD ,求证:F 是BG 的中点.22.实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如下图(图象由线段OA 与部分双曲线AB 组成) .国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于”酒后驾驶”,不能驾车上路.(1)求部分双曲线AB 的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班请说明理由.23. “五月杨梅已满林,初疑一颗值千金 “,莆田杨梅核小,果味酸甜适中,既可直接食用,又可加工成杨梅干、酱、蜜饯等,还可酿酒,止渴、生津、助消化等功能,深受当地老百姓喜爱.杨梅采摘当天食用口感最好,隔天食用口感较差,某水果超市计划六月份订购莆田杨梅,每天进货量相同,进货成本每斤4元,售价每斤6元,未售出的杨梅降价转卖给蜜饯加工厂,以每斤2元的价格当天全部处理完,根据往年销售经验,每天需求量与当天平均气温有关,为了确定六月份的订购计划,统计了前三年六月份日平均气温数据,如下表所示:日平均气温(°C) t<25 25≤t<30 t≥30天数(天) 18 36 36杨梅每天需求量(斤) 200 300 500(1)以前三年六月份日平均气温为样本,估计今年六月份日平均气温不低于25℃的概率;(2)该超市六月份莆田杨梅每天的进货量为x斤(300≤x≤500,试以”平均每天销售利润y元”为决策依据,说明当x为何值时,y取得最大值.24.如图,在四边形ABCD中,AC⊥AD,∠ABC=∠ADC.在BC延长线上取点E,使得DC=DE.(1)如图1,当AD∥BC时,求证:①∠ABC=∠DEC;②CE=2BC;(2)如图2,若tan∠ABC=43,BE=10,设AB=x,BC=y,求y与x的函数表达式.25.已知抛物线F1:y=x2-4与抛物线F2:y=ax2-4a(a≠1).(1)直接写出抛物线F1与抛物线F2有关图象的两条相同性质;(2)抛物线F1与x轴交于A、B两点(点B在点A的右边),直线BC交抛物线F1于点C(点C与点B不重合),点D是抛物线F2的顶点.①若点C为抛物线F1的顶点,且点C为ABD△的外心,求a的值;②设直线BC的解析式为y=kx+b,若k+2a=4,则直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.答案与解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的.的相反数是( )A. 2B.C.D.【答案】D【解析】【分析】根据一个数的相反数就是在这个数前面添上”-”号,即可解答.的相反数是,故选:D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上”-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.中国的领空面积约为1260000平方公里,将1260000用科学记数法表示为( )A. 0.126×107 B. 1.26×106 C. 126×105 D. 126×104 【答案】B【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 1.26a =,1260000整数位数是7位,所以6n =∴1260000=61.2610⨯ .故选:B .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.下列运算正确的是( )A. (m 3)2=m 5B. m 3⋅ m 2=m 6C. m 2-1=(m+1)(m -1)D. (m+1)2=m 2+1 【答案】C【解析】【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,运用平方差公式因式分解以及完全平方公式逐一判断即可.【详解】】解:A.(m3)2=m6,故本选项不合题意;B.m3⋅m2=m5,故本选项不合题意;C.m2-1=(m+1)(m-1),故本选项符合题意;D.(m+1)2=m2+2m+1,故本选项不合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法、幂的乘方以及运用公式法因式分解,熟记幂的运算法则和乘法公式是解答本题的关键4.图中几何体的主视图是()A. B. C. D.【答案】A【解析】【分析】根据从正面看到的图是主视图求解即可.【详解】解:A.是主视图,符合题意;B.不是该几何体的三视图,故不符合题意;C.是左视图,故不符合题意;D.俯视图,故不符合题意;故选A.【点睛】本题考查了三视图的知识,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.5.如图,把一个直角三角尺的直角顶点放在直尺的一边上,则∠1与∠2之间关系一定成立的是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1=∠2D. ∠1+∠2=90°【分析】如图,根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°计算即可得解.【详解】∵直尺对边互相平行,∴∠3=∠1,∵∠3+∠2=180°-90°=90°,∴∠1+∠2=90°.故选:D.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.6.某中学12个班级参加春季植树,其中2个班各植60棵,3个班各植100棵,4个班各植120棵,另外三个班分别植70棵、80棵、90棵,下列叙述正确的是()A. 中位数是100,众数是100B. 中位数是100,众数是120C. 中位数是90,众数是120D. 中位数是120,众数是100【答案】B【解析】【分析】将数据按从小到大的顺序排列,再根据众数和中位数的概念即可得到结果.【详解】解:根据题意,将这组数据重新排列为60、60、70、80、90、100、100、100、120、120、120、120,最中间位置的数据为第6个和第7个数据,都为100,因此中位数为1001001002+=,120出现了4次,出现次数最多,所以这组数据的众数为120,故选:B.【点睛】本题主要考查了找一组数据中的众数和中位数,解题的关键是掌握众数和中位数的概念.7.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A. 是中心对称图形,但不是轴对称图形B. 是轴对称图形,但不是中心对称图形C. 既是中心对称图形,又是轴对称图形D. 既不是中心对称图形,又不是轴对称图形【分析】先根据已知条件OA=OB=OC=OD,可知四边形ABCD的对角线相等且互相平分,得出四边形ABCD是矩形,然后根据矩形的对称性,得出结果.【详解】解:如图所示:∵四边形ABCD的对角线相交于点O且OA=OB=OC=OD,∴OA=OC,OB=OD;AC=BD,∴四边形ABCD是矩形,∴四边形ABCD既是轴对称图形,又是中心对称图形.故选:C.【点睛】本题主要考查了矩形的判定及矩形的对称性.对角线相等且互相平分的四边形是矩形,矩形既是轴对称图形,又是中心对称图形.8.我国古代数学著作《九章算术》卷七有下列问题:”今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-= D.3487y y-+=【答案】A【解析】【分析】设有x人,物品的价格为y元,根据所花总钱数不变列出方程即可.【详解】设有x人,物品的价格为y元,根据题意,可列方程:8374x yx y-=⎧⎨+=⎩,故选A.【点睛】本题考查了由实际问题抽象出二元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.矩形ABCD 的边BC 上有一动点E ,连接AE 、DE ,以AE 、DE 为边作▱AEDF .在点E 从点B 移动到点C 的过程中,▱AEDF 的面积( )A 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变【答案】D【解析】【分析】 过点E 作EG ⊥AD 于G ,证四边形ABEG 是矩形,得出EG=AB ,平行四边形AEDF 的面积=2△ADE 的面积=2×12AD×EG=AD×AB=矩形ABCD 的面积,即可得出结论. 【详解】解:过点E 作EG ⊥AD 于G ,如图所示:则∠AGE=90°,∵四边形ABCD 是矩形,∴∠ABC=∠BAD=90°, ∴四边形ABEG 是矩形,∴EG=AB ,∵四边形AEDF 是平行四边形,∴平行四边形AEDF 的面积=2△ADE 的面积=2×12AD×EG=AD×AB=矩形ABCD 的面积, 即▱AEDF 的面积保持不变;故选:D .【点睛】本题考查了矩形的性质与判定、平行四边形的性质以及三角形面积等知识;熟练掌握矩形的性质,证出▱AEDF 的面积=矩形ABCD 的面积是解题的关键.10.抛物线24(0)y ax x c a 经过点(x 0,y 0),且x 0满足关于x 的方程20ax +=,则下列选项正确的是( )A. 对于任意实数x 都有y≥ y 0B. 对于任意实数x 都有y≤y 0C. 对于任意实数x 都有y > y 0D. 对于任意实数x 都有y <y 0【答案】A 【解析】 【分析】由0x 满足关于的方程20ax +=,可得出点0(x ,0)y 是二次函数24y ax x c =++的顶点坐标,再由0a >利用二次函数的性质即可得出对于任意实数都有0y y ,此题得解. 【详解】解:0x 满足关于的方程20ax +=,2x a, 点0(x ,0)y 是二次函数24y ax x c =++的顶点坐标.0a >,对于任意实数都有0y y . 故选:.【点睛】本题考查了二次函数的性质,牢记”当0a >时,顶点是抛物线的最低点”是解题的关键.二、填空题:本大题共6小题11.分解因式:ab a -=______. 【答案】()1a b - 【解析】 【分析】确定多项式每项的公因式为a ,直接提取即可. 【详解】解:1(1)ab a a b a a b -=⋅-⋅=- 故答案为()1a b -【点睛】本题考查提公因式法因式分解,确定公因式是解答此题的关键,确定公因式的方法为公因式的系数是多项式各项系数的最大公约数;字母取各项都含有的相同字母,相同字母的指数取次数最低的. 12.如图,等边三角形ABC 边长为2,DE 是它的中位线则DE 的长为________.【答案】1【解析】【分析】根据三角形中位线定理解答.【详解】解:∵DE是△ABC的中位线,∴112DE BC==,故答案为:1.【点睛】本题考查是中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13.我市某校开展”我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图在抽查的学生中,喜欢足球运动的人数为________.【答案】30【解析】【分析】根据排球的人数以及百分比,即可得到被调查的人数;再由总人数×20%即可;【详解】解:总人数=21150 14%人,喜欢足球的人数=150×20%=30(人)故答案为30.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百14.一个扇形的圆心角为120°,半径为2,则这个扇形的弧长为____.【答案】4 3π【解析】【分析】根据弧长公式可得.【详解】根据题意,扇形的弧长为12024 1803ππ⋅⋅=.故答案为43π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.小艾在母亲节给妈妈送了一束鲜花,出差在外的爸爸问小艾送了些什么花.小艾调皮地说:”考考你,花束是由象征爱的康乃馨、玫瑰和百合组成.康乃馨的支数比玫瑰多,但比百合的两倍少,玫瑰的支数比百合多.”请帮小艾爸爸算一算,这束花的总支数至少为________.【答案】12【解析】【分析】设康乃馨有x支,百合有y支,玫瑰有m支,根据题意得到不等式组,确定百合的最少支数即可解答.【详解】解:设康乃馨有x支,百合有y支,玫瑰有m支,根据题意可得:2y m x y ,且x,y,m为正整数,所以y的最小值为3,则m=4,x=5,所以总支数至少为3+4+5=12(支),故答案为:12.【点睛】本题考查了不等式的应用,解题的关键是找出不等关系,确定百合的最少支数.16.如图,在平面直角坐标系中,平行四边形OABC的对角线交于点D,双曲线y=kx(x>0)经过C、D两点,双曲线y=8x(x>0)经过点B,则平行四边形OABC的面积为________.【解析】 【分析】根据平行四边形的性质得到OD BD =,设的坐标是4(2,)m m ,得到的坐标是2(,)m m ,的纵坐标是4m求得22kmm,把4y m =代入2y x =得到的横坐标是2m,根据平行四边形的面积公式即可得到结论. 【详解】解:平行四边形OABC 的对角线交于点,OD BD ∴=,设的坐标是4(2,)m m,D ∴的坐标是2(,)m m,的纵坐标是4m22kmm,把4y m =代入2y x =得:2m x =,即的横坐标是:2m, BCOA ,平行四边形OABC 的面积BC 点的纵坐标4(2)62m mm,故答案为:6.【点睛】本题考查了平形四边形的性质,反比例函数系数的几何意义,根据点的坐标表示出BC 的长度是解题的关键.三、解答题:本大题共9小题,解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.计算:212sin 30(1)-+-___________.1 【解析】 【分析】先根据取绝对值、特殊角的三角函数以及乘方的知识进行化简,再进行计算即可.212sin 30(1)-+-1-2×12+11-1+1=31-故答案为31-.【点睛】本题考查了取绝对值、特殊角的三角函数以及乘方等知识,灵活运用相关基础知识是解答本题的关键.18.先化简,再求值:(x +21x x+)÷(x+1),其中x=3. 【答案】14,3x x + 【解析】 【分析】直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:原式22111x x x x2(1)11x x x1x x+=, 当3x =时,原式3+1433. 【点睛】本题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.如图,ABC ADE ,均是顶角为42°的等腰三角形,BC 、DE 分别是底边.图中ACE △可以看成由哪个三角形通过怎样的旋转得到的?证明这两个三角形全等.【答案】图中的△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的,证明见解析 【解析】 【分析】先根据图形得出△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的,再根据SAS 判定△ACE ≌△ABD 即可.【详解】解:图中的△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的, 证明:∵△ABC 和△ADE 都是顶角为42°的等腰三角形,∴AB =AC ,∠BAC =∠DAE =42°,AD =AE , ∴∠BAD =∠CAE , 在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD (SAS ).【点睛】本题主要考查了旋转的性质以及全等三角形的判定,解题的关键是熟练掌握旋转的性质. 20.已知边长为a 的正方形ABCD 和∠O=45°.(1)以∠O 为一个内角作菱形OPMN ,使OP=a (要求:尺规作图,不写作法,保留作图痕迹) (2)设正方形ABCD 的面积为S 1,菱形OPMN 的面积为S 2,求12S S 的值. 【答案】(1)见解析;(2)2 【解析】 【分析】(1)根据四边相等的四边形是菱形画出图形即可. (2)分别求出正方形,菱形的面积即可解决问题. 【详解】解:(1)如图,菱形ONMP 即为所求.(2)如图,过点N 作NH ⊥OP 于H .∵AB=ON=OP=a ,∴正方形ABCD 的面积S 1=a 2, 在Rt △ONH 中, ∵∠NOH=45°,ON=a ,2sin 452NH ON a ∴=⋅︒=, ∴菱形ONMP 的面积2222S a =, 2122222S a S a ∴==. 【点睛】本题考查作图-复杂作图,菱形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.如图,AB 是⊙O 的直径,D 是BC 的中点,弦DH ⊥AB 于点E ,交弦BC 于点F ,AD 交BC 于点G ,连接BD ,求证:F 是BG 的中点.【答案】见解析 【解析】 【分析】根据圆周角定理证明∠CBD=∠HDB ,推出FB=FD ,再根据余角的性质证明∠FDG=∠FGD ,推出FD=FG 即可解决问题.【详解】证明:∵AB 是直径,AB ⊥DH ,∴BH DB=,∵D是BC的中点,∴BH DB CD==,∴∠CBD=∠HDB,∴FB=FD,∵AB是直径,∴∠ADB=90°,∴∠FDG+∠FDB=90°,∠FGD+∠FBD=90°,∴∠FDG=∠FGD,∴FD=FG,∴FG=FB,即点F是BG的中点.【点睛】本题考查圆周角定理,垂径定理,以及余角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如下图(图象由线段OA与部分双曲线AB组成) .国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于”酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)18032y xx≥;(2)不能,见解析【解析】【分析】(1)首先求得线段OA所在直线的解析式,然后求得点的坐标,代入反比例函数的解析式即可求解;(2)把.20x .代入反比例函数解析式可求得时间,结合规定可进行判断.【详解】解:(1)依题意,直线OA 过1(4,20),则直线OA 的解析式为80y x =,当32x =时,120y =,即3(2A ,120),设双曲线的解析式为k y x=,将点3(2A ,120)代入得:180k =,1803()2y x x ∴=; 由180y x=得当20y =时,9x =, 从晚上22:30到第二天早上7:00时间间距为8.5小时,8.59<,第二天早上7:00不能驾车去上班.【点睛】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点,熟练相关性质是解题的关键. 23. “五月杨梅已满林,初疑一颗值千金 “,莆田杨梅核小,果味酸甜适中,既可直接食用,又可加工成杨梅干、酱、蜜饯等,还可酿酒, 止渴、生津、助消化等功能,深受当地老百姓喜爱.杨梅采摘当天食用口感最好,隔天食用口感较差,某水果超市计划六月份订购莆田杨梅,每天进货量相同,进货成本每斤4元,售价每斤6元,未售出的杨梅降价转卖给蜜饯加工厂,以每斤2元的价格当天全部处理完,根据往年销售经验,每天需求量与当天平均气温有关,为了确定六月份的订购计划,统计了前三年六月份日平均气温数据,如下表所示:(1)以前三年六月份日平均气温为样本,估计今年六月份日平均气温不低于25℃的概率;(2)该超市六月份莆田杨梅每天的进货量为x 斤(300≤x≤500,试以”平均每天销售利润y 元”为决策依据,说明当x 为何值时,y 取得最大值. 【答案】(1)45;(2)每天的进货量300斤,利润最大值为520元 【解析】 【分析】1)用前三年六月份日平均气温不低于25C ︒的天数除以前三年六月份的总天数即可; (2)当300500x 时,分25t <;2530t;30t 三种情况,分别表示出每天的利润,再根据加权平均数的定义求出平均每天销售利润与之间的函数解析式,然后根据一次函数的性质求解即可. 【详解】解:(1)估计今年六月份日平均气温不低于25C ︒的概率为:36364905; (2)由题意,300500x ,若25t <,则利润为62002(200)48002x x x ; 若2530t,则利润为63002(300)412002x xx ;若30t ,则利润为642x x x ;(8002)18(12002)363620.464090x x xyx,0.40-<,y ∴随的增大而减小,当300x =时,有最大值,此时0.4300640520y.答:每天的进货量为300斤,平均每天销售的利润取得最大值为520元.【点睛】本题考查了概率,一次函数的应用,频数分布表,加权平均数,分类讨论的思想等知识点,求出与之间的函数解析式是本题的难点.24.如图,在四边形ABCD 中,AC ⊥AD ,∠ABC=∠ADC .在BC 延长线上取点E ,使得DC=DE . (1)如图1,当AD ∥BC 时,求证:①∠ABC=∠DEC ;②CE=2BC ; (2)如图2,若tan ∠ABC=43,BE=10,设AB=x ,BC=y ,求y 与x 的函数表达式.【答案】(1)①证明见解析;②证明见解析;(2)12252510563y x x ⎛⎫=-<< ⎪⎝⎭. 【解析】 【分析】(1)①先根据平行线的性质可得DCE ADC ∠=∠,再根据等腰三角形的性质可得DCE DEC ∠=∠,从而可得ADC DEC ∠=∠,然后根据等量代换即可得证;②如图1(见解析),先根据平行线的判定、平行四边形的判定可得四边形ABCD 是平行四边形,再根据平行四边形的性质可得AD BC =,然后根据矩形的判定与性质AD CH =,从而可得CH BC =,最后根据等腰三角形的三线合一即可得证;(2)如图2(见解析),先根据等腰三角形的三线合一可得2CE HE =,再根据矩形的判定与性质可得,90AN MH MAN =∠=︒,然后根据相似三角形的判定与性质可得AM AC AN AD=,又分别在Rt ABM 和Rt ACD △中,利用正切函数值求出433,,555AM x BM x AN x ===,最后利用线段的和差求出BH 、HE 、CE 的长,据此利用BC BE CE =-即可得.【详解】(1)①//AD BCDCE ADC ∴∠=∠DC DE =DCE DEC ∴∠=∠ADC DEC ∴∠=∠ABC ADC ∠=∠ABC DEC ∴∠=∠;②ABC DEC DCE ∠=∠=∠//AB CD ∴//AD BC四边形ABCD 是平行四边形AD BC ∴=如图1,作DH BE ⊥于点HAC AD ⊥四边形ACHD 是矩形AD CH ∴=CH BC ∴=DC DE =且DH BE ⊥22CE CH BC ∴==;(2)如图2,作DH BE ⊥于点H由等腰三角形的三线合一得:2CE HE =作AN DH ⊥于点N ,AM BE ⊥于点M四边形AMHN 是矩形,90AN MH MAN ∴=∠=︒90MAC NAC ∴∠+∠=︒AC AD ⊥90NAD NAC ∴∠+∠=︒MAC NAD ∠=∠在ACM △和ADN △中,90MAC NAD ANC AND ∠=∠⎧⎨∠=∠=︒⎩ ACM ADN ∴~AM AC AN AD∴= 在Rt ABM 中,4tan 3AM ABC BM ∠== 设4=AM a ,则3BM a =5AB a x ∴=== 解得15a x = 43,55AM x BM x ∴== 在Rt ACD △中,4tan tan 3AC ADC ABC AD =∠=∠= 4453x AN ∴= 解得35AN x = 336555BH BM MH BM AN x x x ∴=+=+=+= 10BE =6105HE BE BH x ∴=-=- 122205CE HE x ∴==- 121210(20)1055BC BE CE x x ∴=-=--=- 即12105y x =- 又0BC BE <<,即010BC <<252563x ∴<< 故y 与x 的函数表达式为12252510()563y x x =-<<.【点睛】本题考查了等腰三角形的判定与性质、矩形的判定与性质、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造直角三角形和相似三角形是解题关键.25.已知抛物线F 1:y=x 2-4与抛物线F 2:y=ax 2-4a(a≠1).(1)直接写出抛物线F 1与抛物线F 2有关图象的两条相同性质;(2)抛物线F 1与x 轴交于A 、B 两点(点B 在点A 的右边),直线BC 交抛物线F 1于点C(点C 与点B 不重合),点D 是抛物线F 2的顶点.①若点C 为抛物线F 1的顶点,且点C 为ABD △的外心,求a 的值; ②设直线BC 解析式为y=kx+b ,若k+2a=4,则直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)对称轴为y 轴,顶点的横坐标为0;(2)①252+或252-,②过定点,定点坐标为(-2,0) 【解析】【分析】(1)根据两个抛物线的b 都为0,即可得抛物线的对称轴都是y 轴,顶点横坐标都是0;(2)①根据题意得出C(0,-4),D(0,-4a),根据抛物线F 1与x 轴交于A ,B 两点,求出A(-2,0),B(2,0),从而可得AC=5a>0时和当a<0吋两种情况分析即可;②设C(x 1,y 1),先求出BC 的解析式,然后求出C 的坐标,再求出直线CD 的解析式即可得得出直线CD 恒过定点.【详解】(1)两个抛物线的b 都为0,∴抛物线的对称轴都是y 轴,顶点横坐标都是0;(2)①点C ,D 分别为抛物线F 1,F 2的顶点,故C(0,-4),D(0,-4a),抛物线F1与x轴交于A,B两点,则A(-2,0),B(2,0),故AC=25,当a>0时,如图1,依题意得,CD=AC=25,则OD=OC+CD=4+25,即4a=4+25,解得:a=252+;当a<0吋,如图2,依题意得:CD=AC=25则OD=CD-OC=25,即-4a=5,解得a=252-,故a 的值为:252+或252-; ②设C(x 1,y 1),依题意得,直线BC 的解析式为y=kx+b ,过点B (2,0), 则b=-2k ,故BC 的解析式为y=kx-2k ,由224y kx k y x =-=-⎧⎨⎩, 得x 2-kx+2k-4=0,则x 1=k-2,y=x 2-4=(k-2)2-4=k 2-4k ,即C 的坐标是(k-2,k 2-4k ),直线CD 的解析式为y=mx+n 过点D(0,-4a), 则()2424n a m k n k k =--+=-⎧⎪⎨⎪⎩, 则m(k-2)-4a=k 2-4k ,又k+2a=4,则a=42k -, 解得428m k n k =-=-⎧⎨⎩, 又点C 异于点B ,故k-4≠0,故CD 的解析式为y=(k-4)x+2k-8,即y=(k-4)(x+2),故直线CD 恒过点(-2,0) .【点睛】本题考查了二次函数的性质,求一次函数解析式,结合知识点灵活分析是解题关键.。
2024年最新人教版初三数学(下册)模拟考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数的平方根是()A. ±1B. ±2C. ±4D. ±82. 若a、b是实数,且a<b,则下列各式中一定成立的是()A. |a|<|b|B. a²<b²C. a<bD. a+1<b+13. 已知x、y是实数,且x²+y²=0,则x²y²的值是()A. 0B. 1C. 1D. 无法确定4. 若x、y是实数,且x²+y²=1,则x²y²的最大值是()A. 1B. 2C. 3D. 45. 若a、b是实数,且a²+b²=1,则a²+2ab+b²的值是()A. 0B. 1C. 2D. 36. 若a、b是实数,且a²+b²=1,则a²+2ab+b²的最大值是()A. 1B. 2C. 3D. 47. 若a、b是实数,且a²+b²=1,则a²2ab+b²的最小值是()A. 0B. 1C. 2D. 38. 若a、b是实数,且a²+b²=1,则a²2ab+b²的最大值是()A. 0B. 1C. 2D. 39. 若a、b是实数,且a²+b²=1,则a²+2ab+b²的最小值是()A. 0B. 1C. 2D. 310. 若a、b是实数,且a²+b²=1,则a²2ab+b²的最小值是()A. 0B. 1C. 2D. 3二、填空题(每题3分,共30分)11. 若一个数的立方根是±3,则这个数的平方根是_________。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 12.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b23.已知反比例函数y=kx(k≠0)图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.1695.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣17.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B 2400元、2300元C. 2200元、2200元D. 2200元、2300元8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π9.货车行驶25 千米与小车行驶35 千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A. 253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+10.如图已知点A(1,4),B(2,2)是反比例函数y=4x图象上的两点,动点P(x,0)在x轴上运动,当线段AP=BP时,点P的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0)二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.12.因式分解:a4﹣2a3+a2=_____.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.14.四边形ABCD是某个圆内接四边形,若∠A=100°,则∠C= .15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x值是_____.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|﹣18|+(12)﹣2(2)先化简,再求值:(1111x x-+-)÷21x-,其中x=2.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.答案与解析一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 1【答案】D【解析】【分析】根据负数的偶次方是正数可以解答.【详解】(﹣1)2020=1,故选:D.【点睛】本题考查了有理数的乘方运算,知道-1的奇次方是-1,-1的偶次方是1,是常考题型.2.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b2【答案】C【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.(﹣2a2)4=16a8,故本选项不合题意;B.a3与a不是同类项,所以不能合并,故本选项不合题意;C.a5÷a2=a3,正确;D.(a+b)2=a2+2ab+b2,故本选项不合题意.故选:C.【点睛】本题考查幂运算、合并同类项以及完全平方公式,掌握相关的公式以及运算法则是解题关键.3.已知反比例函数y=kx(k≠0)的图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.【答案】B【解析】【分析】根据反比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【详解】解:∵反比例函数kyx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点睛】本题考查反比例函数与一次函数的图象特点,根据图象象限分布判断参数正负性以及根据参数正负性判断象限分布是解题关键.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.169【答案】A 【解析】试题分析:∵△ABC∽△DEF,△ABC与△DEF的相似比为34,∴△ABC与△DEF对应中线的比为34,故选A.考点:相似三角形的性质.5.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°【答案】A【解析】【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣1【答案】C【解析】【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【详解】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.【点睛】本题考查分式值为零的条件,掌握分式值为零的条件是分子为零,分母不为零是解题关键.7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B. 2400元、2300元C. 2200元、2200元D. 2200元、2300元【答案】A【解析】【分析】众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π【答案】C【解析】【分析】根据题意画出图形,由等边三角形的周长为6,可得BC=2,设点D为BC边与内切圆的切点,连接AD,则AD⊥BC,可得BD=DC=12BC=1,再根据勾股定理可得OB2﹣OD2=BD2=1,再根据S圆环=S外接圆﹣S内切圆即可得结论.【详解】解:如图,∵等边三角形ABC的周长为6,∴BC=2,设点D为BC边与内切圆的切点,连接AD ,则AD ⊥BC , ∴BD =DC =12BC =1, 在Rt △BOD 中,根据勾股定理,得 OB 2﹣OD 2=BD 2=1, ∴S 圆环=S 外接圆﹣S 内切圆 =OB 2π﹣OD 2π =BD 2π =π. 故选:C .【点睛】本题考查三角形的外接圆与内切圆,掌握正三角形的外接圆与内切圆半径求算是解题关键. 9.货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( ) A.253520x x =- B.253520x x=-C.253520x x =+ D.253520x x=+【答案】C 【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式. 解:根据题意,得253520x x =+. 故选C .10.如图已知点A(1,4),B(2,2)是反比例函数y =4x的图象上的两点,动点P(x ,0)在x 轴上运动,当线段AP =BP 时,点P 的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0) 【答案】A 【解析】 【分析】根据平面直角坐标系中距离公式得到:(x﹣1)2+42=(x﹣2)2+22,求解即可.【详解】解:∵点A(1,4),B(2,2),动点P(x,0)在x轴上运动,∴2AP=(x﹣1)2+42,2BP=(x﹣2)2+22,∵AP=BP,∴(x﹣1)2+42=(x﹣2)2+22,解得x=﹣92,∴点P的坐标是(﹣92,0),故选:A.【点睛】本题考查距离公式,掌握平面直角坐标系中距离公式是解题关键.二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.【答案】6.7×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:将670 000用科学记数法表示为6.7×105m.故答案为:6.7×105【点睛】本题考查科学记数法,确定,a n的值是解题关键.12.因式分解:a4﹣2a3+a2=_____.【答案】a2(a﹣1)2.【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=a2(a2﹣2a+1)=a2(a﹣1)2.故答案为:a2(a﹣1)2.【点睛】本题考查因式分解,掌握提公因式法和公式法因式分解解题关键.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.【答案】24【解析】【详解】解:x2﹣14x+48=0,则有(x-6)(x-8)=0解得:x=6或x=8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为24.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.14.四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C= .【答案】80°.【解析】试题分析:已知四边ABCD是圆的内接四边形,∠A=100°,根据圆内接四边形的对角互补可得∠C=180°﹣100°=80°.考点:圆内接四边形的性质.15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x的值是_____.【答案】4或﹣1.【解析】【分析】先根据新定义得出一元二次方程,求出方程的解即可.【详解】解:∵x☆2=6,∴x2﹣3x+2=6,x2﹣3x﹣4=0,即(x﹣4)(x+1)=0,x﹣4=0,x+1=0,x1=4,x2=﹣1,故答案为:4或﹣1.【点睛】本题考查定义新运算与一元二次方程,正确理解定义新运算是解题关键.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.【答案】12.【解析】【分析】用红球的个数除以球的总个数即可得.【详解】解:从袋中随机摸出一个球是红球的概率为31= 3+2+12故答案为:12.【点睛】本题考查概率求算,掌握利用概率公式求算是解题关键.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.【答案】13【解析】试题分析:过点A作AE⊥BC,然后根据∠BAD的正切值以及角度之间的关系和AD、CD的长度大小求出AC的长度.考点:三角函数的应用.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.【答案】6.【解析】【分析】观察发现,每四个一组,个位数字循环,然后用2016除以4,正好能够整除,所以与第四个数的个位数字相同.【详解】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,所以,每四个一组,个位数字循环,∵2016÷4=504,∴22016的个位数字与24的个位数字相同是:6.故答案为:6.【点睛】本题考查了尾数特征,利用有理数的乘法考查了数字变化规律的问题,观察得到”每四个数一组,个位数字循环”是解题的关键.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|(12)﹣2(2)先化简,再求值:(1111x x -+-)÷21x -,其中x .【答案】(1)5;(2)11x +,﹣1. 【解析】【分析】(1)根据零指数幂、特殊角的三角函数值、绝对值和负整数指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.详解】解:(1)(π﹣2016)0+6cos45°﹣|(12)﹣2=1+6×2﹣+4=﹣+4=5;(2)(1111x x -+-)÷21x - =1(1)(1(1)1)2x x x x x -•--+-+ =1)12(1x x x --+-- =2()21x --+ =11x +,当x 时,﹣1.【点睛】本题考查分式的化简求值、零指数幂、特殊角的三角函数值、绝对值和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?【答案】(1)25,90°,图详见解析;(2)200;(3)15000【解析】【分析】(1)用100%减去3天、4天、5天、7天所占百分比可得a,利用360°乘以所占百分比可得该扇形所对圆心角的度数,求出总数,再乘以所占百分比可得6天的人数,再补图即可;(2)由(1)的计算可得答案;(3)利用样本估计总体的方法计算即可.【详解】解:(1)a=100%﹣30%﹣15%﹣10%﹣20%=25%,360°×25%=90°,调查人数:20÷10%=200(人),200×25%=50(人),如图所示:故答案为:25;90°;(2)由(1)可得一共调查了200名学生;(3)20000×(30%+20%+25%)=15000(人),答:”活动时间不少于5天”的大约有15000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.【答案】详见解析【解析】分析】根据SSS可证明△ABD≌△CDB,则可得出结论.【详解】证明:∵AB=CD,BC=DA,BD=DB,∴△ABD≌△CDB(SSS),∴∠A=∠C.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解本题的关键.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?【答案】渔船继续向正东方向航行是安全的,理由详见解析.【解析】【分析】作CH⊥AB于H.利用解直角三角形,求出PH的值即可判定; 【详解】解:作CH⊥AB于H.∵∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣∠CAB﹣∠ABC=30°,∵∠BAC=∠BCA=30°,∴BA=BC=60海里,在Rt△CBH中,CH=CB•sin60°=60×33海里),∵350,∴渔船继续向正东方向航行是安全的.【点睛】本题考查的是解直角三角形的应用——方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?【答案】(1)这种产品应将售价定为54元或56元;(2)销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【解析】【分析】(1)设每千克水果应降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)设每天获得的利润为W,销售价格为x,列出W与x的函数关系式即可解答.【详解】解:(1)设每千克水果应降价x元,根据题意,得:(60﹣x﹣40)(100+10x)=2240,解得:x1=4,x2=6,答:这种产品应将售价定为54元或56元;(2)设每天获得利润为W,销售价格为x,则W=(x﹣40)[100+10(60﹣x)]=(x﹣40)(﹣10x+700)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是根据题目中的等量关系列出方程和函数关系式.24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.【答案】见解析【解析】【分析】(1)根据△PAB与△PCA的对应边成比例,夹角相等证得结论.(2)欲证明AP是⊙O切线,只需证得∠PAC=90°.【详解】证明:(1)∵PC=50,PA=30,PB=18,∴PC505PA305,PA303PB183 ====.∴PC PA PA PB=.又∵∠APC=∠BPA,∴△PAB∽△PCA.(2)∵AC是⊙O的直径,∴∠ABC=90°.∴∠ABP=90°.又∵△PAB∽△PCA,∴∠PAC=∠ABP.∴∠PAC=90°.∴PA是⊙O的切线.。
2022-2023学年全国中考专题数学中考模拟考试总分:127 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1. 计算的结果是( )A.B.C.D. 2.如图,在中,边的高是( )A.B.C.D. 3. 大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:写成,=;写成=;写成=.按这个方法请计算=( )A.B.⋅(−a)a 3a 3−a 3a 4−a 4△ABC BC CECDACAF81110−218929200−20+976831310000−2320+352−3124081990C.D.4. 的算术平方根是 A.B.C.D.5. 如果过一个多边形的一个顶点的对角线有条,则该多边形是( )A.九边形B.八边形C.七边形D.六边形6. 据统计,年长春市接待旅游人数约人次,这个数用科学记数法表示为( )A.B.C.D. 7.如图是由个相同的小正方体组成的几何体,那么这个几何体的俯视图是( ) A.B.241030249()−33±38162016670000006700000067×1066.7×1056.7×1076.7×1086C. D.8. 如图,在▱中,,是上两点,,连接,,,.添加一个条件,使四边形是矩形,这个条件是( )A.B.C.D.9. 如果 ,那么 的值为 ( )A.B.C.D.以上都不对10. 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料.右图是一段弯形管道,其中’,中心线的两条弧的半径都是,这段变形管道的展直长度约为(取)( )ABCD M N BD BM =DN AM MC CN NA AMCN MB =MOOM =AC 12BD ⊥AC∠AMB =∠CND2x =3y (−)⋅y x (−)x y2−1−23−32∠O =∠O=90∘1000mm π3.14A.B.C.D.11. 在下列图形中,由条件不能得到的是 A. B. C. D.12. 已知,则函数=和的图象大致是( )A.9280mm6280mm6140mm457mm∠1+∠2=180∘AB //CD ()<0<k 1k 2y x −1k 1y =k 2xB. C. D.13. 下列说法中:①若点在直线上,则点一定在线段上;②两点之间,直线最短;③已知,则点是线段的中点;④两点确定一条直线;⑤连接两点的线段叫两点间的距离.其中正确的个数有( )A.个B.个C.个D.个14. 甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击次,成绩(单位:环)统计如表:甲乙丙丁平均数方差如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选( )A.甲B.乙C.丙D.丁15. 一个两位数,个位数字与十位数字的和是,如果将个位数字与十位数字对调后所得的新数比原数大,那么原来的两位数为( )A.C AB C AB AC =BC C AB 3210109.79.69.69.70.250.250.270.289954B.C.D.16. 平行四边形两邻边长分别为和,它们的夹角(锐角)为 ,则平行四边形中较短的对角线的长为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 一个质地均匀的小正方体,个面分别标有数字,,,,,.若随机投掷一次小正方体,则朝上一面的数字是的概率为________.18. 如图,是的直径,已知,,是的上的两点,且,是上一点,则的最小值是________.19. 已知如图,每个小正方形的边长都是,、、、…都在格点上,、、、…都是斜边在轴上,且斜边长分别为、、、…的等腰直角三角形.若的三个顶点坐标为、、,则依图中规律,则的坐标为________.277245ABCD 2360∘ABCD 7–√26−−√3161121551AB ⊙O AB =2C D ⊙O +=BC ˆBD ˆ23AB ˆM AB MC +MD 1A 1A 2A 3△A 1A 2A 3△A 3A 4A 5△A 5A 6A 7x 246△A 1A 2A 3(2,0)A 1(1,−1)A 2(0,0)A 3A 19三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20.先化简,再求值:,然后从的范围内选取一个合适的整数作为的值代入求值. 21. 科技是第一生产力.科技深刻地改变了中国人的生活方式,更为企业插上了腾飞的翅膀.机器人分拣、配送货物已经成为很多大型企业仓储的首选.某公司为了了解下属仓库机器人的工作状况,随机抽取台进行日分拣货物测试,并将它们的测试结果数据进行整理、描述和分析(日分拣货物的重量单位:吨)部分信息如下:等级重量(吨)频率请结合上述信息完成下列问题:________, ________, ________;请补全频数分布直方图;①在扇形统计图中,“”等级对应的圆心角的度数是________;②这次调查的中位数落在________等级内;(填“”“”“”或“”)若该公司仓库有 台机器人,根据抽样调查结果,请估计该公司日分拣货物超过吨的机器人的台数.22. 为了求的值,可令,则,因此,,所以.仿照以上推理计算:的值________.(−)÷a +4a +1a +1a 4a −2−1a 2−2<a ≤2a 20A20≤x <25a B25≤x <30b C30≤x <35D 35≤x <40c(1)a =b =c =(2)(3)C A B C D (4)200301+2+++⋯+22232100m =1+2+++⋯+222321002m =2+++⋯+222321012m −m =−12101m =−121011+3+++⋯+32333n23.小明家今年种植的草莓喜获丰收,采摘上市天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量(单位:千克)与上市时间(单位:天)的函数关系如图所示,草莓的销售价(单位:元/千克)与上市时间(单位:天)的函数关系如图所示.设第天的日销售额为(单位:元).第天的日销售额为________元;观察图象,求当时,日销售额与上市时间之间的函数关系式及的最大值;若上市第天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克元,马叔叔到市场按照当日的销售价元/千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了.那么,马叔叔支付完来回车费元后,当天能赚到多少元? 24. 如图,是的直径,,分别与相切于点,,交的延长线于点,交的延长线于点,交于点,连接.求证:;若,,求的面积和线段的长. 25. 如图,直线与双曲线相交于和两点,与轴交于点,与轴交于点.(1)求,的值;(2)在轴上是否存在一点,使与相似?若存在求出点的坐标;若不存在,请说明理由.20y x (1)p x (2)x w (1)11w (2)16≤x ≤20w x w (3)1515p 2%20AB ⊙O PA PC ⊙O A C PC AB D DM ⊥PO PO M ⊙O N AN (1)∠MPD =∠MDO (2)PC =6sin ∠PDA =35⊙O MN =mx +n(m ≠0)y 1=(k ≠0)y 2k x A(−1,2)B(2,b)y C x D m n y P △BCP △OCD P26. 如图,是中边的中线,,点为上一点,如果,过作交于点,点是的中点,将绕点顺时针旋转度(其中)后,射线交直线于点.如果的面积为,求的面积(用的代数式表示);当和不重合时,请探究的度数与旋转角的度数之间的函数关系式;写出当为等腰三角形时,旋转角的度数.OC △ABC AB ∠ABC =36∘D OC OD =k ⋅OC D DE //CA BA E M DE △ODE O α<α<0∘180∘OM BC N (1)△ABC 26△ODE k (2)N B ∠ONB y α(3)△ONB α参考答案与试题解析2022-2023学年全国中考专题数学中考模拟一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1.【答案】D【考点】同底数幂的乘法【解析】根据单项式乘单项式的方法先进行相乘,然后按照同底数幂的乘法运算法则进行计算即可.【解答】解:故选.2.【答案】D【考点】三角形的高【解析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【解答】解:从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,所以在中,边上的高是.故选.3.【答案】A【考点】⋅(−a)=−⋅a =−.a 3a 3a 4D △ABC BC AF D有理数的加减混合运算【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】算术平方根【解析】如果一个非负数的平方等于,那么是的算术平方根,根据此定义即可求出结果.【解答】解:∵,∴的算术平方根为.故选.5.【答案】A【考点】多边形的对角线【解析】根据从每一个顶点处可以作的对角线的条数为计算即可得解.【解答】∵过一个多边形的一个顶点的对角线有条,∴多边形的边数为=,∴这个多边形是九边形.6.【答案】Cx a x a =32993B (n −3)66+39【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】这个数用科学记数法表示为.7.【答案】C【考点】简单几何体的三视图【解析】此题暂无解析【解答】解:由个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选.8.【答案】B【考点】矩形的判定【解析】此题暂无解析【解答】a ×10n 1≤|a |<10n n a n ≥1n <1n 67000000 6.7×1076C ABCD解:∵四边形是平行四边形,∴,,∵对角线上的两点,满足,∴,即,∴四边形是平行四边形,由矩形性质得:①矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;②矩形的四个角都是直角;③矩形的对角线相等.,因不能确定原平行四边形的对角线相等,故,不可判定四边形是矩形,,由可得平行四边形对角线相等,故可判定四边形是矩形,,矩形的对角线互相平分但不一定垂直,故不可判定四边形是矩形,,因原题中未给定具体的角的度数,所以不能得出四边形的角的具体度数,故不可判定四边形是矩形,故选.9.【答案】C【考点】分式的化简求值【解析】【解答】解:原式,,,原式.故选.10.【答案】C【考点】弧长的计算【解析】ABCD OA =OC OB =OD BD M N BM =DN OB −BM =OD −DN OM =ON AMCN A ABCD MB =MO AMCN B OM =AC 12AMCN AMCN C AMCN D ∠AMB =∠CND AMCN AMCN B =−×y x x 2y 2=−x y∵2x =3y ∴=x y 32∴=−32C先计算出扇形的弧长再加上直管道的长度即可.【解答】图中管道的展直长度.11.【答案】C【考点】平行线的判定【解析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解:、的对顶角与是同旁内角,它们互补,所以能判定,故本选项不符合题意;、的对顶角与的对顶角是同旁内角,它们互补,所以能判定,故本选项不符合题意;、由条件能得到,不能判定,故本选项符合题意;、的邻补角,所以能判定,故本选项不符合题意.故选.12.【答案】A【考点】反比例函数的图象一次函数的图象【解析】根据反比例函数的图象性质及正比例函数的图象性质可作出判断.【解答】∵,=∴直线过二、三、四象限;双曲线位于一、三象限.13.3000=2×+3000=1000π+3000≈1000×3.14+3000=6140mm 90π×1000180A ∠1∠2AB //CD B ∠1∠2AB //CDC ∠1+∠2=180∘AD //BC AB //CD D ∠1∠BAD =∠2AB //CD C <0<k 1k 2b −1<0C【考点】线段的中点两点间的距离线段的性质:两点之间线段最短直线的性质:两点确定一条直线直线、射线、线段【解析】分别根据线段、直线的性质,两点间距离的定义,线段中点的定义等知识对各选项进行逐一分析即可.【解答】解:①若点在直线上,则点不一定在线段上,可能在线段外,故原说法错误;②两点之间,线段最短,故原说法错误;③若,且,,三点共线,则点是线段的中点,故原说法错误;④两点确定一条直线,故原说法正确;⑤连接两点的线段的长度叫两点间的距离,故原说法错误.综上所述,其中正确的个数有个.故选.14.【答案】A【考点】方差【解析】此题暂无解析【解答】此题暂无解答15.【答案】【考点】一元一次方程的应用——其他问题C AB C AB AB AC =BC A B C C AB 1C此题暂无解析【解答】此题暂无解答16.【答案】A【考点】勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:作于,因为,,所以,,,所以.故选.二、 填空题 (本题共计 3 小题 ,每题3 分 ,共计9分 )17.【答案】【考点】概率公式【解析】此题暂无解析CE ⊥AD E ∠ADC =60∘CD =2DE =1AE =2CE =3–√AC ==(+3–√)222−−−−−−−−−√7–√A 12解:由题意得,共有种情况,则朝上一面的数字是的有种,故朝上一面的数字是的概率为.故答案为:.18.【答案】【考点】圆心角、弧、弦的关系轴对称——最短路线问题【解析】过作于交于,根据垂径定理得到,于是得到,连接交于,则的最小值,过作于,得到,,解直角三角形得到,即可得到结论.【解答】解:过作于交于,∴,∵,∴,∴,连接交于,则的最小值,过作于,∵,∴,,∵,∴,∴,∴的最小值是,故答案为:.19.【答案】6131=3612123–√D DD'⊥AB H ⊙O D'=BD ˆD'B ˆ∠COD'=120∘CD'AB M CD'=MC +MD O ON ⊥CD'N CD'=2NC ∠C =30∘CN =3–√2D DD'⊥AB H ⊙O D'=BD ˆD'B ˆ+=BC ˆBD ˆ23AB ˆ+=BC ˆBD'ˆ23AB ˆ∠COD'=120∘CD'AB M CD'=MC +MD O ON ⊥CD'N OC =OD'CD'=2NC ∠C =30∘OC =AB =112CN =3–√2CD'=3–√MC +MD 3–√3–√(−8,0)规律型:点的坐标【解析】根据相邻的两个三角形有一个公共点列出与三角形的个数与顶点的个数的关系式,然后求出所在的三角形,并求出斜边长,然后根据第奇数个三角形关于直线对称,第偶数个三角形关于直线对称求出,然后写出坐标即可.【解答】解:设到第个三角形顶点的个数为,则,∵当时,,∴是第个三角形的最后一个顶点,∵等腰直角三角形的斜边长分别为、、、…,∴第个等腰直角三角形的斜边长为,由图可知,第奇数个三角形在轴下方,关于直线对称,∴,∴的坐标为.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20.【答案】解:原式.在中,取时,原分式有意义.当时,原式.【考点】分式的化简求值【解析】此题暂无解析【解答】解:原式.在中,取时,原分式有意义.A 19x =1x =2OA 19n y y =2n +12n +1=19n =9A 19924692×9=18x x =1O =−1=8A 19182A 19(−8,0)(−8,0)=⋅=+4a −−2a −1a 2a 2a(a +1)(a +1)(a −1)2(2a −1)a −12a−2<a ≤2a =2a =2===a −12a 2−12×214=⋅=+4a −−2a −1a 2a 2a(a +1)(a +1)(a −1)2(2a −1)a −12a−2<a ≤2a =2==a −12−11当时,原式.21.【答案】,,下图即为补全的频数分布直方图.,因为台,所以该公司日分拣物超过吨的机器人有台.【考点】频数(率)分布直方图中位数扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:由频数分布直方图,知,.因为,所以.故答案为:;;.下图即为补全的频数分布直方图.①在扇形统计图中,“”等级对应的圆心角的度数是.②因为“”等级内的有台,所以中位数落在“”等级内.故答案为:;.a =2===a −12a 2−12×2140.10.50.1(2)108∘B (4)200×=806+2203080(1)a =2÷20=0.1c =10%=0.16÷20=0.3b =1−0.1−0.3−0.1=0.5a =0.1b =0.5c =0.1(2)(3)C ×=360∘620108∘B 10B 108∘B ×=806+2因为台,所以该公司日分拣物超过吨的机器人有台.22.【答案】【考点】规律型:数字的变化类【解析】令,然后两边同时乘,接下来按照例题的方法计算即可.【解答】解:令,则,因此,所以.所以.故答案为:.23.【答案】当时,设与之间的函数关系式为,依题意得解得∴,当时,设与之间的函数关系式为:,依题意得解得∴,(4)200×=806+2203080−13n+12S =1+3+++...+3233320153m =1+3+++⋯+32333n3m =3++++⋯+3233343n+13m −m =−13n+12m =−13n+1m =−13n+12−13n+121980(2)11≤x ≤20y x y =x +k 1b 1{20+=0,k 1b 111+=90,k 1b 1{=−10,k 1=200,b 1y =−10x +20016≤x ≤20p x p =x +k 2b 2{16+=17,k 2b 220+=19,k 2b 2 =,k 212=9,b 2p =x +912=py =(x +9)(−10x +200)1∴,∴当时,随的增大而减小,∴当时,有最大值是元.当时,,,当时,(元),(千克),∴利润为:(元).答:马叔叔当天能赚到元.【考点】待定系数法求一次函数解析式二次函数的应用待定系数法求二次函数解析式二次函数的最值【解析】此题暂无解析【解答】解:由图可得,第天的日销售量为千克,由图可得,第天的销售价格为元/千克,第天的销售价格为元/千克,设第天到第天的销售价格与天数的解析式为,由题意得解得∴当时,,当时,,∴销售价格为元/千克,∴销售额(元).故答案为:.当时,设与之间的函数关系式为,依题意得w =py =(x +9)(−10x +200)12=−5+10x +1800x 2=−5+1805(x −1)216≤x ≤20w x x =16w 680(3)3≤x ≤16p =−x +33y =−10x +200x =15p =−15+33=18y =−10×15+200=5050(1−2%)×18−50×15−20=112112(1)(1)1190(2)3301617316p x p =kx +b {3k +b =30,16k +b =17,{k =−1,b =33,3≤x ≤16p =−x +33x =11p =2222w =90×22=19801980(2)11≤x ≤20y x y =x +k 1b 1{20+=0,k 1b 111+=90,k 1b 1=−10,解得∴,当时,设与之间的函数关系式为:,依题意得解得∴,∴,∴当时,随的增大而减小,∴当时,有最大值是元.当时,,,当时,(元),(千克),∴利润为:(元).答:马叔叔当天能赚到元.24.【答案】证明:,分别与相切于点,,,.,,,,,.解:连接,,如图:{=−10,k 1=200,b 1y =−10x +20016≤x ≤20p x p =x +k 2b 2{16+=17,k 2b 220+=19,k 2b 2 =,k 212=9,b 2p =x +912w =py =(x +9)(−10x +200)12=−5+10x +1800x 2=−5+1805(x −1)216≤x ≤20w x x =16w 680(3)3≤x ≤16p =−x +33y =−10x +200x =15p =−15+33=18y =−10×15+200=5050(1−2%)×18−50×15−20=112112(1)∵PA PC ⊙O A C ∴∠MPD =∠MPA ∠PAO =90∘∵DN ⊥PO ∴∠PMD =90∘∵∠POA =∠DOM ∠PAO =∠PMD ∴∠MPA =∠MDO ∴∠MPD =∠MDO (2)OC ON,分别与相切于点,,,,在中,,,,在中,由勾股定理得:,,,,的面积.在中,由勾股定理得:.在和中,,,,∴,即,,在中,由勾股定理得:.的面积为,线段的长为.【考点】切线的性质相似三角形的性质与判定勾股定理锐角三角函数的定义【解析】左侧图片未给出解析左侧图片未给出解析【解答】证明:,分别与相切于点,,∵PA PC ⊙O A C PC =6∴PA =6∵Rt △PAD sin ∠PDA =35∴=PA PD 35∴PD =10Rt △PAD AD ===8P −P D 2A 2−−−−−−−−−−√−10262−−−−−−−√∴CD =4∴OC =3OD =5∴⊙O S =9πRt △PAO OP ===3O +A A 2P 2−−−−−−−−−−√+3262−−−−−−√5–√Rt △OAP Rt △OMD ∵∠AOP =∠MOD ∠PAO =∠DMO =90∘∴△OAP ∽△OMD =OP OD OA OM =35–√53OM ∴OM =5–√Rt △OMN MN ===2O −O N 2M 2−−−−−−−−−−−√−32()5–√2−−−−−−−−−√∴⊙O 9πMN 2(1)∵PA PC ⊙O A C ∴∠MPD =∠MPA ∠PAO =90∘,.,,,,,.解:连接,,如图:,分别与相切于点,,,,在中,,,,在中,由勾股定理得:,,,,的面积.在中,由勾股定理得:.在和中,,,,∴,即,,在中,由勾股定理得:.的面积为,线段的长为.25.【答案】∵和在双曲线上,∴,解得.∴.∵和在直线上,∴,∴∠MPD =∠MPA ∠PAO =90∘∵DN ⊥PO ∴∠PMD =90∘∵∠POA =∠DOM ∠PAO =∠PMD ∴∠MPA =∠MDO ∴∠MPD =∠MDO (2)OC ON ∵PA PC ⊙O A C PC =6∴PA =6∵Rt △PAD sin ∠PDA =35∴=PA PD 35∴PD =10Rt △PADAD ===8P −P D 2A 2−−−−−−−−−−√−10262−−−−−−−√∴CD =4∴OC =3OD =5∴⊙O S =9πRt △PAOOP ===3O +A A 2P 2−−−−−−−−−−√+3262−−−−−−√5–√Rt △OAP Rt △OMD ∵∠AOP =∠MOD ∠PAO =∠DMO =90∘∴△OAP ∽△OMD =OP OD OA OM =35–√53OM ∴OM =5–√Rt △OMNMN ===2O −O N 2M 2−−−−−−−−−−−√−32()5–√2−−−−−−−−−√∴⊙O 9πMN 2A(−1,2)B(2,b)=(k ≠0)y 2k x k =−1×2=2b b =−1B(2,−1)A(−1,2)B(2,−1)=mx +n(m ≠0)y 1{ −m +n =22m +n =−1解得,∴,的值分别是、;在轴上存在这样的点,理由如下:①如图,过点作交轴于点,∴,∵,∴,②过点作交轴于点,∴,由(1)知,,∴,,∴,∴是等腰直角三角形,∴是等腰直角三角形,∴,∴,∴这样的点有个.即和.【考点】反比例函数综合题【解析】(1)把点、的坐标分别代入反比例函数解析式求得、的值,然后将点、的坐标分别代入一次函数解析式,利用方程组求得它们的值;(2)需要分类讨论:,,由坐标与图形的性质以及等腰直角三角形的性质进行解答.【解答】∵和在双曲线上,∴,解得.∴.∵和在直线上,∴,解得,∴,的值分别是、;在轴上存在这样的点,理由如下:①如图,过点作交轴于点,∴,{m =−1n =1m n −11y P B BP //x y P △PCB ∽△OCD B(2,−1)P(0,−1)B BP'⊥AB y P △BCP'∼△OCD =−x +1y 1C(0,1)D(1,0)OC =OD △OCD △BCP'CP'=PP'=2P'(0,−3)P 2(0,−1)(0,−3)A B k b A B △PCB ∽△OCD △BCP'∼△OCD A(−1,2)B(2,b)=(k ≠0)y 2k x k =−1×2=2b b =−1B(2,−1)A(−1,2)B(2,−1)=mx +n(m ≠0)y 1{−m +n =22m +n =−1{ m =−1n =1m n −11y P B BP //x y P △PCB ∽△OCD B(2,−1)∵,∴,②过点作交轴于点,∴,由(1)知,,∴,,∴,∴是等腰直角三角形,∴是等腰直角三角形,∴,∴,∴这样的点有个.即和.26.【答案】解:∵是中边的中线,的面积为,∴.∵,∴,,∴,且,∴.∵,∴.∵是中边的中线,点是的中点,∴,,∴,且,∴,∴.如图,当时,∵,∴,即,∴.如图,当时,B(2,−1)P(0,−1)B BP'⊥AB y P △BCP'∼△OCD =−x +1y 1C(0,1)D(1,0)OC =OD △OCD △BCP'CP'=PP'=2P'(0,−3)P 2(0,−1)(0,−3)(1)OC △ABC AB △ABC 26=13S △OAC DE //AC △ODE ∼△OCA ∠OEM=∠OAC =()S △ODE S △OAC OD OC2OD =k ⋅OC =13S △ODE k 2(2)△ODE ∼△OCA ===k OE OA OD OC DE AC OC △ABC AB M DE AB =2AO EM =DE 12==OE AB k 2EM AC ∠OEM =∠OAC △OEM ∼△BAC ∠EOM=∠ABC =36∘<α<0∘144∘∠AON=∠B +∠ONB ∠AOE +∠EOM =∠B +∠ONB α+=+y 36∘36∘y =α<α<144∘180∘∵,∴,∵.∴的度数与旋转角的度数之间的函数关系式为当时,若,则,若,则,若,则,∴.当时,若,则,∴.综上,旋转角的度数为,,,.【考点】三角形的中线相似三角形的性质与判定旋转的性质等腰三角形的性质【解析】(1)通过证明,可得,即可求解;(2)通过证明,可得==,分两种情况讨论可求解;(3)分四种情况讨论,由等腰三角形的性质可求解.【解答】解:∵是中边的中线,的面积为,∴.∵,∴,,∴,且,∴.∵,∠BON=∠EOM −∠BOE =−(−α)36∘180∘∠BON=α−144∘∠ONB=∠ABC −∠BON=−(α−)=36∘144∘−α180∘∠ONB y αy ={α,<α<,0∘144∘−α,<α<.180∘144∘180∘(3)<α<0∘144∘OB =ON ∠ABC=∠BNO =36∘=αOB=BN ∠ONB ===α−180∘36∘272∘ON =BN ∠ABC=∠BON =36∘∠ONB=−2×=180∘36∘108∘=α<α<144∘180∘OB=BN ∠ONB=∠NOB =18∘=−α180∘α=162∘α36∘72∘108∘162∘△ODE ∽△OCA =()S △DEO S △OAC OD OC2△OEM ∽△BAC ∠EOM ∠ABC 36∘(1)OC △ABC AB △ABC 26=13S △OAC DE //AC △ODE ∼△OCA ∠OEM=∠OAC =()S △ODE S △OAC OD OC2OD =k ⋅OC =13S △ODE k 2(2)△ODE ∼△OCA ==kOE OD DE∴.∵是中边的中线,点是的中点,∴,,∴,且,∴,∴.如图,当时,∵,∴,即,∴.如图,当时,∵,∴,∵.∴的度数与旋转角的度数之间的函数关系式为当时,若,则,若,则,若,则,∴.当时,若,则,∴.综上,旋转角的度数为,,,.===k OE OA OD OC DE AC OC △ABC AB M DE AB =2AO EM =DE 12==OE AB k 2EM AC ∠OEM =∠OAC △OEM ∼△BAC ∠EOM=∠ABC =36∘<α<0∘144∘∠AON=∠B +∠ONB ∠AOE +∠EOM =∠B +∠ONB α+=+y 36∘36∘y =α<α<144∘180∘∠BON=∠EOM −∠BOE =−(−α)36∘180∘∠BON=α−144∘∠ONB=∠ABC −∠BON=−(α−)=36∘144∘−α180∘∠ONB y αy ={α,<α<,0∘144∘−α,<α<.180∘144∘180∘(3)<α<0∘144∘OB =ON ∠ABC=∠BNO =36∘=αOB=BN ∠ONB ===α−180∘36∘272∘ON =BN ∠ABC=∠BON =36∘∠ONB=−2×=180∘36∘108∘=α<α<144∘180∘OB=BN ∠ONB=∠NOB =18∘=−α180∘α=162∘α36∘72∘108∘162∘。
专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x^3 6x^2 + 9x 1,则f'(x) = ( )A. 3x^2 12x + 9B. 3x^2 12x + 12C. 3x^2 9x + 6D. 3x^2 9x + 92. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解为()A. x = 1 或 x = 1B. x = 1 或 x = 1/2C. x = 1 或 x = 1/2D. x = 1 或 x = 1/23. 设集合A = {x | x^2 3x + 2 = 0},集合B = {x | x^2 2x3 = 0},则A ∩ B = ()A. {1, 2}B. {1, 1}C. {2, 1}D. {1, 3}4. 若等差数列{an}的前n项和为Sn = n^2 + n,则a1 = ()A. 1B. 2C. 3D. 45. 在平面直角坐标系中,点P(2, 3)关于原点的对称点为()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 6)二、判断题(每题1分,共5分)1. 方程x^2 4x + 4 = 0的解为x1 = x2 = 2。
()2. 函数f(x) = x^3 3x^2 + 3x 1在区间(∞, +∞)上单调递增。
()3. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解必定为实数。
()4. 等差数列的前n项和为Sn = n(a1 + an)/2。
()5. 在平面直角坐标系中,点P(2, 3)关于x轴的对称点为P'(2,3)。
()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x^2 + 3x 1,则f'(x) = _______。
2. 方程x^2 4x + 4 = 0的解为x1 = _______,x2 = _______。
3. 等差数列{an}的前n项和为Sn = n^2 + n,则a1 = _______。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.下列图形是中心对称图形而不是轴对称图形是()A. B. C. D.2.下列事件中是必然事件的是()A. 从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球;B. 小丹的自行车轮胎被钉子扎坏;C. 小红期末考试数学成绩一定得满分;D. 将豆油滴入水中,豆油会浮在水面上.3.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )A. 40°B. 50°C. 70°D. 80°4.已知点A(m,n)在第二象限,则点B(|m|,﹣n)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°6.如图,若D、E分别为△ABC中AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为( )A. 94B.52C.185D. 47.抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA,求抛物线的解析式( )A. y=x2﹣2x﹣3B. y=x2﹣2x+3C. y=x2﹣2x﹣4D. y=x2﹣2x﹣58.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M 到坐标原点O 的距离是( )A. 10;B. 82;C. 413;D. 241;9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A. 1B. 2C. 3D. 410.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB 交于点中点E,若△OBD的面积为10,则k的值是( )A. 10B. 5C. 103D.203二.填空题11.若点A(2x﹣1,5)和点B(4,y+3)关于点(﹣3,2)对称,那么点A在第_____象限.12.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为____.13.若抛物线的顶点坐标为(2,9),且它在轴截得的线段长为,则该抛物线的表达式为________.14.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则BC的长为______.15.已知a2+a﹣3=0,则a3+3a2﹣a+4的值为_____.16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________ m2.三.解答题17.解方程:2220x x+-=.18.关于x 的一元二次方程(m ﹣1)x 2﹣2mx +m +1=0有两个实数根,若方程的两个实数根都是正整数,求整数m 的值.19.正方形ABCD 的边长为1,AB 、AD 上各有一点P 、Q ,如果APQ ∆的周长为2,求PCQ ∠的度数.20.如图,△ABC 的三个顶点都在⊙O 上,直径AD =6cm ,∠DAC =2∠B ,求AC 的长.21.若n 是一个两位正整数,且n 个位数字大于十位数字,则称n 为”两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的”两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的”两位递增数”;(2)请用列表法或树状图,求抽取的”两位递增数”的个位数字与十位数字之积能被10整除的概率. 22.如图,在平面直角坐标系xOy 中,直线y =x+1与双曲线y =k x 的一个交点为P(m ,2). (1)求k 值;(2)M(20191009,a),N(n ,b)是双曲线上的两点,直接写出当a >b 时,n 的取值范围.23.在锐角△ABC 中,边BC 长为18,高AD 长为12(1)如图,矩形EFCH 边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ,求EF AK的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.24.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE =∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.答案与解析一.选择题1.下列图形是中心对称图形而不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是中心对称图形,不是轴对称图形;故本选项正确;B、是中心对称图形,也是轴对称图形;故本选项错误;C、是中心对称图形,也是轴对称图形;故本选项错误;D、不是中心对称图形,是轴对称图形;故本选项错误;故选A.【点睛】考核知识点:轴对称图形与中心对称图形识别.2.下列事件中是必然事件的是()A. 从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球;B. 小丹的自行车轮胎被钉子扎坏;C. 小红期末考试数学成绩一定得满分;D. 将豆油滴入水中,豆油会浮在水面上.【答案】D【解析】【分析】必然事件就是一定会发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件.故选项错误;B、随机事件.故选项错误;C、是随机事件.故选项错误;D、正确.故选D.【点睛】本题考查随机事件和必然事件,理解概念是本题的解题关廉.3.如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°【答案】D【解析】分析】 根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°, ∴∠AOC=40°, ∵AB 是⊙O 的弦,OC ⊥AB ,∴∠AOC=∠BOC=40°, ∴∠AOB=80°, 故选D .【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°. 4.已知点A(m ,n )在第二象限,则点B(|m|,﹣n )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,即可确定出m 、n 的正负,从而确定|m|,-n 的正负,即可得解.【详解】解:∵点A (,)m n 第二象限,∴m <0,n >0,∴|m|>0,-n <0,∴点B (,)m n 在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,熟记各象限内点的坐标的符号是解题的关键.5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°【答案】B【解析】【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=12∠DOC=25°.故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.6.如图,若D、E分别为△ABC中AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为( )A. 94B.52C.185D. 4【答案】D 【解析】【分析】根据相似三角形的判定首先证出△ADE∽△ACB,然后根据相似三角形的性质得出AEAB=ADAC,从而求出AE的长度.【详解】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴AEAB=ADAC,又∵AD=3,AC=6,DB=5,∴AB=AD+DB=8,∴AE=8×3÷6=4.故选D.【点睛】本题主要考查了相似三角形判定及性质.有两角对应相等的两个三角形相似.相似三角形的三边对应成比例.7.抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA,求抛物线的解析式( )A. y=x2﹣2x﹣3B. y=x2﹣2x+3C. y=x2﹣2x﹣4D. y=x2﹣2x﹣5【答案】A【解析】【分析】由抛物线与y轴的交点坐标可求OC得长,根据OB=OC=3OA,进而求出OB、OA,得出点A、B坐标,再用待定系数法求出函数的关系式.【详解】解:在抛物线y=ax2+bx﹣3中,当x=0时,y=﹣3,点C(0,﹣3)∴OC=3,∵OB=OC=3OA,∴OB=3,OA=1,∴A(﹣1,0),B(3,0)把A(﹣1,0),B(3,0)代入抛物线y=ax2+bx﹣3得:a﹣b﹣3=0,9a+3b﹣3=0,解得:a=1,b=﹣2,∴抛物线的解析式为y=x2﹣2x﹣3,故选:A.【点睛】本题考查待定系数法求二次函数解析式;是一道二次函数综合题.8.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M 到坐标原点O 的距离是( )A. 10;B. 2;C. 13D. 41【答案】D【解析】【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在Rt△AOM中求出OM即可.【详解】解:如图连接BM、OM,AM,作MH⊥BC于H.已知⊙M与x轴相切于点A(8,0),可得AM⊥OA,OA=8,即可得∠OAM=∠MH0=∠HOA=90°,所以四边形OAMH是矩形,根据矩形的性质可得AM=OH,因MH⊥BC,由垂径定理得HC=HB=6,所以OH=AM=10,在RT△AOM中,由勾股定理可求得OM==241.故答案选D.【点睛】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.综上所述,正确的结论有③④两个,故选B .10.已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上,双曲线与边BC 交于点D 、与对角线OB 交于点中点E ,若△OBD 的面积为10,则k 的值是( )A. 10B. 5C. 103D. 203【答案】D【解析】【分析】 设双曲线的解析式为:k y x=,E 点的坐标是(x ,y ),根据E 是OB 的中点,得到B 点的坐标,求出点E 的坐标,根据三角形的面积公式求出k . 【详解】解:设双曲线的解析式为:k y x =,E 点的坐标是(x ,y ), ∵E 是OB 的中点,∴B 点的坐标是(2x ,2y ),则D 点的坐标是(2k y,2y ), ∵△OBD 的面积为10, ∴12×(2x ﹣2k y )×2y =10, 解得,k =203, 故选:D .【点睛】本题考查反比例系数k 的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.二.填空题11.若点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,那么点A 在第_____象限.【答案】二.【解析】【分析】根据点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,列方程求得x ,y 的值,结果可得.【详解】解:∵点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,∴﹣3﹣(2x ﹣1)=4﹣(﹣3),解得:x =﹣92, ∴点A (﹣10,5),∴点A 在第二象限,故答案为:二.【点睛】本题考查轴对称及平面直角坐标系内点的坐标特征,熟练掌握相关知识是解题关键. 12.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为____.【答案】34. 【解析】 【详解】解:显然第三枚棋子随机放在其他格点上构成三角形,共有4种等可能的结果,且以这三枚棋子所在的格点为顶点的三角形是直角三角形的有3种情况,所以以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为34. 故答案为:34. 【点睛】此题考查了概率公式应用.注意概率=所求情况数与总情况数之比.13.若抛物线的顶点坐标为(2,9),且它在轴截得的线段长为,则该抛物线的表达式为________.【答案】2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ , ∴|x 1-x 2|=21212()46x x x x +-=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9,故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.14.如图,在扇形AOB 中,AC 为弦,∠AOB =130°,∠CAO =60°,OA =6,则BC 的长为______.【答案】73π. 【解析】解:连接OC ,如图,∵OA =OC ,∴∠OCA =∠CAO =60°,∴∠AOC =60°,∴∠BOC =130°﹣60°=70°,∴BC 的长=706180π⨯=73π.故答案为73π.点睛:本题考查了弧长的计算:圆周长公式:C =2πR ;弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.15.已知a 2+a ﹣3=0,则a 3+3a 2﹣a +4的值为_____.【答案】10.【解析】【分析】已知a 2+a ﹣3=0,得出a 2=3﹣a ,a 3=a •a 2=a (3﹣a )=3a ﹣a 2=3a ﹣(3﹣a )=4a ﹣3,然后代入代数式求得即可.【详解】解:∵a 2+a ﹣3=0,∴a 2=3﹣a ,∴a 3=a •a 2=a (3﹣a )=3a ﹣a 2=3a ﹣(3﹣a )=4a ﹣3,∴a 3+3a 2﹣a +4=4a ﹣3+3(3﹣a )﹣a +4=10.故答案为10.【点睛】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用. 16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为________ m 2 .【答案】75【解析】试题分析:首先设垂直于墙面的长度为x ,则根据题意可得:平行于墙面的长度为(30-3x),则S=x(30-3x)=-32(5)x -+75,,则当x=5时,y 有最大值,最大值为75,即饲养室的最大面积为75平方米.考点:一元二次方程的应用.三.解答题17.解方程:2220x x +-=.【答案】11=-x ,21=-x【解析】【分析】把常数项移到右边 ,然后利用配方法进行求解即可.【详解】2220x x +-=,222x x +=,22121x x ++=+,()213x +=,1x +=11=-x ,21=-x【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.配方法的步骤:先把常数项移到等号的右边,把二次项系数化1,然后方程两边同时加上一次项系数一半的平方,左边配成完全平方式,两边开平方进行求解.18.关于x 的一元二次方程(m ﹣1)x 2﹣2mx +m +1=0有两个实数根,若方程的两个实数根都是正整数,求整数m 的值.【答案】m =2或m =3.【解析】【分析】先求出方程的解,根据此方程的两个根都是正整数列出关于m 的不等式,解不等式即可求解.【详解】解:(m ﹣1)x 2﹣2mx +m +1=0,[(m ﹣1)x ﹣(m +1)](x ﹣1)=0,x 1=11m m +-,x 2=1, ∵此方程的两个实数根都是正整数, 由11m m +->0解得m <﹣1或m >1, ∴m =2或m =3.【点睛】本题考查了公式法解一元二次方程.要会熟练运用公式法求得一元二次方程的解.19.正方形ABCD 的边长为1,AB 、AD 上各有一点P 、Q ,如果APQ ∆的周长为2,求PCQ ∠的度数.【答案】45°. 【解析】【分析】首先从△APQ 的周长入手求出PQ=DQ+BP ,然后将△CDQ 逆时针旋转90°,使得CD 、CB 重合,然后利用全等来解.【详解】解:如图所示,△APQ 的周长为2,即AP+AQ+PQ=2①,正方形ABCD 的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①-②得,PQ-QD-PB=0,∴PQ=PB+QD .延长AB 至M ,使BM=DQ .连接CM ,△CBM ≌△CDQ (SAS ),∴∠BCM=∠DCQ ,CM=CQ ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ .在△CPQ 与△CPM 中,CP=CP ,PQ=PM ,CQ=CM ,∴△CPQ ≌△CPM (SSS ),∴∠PCQ=∠PCM=12∠QCM=45°. 【点睛】本题考查正方形的性质及全等三角形的判定与性质,熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算是本题的解题关键.20.如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.【答案】3cm.【解析】【分析】先连接OC,根据AO=AC=OC,判定△AOC是等边三角形,进而得到AC=AO=12AD=3cm.【详解】解:如图,连接OC,∵∠AOC=2∠B(圆周角定理),∠DAC=2∠B,∴∠AOC=∠DAC,∴AO=AC,又∵OA=OC,∴△AOC是等边三角形,∴AC=AO=12AD=3cm.【点睛】此题考查了圆周角定理以及等边三角形判定及性质.注意掌握辅助线的作法以及数形结合思想的应用.21.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为”两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的”两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的”两位递增数”;(2)请用列表法或树状图,求抽取的”两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)1 5 .【解析】【分析】(1)根据”两位递增数”定义可得;(2)画树状图列出所有”两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【详解】解:(1)根据题意所有个位数字是5的”两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.【点睛】本题考查列表法与树状图法求概率,掌握概率公式是本题的解题关键.22.如图,在平面直角坐标系xOy中,直线y=x+1与双曲线y=kx的一个交点为P(m,2).(1)求k的值;(2)M(20191009,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.【答案】(1)m=1,k=2;(2)n>20191009或n<0.【解析】【分析】(1)将点P坐标代入两个解析式可求m,k的值;(2)根据反比例函数图象性质可求解.【详解】(1)∵直线y=x+1与双曲线y=kx的一个交点为P(m,2).∴122 mkm+=⎧⎪⎨=⎪⎩∴m=1,k=2;(2)∵k=2,∴双曲线每个分支上y随x的增大而减小,当N在第一象限时,∵a>b∴n>2019 1009,当N在第三象限时,∴n<0综上所述:n>20191009或n<0.【点睛】本题考查了一次函数和反比例函数交点问题,函数图象的性质,熟练掌握函数图象上点的坐标满足函数解析式.23.在锐角△ABC中,边BC长为18,高AD长为12(1)如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.【答案】(1)32;(2)54.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+54,可得当x=6时,S有最大值为54.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+54.当x=6时,S有最大值为54.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.24.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE =∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.【答案】(1)详见解析;(2)①CF=2CD;②FG 165.【解析】【分析】(1)如图1,连接OC,根据等边对等角得:∠OBC=∠OCB,由垂直定义得:∠OBC+∠BCD=90°,根据等量代换可得:∠OCB+∠BCE=90°,即OC⊥CE,可得结论;(2)①如图2,过O作OH⊥CF于点H,证明△COH≌△COD,则CH=CD,得CF=2CD;②先根据勾股定理求BC22CD BD+5CF=2CD=8,设OC=OB=x,则OD=x﹣2,根据勾股定理列方程得:x2=(x﹣2)2+42,可得x的值,证明△GFC∽△CBO,列比例式可得FG的长.【详解】(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC225①得:CF=2CD=8,CD BD设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴FG FC CB BO=,∴85 25FG=,∴FG=1655.【点睛】此题考查的知识点是垂直的定义、全等三角形的判定、勾股定理及相似三角形性的判定与性质,熟练掌握并运用是解题关键.。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-3,-0.5,0,2中,最小的是( )A. -3B. - 0.5C. 0D. 22.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a63.下列立体图形中,俯视图与主视图不同是( )A 正方体 B. 圆柱 C. 圆锥 D. 球4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×5006.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方....根.为( )A 0 B. 2 C. -2 D. ±2--,1)的一元二次方程有两个实7.定义(a,b,c)为方程20ax bx c++=的特征数.若特征数为(2k,12k数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°9.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +ac 的 图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .333 D. 36二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x 2﹣27分解因式的结果是 _______________________.12.若点(1,k )关于y 轴的对称点为(-1,1),则y 关于x 的函数k x y -=的取值范围是_______. 13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)16.定义新运算:对于任意实数a ,b ,都有a ⊕b =ab +a +b ,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y 关于x 的函数y =(kx +1)⊕(x -1)图象与x 轴仅有一个公共点,则实数k 的值为_______.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 18.若实数m ,n 满足210m m n -++-=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中D类所在扇形的圆心角度数为;(2)将条形统计图补充完整;(3)若该校共有3000名学生,估计该校表示”喜欢”的B类学生大约有多少人?21.参照学习函数的过程与方法,探究函数y=2(0)xxx-≠的图象与性质.因y=221-=-xx x,即y=﹣2x+1,所以我们对比函数y=﹣2x来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣12121 2 3 4 …y=﹣2x…12231 2 4 ﹣4 ﹣1 1 ﹣23﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.水果品种 A B C汽车运载量(吨/辆) 10 8 6水果获利(元/吨) 800 1200 1000(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?24.在平面直角坐标系xOy中,已知点P是反比例函数23(0)y xx=>图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKP A的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时,①求过点A,B,C三点的抛物线解析式;②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的12?若存在,直接写...出.所有满足条件的M点的坐标;若不存在,试说明理由.答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-0.5,0中,最小的是( )A. B. - 0.5 C. 0 D.【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此时行比较即可.【详解】∵正实数都大于0,负实数都小于0,∴最小的数是-0.5,又∵|-0.5|∴,∴实数-0.5,0中,最小是故选:A.【点睛】考查了实数大小比较,解题关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a6【答案】B【解析】分析】根据同底数幂的乘除法、幂的乘方和积的乘方计算法则进行计算,再进行判断即可.【详解】A选项:a6 ÷a2=a6-2=a4,故计算错误;B选项:(ab)2=a2b2,计算正确;C选项:a4 ·a2=a4+2=a6,故计算错误;⨯=,故计算错误;D选项:(a4)2=428a a故选:B.【点睛】考查了同底数幂的乘除法、幂的乘方和积的乘方,解题关键是熟记其计算法则,根据计算法则进行计算.3.下列立体图形中,俯视图与主视图不同的是( )A. 正方体B. 圆柱C. 圆锥D. 球【答案】C【解析】【分析】从正面看所得到的图形是主视图,从上面看到的图象是俯视图,再根据判断即可.【详解】A选项:俯视图与主视图都是正方形,故不合题意;B选项:俯视图与主视图都是长方形,故不合题意;C选项:俯视图是圆,主视图是三角形;故符合题意;D选项:俯视图与主视图都是圆,故不合题意;故选:C.【点睛】考查了立体图形的三视图,解题关键是理解:从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°【答案】A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×500【答案】C【解析】【分析】根据稀释前后纯酒精的量不变列方程即可.【详解】设加水量为x ml,则稀释前纯酒精的量为95%×500,稀释后纯酒精的量为75%(500+x),根据稀释前后纯酒精的量不变可得:75%(500+x)=95%×500.故选:C.【点睛】考查了一元二次方程应用,解题关键是设未知数,根据题意找出等量关系:稀释前后纯酒精的量不变列方程.6.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方根.....为( )A. 0B. 2C. -2D. ±2【答案】B【解析】【分析】直接利用同类项的定义得出m,n的值,进而求得m2+2mn的值,再求其算术平方根即可.【详解】∵单项式-3x2y2m+n与2x m+n y4是同类项,∴224m nm n+=⎧⎨+=⎩,∴2mn=⎧⎨=⎩,∴m2+2mn=4,∴m2+2mn的算术平方根为2.故选:B .【点睛】考查了解二元一次方程组、算术平方根和同类项的概念,解题关键是根据同类项的概念得到关于m 、n 的二元一次方程组,并正确求解.7.定义(a ,b ,c )为方程20ax bx c ++=的特征数.若特征数为(2k ,12k --,1)的一元二次方程有两个实数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 【答案】C【解析】【分析】根据特征数的定义得到一个一元二次方程,再由方程有两个实数根得到k 的取值范围即可.【详解】∵定义(a ,b ,c )为方程20ax bx c ++=的特征数,∴特征数为(2k ,12k --,1)的一元二次方程为:22(12)10k x k x +--+=,又∵特征数为(2k ,12k --,1)的一元二次方程有两个实数根,∴0>且0k ≠,即22(12)40k k --->且0k ≠,∴k > 14-且0k ≠. 故选:C .【点睛】考查了一元二次方程的根与系数的关系,解题关键是熟记:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°【答案】D【解析】 【详解】作半径OC ⊥AB 于点D ,连结OA ,OB ,∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+ac的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数y=ax2+bx+c的图象可以判断a、b、c的正负,从而可以判断一次函数y=bx+ac的图象经过哪几个象限即可.【详解】由二次函数y=ax2+bx+c的图象可得:a>0,b>0,c>0,∴ac>0,∴一次函数y=bx+ac的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】考查了二次函数的图象与系数的关系,解题关键是根据函数的图象得到a>0,b>0,c>0,由此再判断一次函数的图象.10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.A.32B.33C.34D.36【答案】A【解析】如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE=32aa=32,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x2﹣27分解因式的结果是_______________________.【答案】3(x-3)(x+3)【解析】【分析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x2﹣27=3(x2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键先提取公式后再利用平方差公式进行因式分解.12.若点(1,k)关于y轴的对称点为(-1,1),则y关于x的函数k xy-=的取值范围是_______.【答案】x≤1且x≠0 【解析】【分析】由关于坐标轴对称两点坐标特点求得k的值,再代入k xy-=中求得取值范围.【详解】∵点(1,k)关于y轴的对称点为(-1,1),∴k=1,∴y关于x的函数为1-=xyx,∴1-x≥0且x≠0,∴x ≤1且x ≠0.故答案为:x ≤1且x ≠0.【点睛】考查了分式和根式有意义的条件,解题关键是关于坐标轴对称两点坐标特点求得k 的值和根式被开方数≥0,分式的分母不能为0.13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .【答案】【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15. 故答案为15. 14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.【答案】答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角【解析】【分析】由已知条件得到∆BCD S :ABD S ∆=1:2,写出其中的2条依据即可.【详解】由作法得BD 平分∠ABC ,∵∠C=90°,∠A=30°,∴∠ABC=60°,(三角形的内角和为180º)∴∠ABD=∠CBD=30°(角平分线的性质),∴DA=DB (等角对等边),在Rt △BCD 中,BD=2CD ,(直角三角形30度角所对直角边等于斜边的一半)∴AD=2CD (等量代换),∴∆BCD S :ABD S ∆=1:2.故答案为:答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角.【点睛】考查了含30度角的直角三角形的性质和基本作图,解题关键是理解题意,并根据已知条件得到结论:∆BCD S :ABD S ∆=1:2.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)【答案】3【解析】【分析】延长AB 交DC 于H ,作EG ⊥AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CH =3BG 、EG 的长度,证明△AEG 是等腰直角三角形,得出AG =EG =3+20(米),即可得出大楼AB 的高度.【详解】延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示:则GH =DE =15米,EG =DH , ∵梯坎坡度i =13∴BH :CH =13设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得:x 2+3)2=122,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9=(63+29)m.故答案为:3.【点睛】考查了解直角三角形的应用-坡度、俯角问题;解题关键是作辅助线运用勾股定理求出BH,得出EG.16.定义新运算:对于任意实数a,b,都有a⊕b=ab+a+b,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y关于x的函数y=(kx+1)⊕(x-1)图象与x轴仅有一个公共点,则实数k的值为_______.【答案】-1【解析】【分析】由定义的新运算求得y关于x的函数为:y=kx2+2x-1,再由y关于x函数的图象与x轴仅有一个公共点得到4+4k=0,求解即可.【详解】∵(kx+1)⊕(x-1)=(kx+1)(x-1)+(kx+1)+(x-1)=kx2+2x-1,∴y= kx2+2x-1,又∵y= kx2+2x-1图象与x轴仅有一个公共点,∴△=0,即4+4k=0,∴k=-1.故答案是:-1.【点睛】考查了一元二次方程的根与二次函数图像和x 轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x 轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x 轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x 轴的横坐标没有交点.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 【答案】4【解析】【分析】先化简和求得x 的整数解,再代入计算即可. 【详解】226(2)369x x x x -÷+++ =22(3)(3)3x x x x x++⨯+ =22(3)x x x + =26x x+ =2+6x ; 20218x x ->⎧⎨+<⎩①② 解不等式①得:x>2,解不等式②得:x<72, 所以不等式的解集为:722x ,则其整数解为3, 把x =3代入原式=6243+=. 【点睛】考查了分式的混合运算和解不等式组,解题关键是正确化简分式和求得x 的值.18.若实数m ,n满足20m -=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 【答案】x=1【解析】【分析】根据绝对值、算术平方根的非负性求得m 、n 的值,再代入一元二次方程中,再求解即可.【详解】∵m ,n 满足210m m n -++-=,∴m-2=0,m+n-1=0,∴m=2,n=-1,∴一元二次方程为2210x x +-=,∴221110x x ++--=,即2(1)2x +=,∴x=21±-.【点睛】考查了利用配方法解一元二次方程,解题关键是根据绝对值、算术平方根的非负性求得m 、n 的值和熟记完全平方公式的特点.19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.【答案】正确,理由见解析【解析】【分析】先证明四边形MBFN 是平等四边形,从而得到MB =NF ;根据ASA 证明△ABE ≌△BCF ,从而得到BE =CF ,则有DF =EC ,再根据DF =NF+DN 和MB =NF 可得到EC =DN+MB .【详解】∵四边形ABCD 是正方形,∴MB//NF ,∠C =∠ABC ,AB//DC ,∠BFC+∠CBF =90º,AB =BC ,又∵MN//BF ,∴四边形MBFN 是平行四边形,∠AMP =∠ABF ,∴MB =NF ,∵AB//DC ,∴∠BFC=∠ABF ,又∵∠AMP =∠ABF ,∴∠AMP =∠BFC ,∵MN ⊥AE ,∴∠APM 是直角,则∠AMP+∠MAE =90º,又∵∠BFC+∠CBF =90º,∴∠MAE =CBF ,在△ABE 和△BCF 中AB BC C ABC MAE CBF =⎧⎪∠∠⎨⎪∠⎩==,∴△ABE ≌△BCF (AAS ),∴BE =CF ,∴CE =DF又∵DF =NF+DN (由图可得),MB =NF (已证)∴CE =DF =DN+MB ,即CE =DN+MB .【点睛】考查了正方形的性质、平行四边形的性质和判定,解题关键证明△ABE ≌△BCF 从而得到BE =CF 和MB =NF .20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取 名学生进行统计调查,扇形统计图中D 类所在扇形的圆心角度数为 ;(2) 将条形统计图补充完整;(3) 若该校共有3000名学生,估计该校表示”喜欢”的B 类学生大约有多少人?【答案】(1)50,72°;(2)见解析;(3)1380人【解析】【分析】(1)这次共抽取:12÷24%=50(人),D 类所对应的扇形圆心角的大小360°×1050 =72°; (2)A 类学生:50-23-12-10=5(人),据此补充条形统计图;(3)该校表示”喜欢”的B 类的学生大约有3000×2350=690(人). 【详解】(1)这次共抽取:12÷24%=50(人), D 类所对应的扇形圆心角的大小360°×1050=72°; (2)A 类学生:50-23-12-10=5(人),条形统计图补充如下该校表示”喜欢”的B 类的学生大约有3000×2350=1380(人), 答:该校表示”喜欢”的B 类的学生大约有1380人;【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.参照学习函数的过程与方法,探究函数y=2(0)x x x-≠的图象与性质. 因为y=221-=-x x x ,即y=﹣2x +1,所以我们对比函数y=﹣2x 来探究. 列表: x … ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 12 1 2 3 4 …y=﹣2x … 12 23 1 2 4 ﹣4 ﹣1 1 ﹣23 ﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.【解析】【分析】(1)用光滑曲线顺次连接即可;(2)观察图象,利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题. 【详解】(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=2xx的图象是由y=﹣2x的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称,故答案为①增大;②上,1;③(0,1);(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点睛】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.【答案】(1)见解析;(2)①AE=2DM,理由见解析;②3 2【解析】【分析】(1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM,从而得到AE:DM=AB:BD,而∠ABC =45°,再得到AB=2BD,则有AE=2MD;(2)①由于△ABE∽△DBM,相似比为2,故有EB=2BM,进而确定出AE与DM的关系;②由题意知得△BEP为等边三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D为BC中点,M为BP中点,得DM∥PC,求得tan∠PCB的值,在Rt△ABD和Rt△NDC 中,由锐角三角函数的定义求得AD、ND的值,进而求得tan∠PCB的值.【详解】(1)证明:如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC,即AB2BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴AEDM=ABDB2,∴AE2MD.(2)①如图2,连接AD,EP,过N作NH⊥AC,垂足为H,连接NH,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=12 AB,∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∠AEB=∠DMB,即AE=2DM;②∵△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∴EB=2BM,又∵BM=MP,∴EB=BP,∵∠EBM=∠EBA+∠ABM=∠MBD+∠ABM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°,在Rt△AEB中,AE=7AB=7,∴BE2AB AE21,∴tan∠EAB=BEAE3∵D为BC中点,M为BP中点,∴DM∥PC,∴∠MDB=∠PCB,∴∠EAB=∠PCB,∴tan∠PCB【点睛】考查了相似三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质和锐角三角函数的定义,解题关键是正确作出辅助线,明确线段与线段的关系.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?【答案】(1)①y=15-2x;②有四种方案,方案一:装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A、B、C三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A、B、C三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A、B、C三种不同品质的车辆分别是6辆、3辆、6辆;(2)装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆,利润W(元)的最大值是134400元【解析】【分析】(1)①根据题意和表格中的数据可以求得y与x之间的函数关系式;②根据题意和(1)中函数关系式可以列出相应的不等式,从而可以解答本题;(2)根据题意和表格中的数据可以求得采用哪种车辆安排方案可以使得W最大,并求得W的最大值.【详解】(1)①由题意可得:10x+8y+6(15-x-y)=120,化简得:y=15-2x ,所以y 与x 之间的函数关系式为y=15-2x ;②由题意可得,()31523151523x x x x ⎧≥⎪-≥⎨⎪---≥⎩, 解得:3≤x≤6,∴有四种方案,方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A 、B 、C 三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A 、B 、C 三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A 、B 、C 三种不同品质的车辆分别是6辆、3辆、6辆;(2)设装运A 种椪柑的车辆数为x 辆,W=10x×800+8(15-2x )×1200+6[15-x-(15-2x )]×1000+120×50=-5200x+150000,∵3≤x≤6,∴x=3时,W 取得最大值,此时W=134400,答:采用方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆,利润W (元)的最大值是134400元.【点睛】考查一次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.24.在平面直角坐标系xOy 中,已知点P是反比例函数0)y x =>图象上一个动点,以P 为圆心圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时,①求过点A ,B ,C 三点的抛物线解析式;②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的12?若存在,直接写...出.所有满足条件的M 点的坐标;若不存在,试说明理由.【答案】(1)四边形OKP A 是正方形,理由见解析;(2)①y 3243x 3;;②存在,M 的坐标为(0,3)或(3,0)或(43)或(7,83【解析】【分析】(1)先证明四边形OKP A 是矩形,又P A =PK ,所以四边形OKP A 是正方形;(2)①证明△PBC 为等边三角形;在Rt △PBG 中,∠PBG =60°,设PB =P A =a ,BG =2a ,由勾股定理得:PG 3,所以P (a 3a ),将P 点坐标代入y 23,求出PG 3,P A =BC =2,又四边形OGP A 是矩形,P A =OG =2,BG =CG =1,故OB =OG ﹣BG =1,OC =OG +GC =3,即可求得a 、b 、c 的值;设二次函数的解析式为:y =ax 2+bx +c ,根据题意得:a +b +c =0,9a +3b +c =0,而c 3 ②【详解】(1)四边形OKP A 是正方形,理由:∵⊙P 分别与两坐标轴相切,∴P A ⊥OA ,PK ⊥OK ,∴∠P AO =∠OKP =90°.又∵∠AOK =90°,∴∠P AO =∠OKP =∠AOK =90°.∴四边形OKP A 是矩形.又∵P A =PK ,∴四边形OKP A 是正方形;(2)①连接PB ,过点P 作PG ⊥BC 于G .∵四边形ABCP为菱形,∴BC=P A=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,设PB=P A=a,BG=2a由勾股定理得:PG 3,所以P(a 3a),将P点坐标代入y23,解得:a=2或﹣2(舍去负值),∴PG3P A=BC=2.又四边形OGP A是矩形,P A=OG=2,BG=CG=1,∴OB=OG﹣BG=1,OC=OG+GC=3.∴A(03,B(1,0),C(3,0);设:二次函数的解析式为:y=ax2+bx+c,根据题意得:a+b+c=0,9a+3b+c=0,而c3解得:a 3b43c3,∴二次函数的解析式为:y=33x243x3②设直线BP的解析式为:y=ux+v,据题意得:0 23 u vu v+=⎧⎪⎨+=⎪⎩解之得:u3v3∴直线BP 的解析式为:yx过点A 作直线AM ∥BP ,则可得直线AM的解析式为:y =+解方程组:2y y x ⎧=+⎪⎨=-+⎪⎩得:110x y =⎧⎪⎨=⎪⎩227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x ⎧=-⎪⎨=-+⎪⎩得:1130x y =⎧⎨=⎩;224x y =⎧⎪⎨=⎪⎩ 综上可知,满足条件的M 的坐标有四个,分别为(0,(3,0),(4),(7,.【点睛】考查了二次函数的综合运用.解题关键是灵活运用菱形和圆的性质和数形结合.。
人教版中考数学模拟卷及答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣2020的相反数是()2.如图,是由一个圆柱和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.3.将一块含有30°角的直角三角板和一把直尺按如图所示方式摆放,若∠1=85°,则∠2的度数是()A.70°B.65°C.55°D.60°4.在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.下列计算正确的是()A.4a2÷2a2=2a2B.(﹣a3)2=﹣a6C.(﹣3a)+(﹣a)=﹣4D.(a﹣b)(﹣a﹣b)=b2﹣a26.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3B.10C.12D.157.如图,在平面直角坐标系中,点A(3,0),点B(0,2),连结AB,将线段AB绕点A 顺时针旋转90°得到线段AC,连接OC,则线段OC的长度为()A.4B.C.6D.8.在一张长为8cm,宽为6cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形,等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上.这个等腰三角形剪法有()A.1B.2C.3D.49.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠A,tan∠CBF=,则BC的长为()A.B.C.D.10.已知点A(m,y1)、B(m+2,y2)、C(x0,y0)在二次函数y=ax2+4ax+c(a≠0)的图象上,且C为抛物线的顶点.若y0≥y1>y2,则m的取值范围是()A.m<﹣3B.m>﹣3C.m<﹣2D.m>﹣2二、填空题(木大题共4个小题,每小题3分,共12分)11.(3分)分解因式:a2﹣2a+1=.12.(3分)正六边形的外接圆的半径与内切圆的半径之比为.13.(3分)如图,在平面直角坐标系中菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为10,则k的值为.14.(3分)如图,已知∠BAC=45°,线段DE的两个端点在角的两边AB,AC上运动,且DE=2.以线段DE为边在DE的右侧作等边三角形DEF,则AF的最大值为.三、解答题(本大题共11小题,计78分.解答应写出过程)15.(5分)计算:+4cos260°﹣|﹣1|16.(5分)解分式方程:+3=.17.(5分)尺规作图:已知⊙O,求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).18.(5分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.19.(7分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在暑假期间阅读量(阅读本数为正整数)为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读4本及4本以上课外书者为“优秀阅读者”,据此估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有多少人?20.(7分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为60°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(≈1.4,≈1.7结果保留整数)21.(7分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A ,B 两种垃圾桶,负责人小李调查发现:购买数量种类购买数量少于100个 购买数量不少于100个A原价销售 以原价的7.5折销售 B 原价销售 以原价的8折销售 若购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元.(1)求A ,B 两种垃圾桶的单价各为多少元?(2)若需要购买A ,B 两种垃圾桶共200个,且B 种垃圾桶不多于A 种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.22.(7分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是 ;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.23.(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB .(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.24.(10分)设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求抛物线的解析式(2)已知过点A的直线y=x+1交抛物线于另一点E,且点D(1,﹣3)在抛物线上问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.25.(12分)问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.A【解析】:﹣2020的相反数是2020,故选:A.2.A【解析】:从上边看是一个有圆心的同心圆,故选:A.3.C【解析】:如图所示,∵AB∥CD,∴∠1=∠BAC=85°,又∵∠BAC是△ABE的外角,∴∠2=∠BAC﹣∠E=85°﹣30°=55°,故选:C.4.C【解析】:∵在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,∴2m﹣1<0.∵2m﹣1<0,1>0,∴一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,∴一次函数y=(2m﹣1)x+1的图象不经过第三象限.故选:C.5.D【解析】:4a2÷2a2=2,故选项A错误;(﹣a3)2=a6,故选项B错误;(﹣3a)+(﹣a)=﹣4a,故选项C错误;(a﹣b)(﹣a﹣b)=b2﹣a2,故选项D正确;故选:D.6.D【解析】:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC==10,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=15.故选:D.7.D【解析】:如图,作CH⊥x轴于H.∵A(3,0),B(0,2),∴OA=3,OB=2,∵∠AOB=∠BAC=∠AHC=90°,∴∠BAO+∠HAC=90°,∠HAC+∠ACH=90°,∴∠BAO=∠ACH,∵AB=AC,∴△ABO≌△CAH(AAS),∴AH=OB=2,CH=OA=3,∴OH=OA+AH=3+2=5,∴C(5,3),∴OC===,故选:D.8.C【解析】:有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,有两种情况:如图2,图3,此时AE=EF=5cm.故选:C.9.B【解析】:连接AE,∵AB为直径,∴AE⊥BC,∵AB=AC,∴∠EAB=∠CAB,EB=CE=CB,∵∠CBF=∠CAB,tan∠CBF=,∴∠CBF=∠EAB,tan∠EAB==,在RT△AEB中,AB=10,设BE=x,则AE=3x,故x2+(3x)2=102,解得:x=EB=,故CB=2.故选:B.10.B【解析】:抛物线的对称轴为直线x=﹣=﹣2,∵C为抛物线的顶点,∴x0=﹣2,∵y0≥y1>y2,∴抛物线开口向下,∵m<m+2,y0≥y1>y2,∴当点A(m,y1)和B(m+2,y2)在直线x=﹣2的右侧,则m≥﹣2;当点A(m,y1)和B(m+2,y2)在直线x=﹣2的两侧,则﹣2﹣m<m+2﹣(﹣2),解得m>﹣3;综上所述,m的范围为m>﹣3.故选:B.二、填空题(木大题共4个小题,每小题3分,共12分)11.(a﹣1)2.【解析】:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.12.2:.【解析】:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,因而是r,因而正六边形的外接圆的半径与内切圆的半径之比为2:.故答案为:2:.13.【解析】:如图,连接AC交BD于E,∵四边形ABCD为菱形,∴AC⊥BD,AE=CE,DE=BE,∵BD∥x轴,设A(1,k),B(4,),∴BE=3,AE=k﹣=k,∵菱形ABCD的面积为10,∴4S△ABE=10,即4××3×k=10,解得k=.故答案为.14.+1+.【解析】:如图,当AF⊥DE时,AF的值最大,设AF交DE于H,在AH上取一点M,使得AM=DM,连接DM.∵FD=FE=DE=2,AF⊥DE,∴DH=HE,AD=AE,∠DAH=∠DAE=22.5°,∵AM=DM,∴∠MAD=∠MDA=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=1,∴DM=AM=,∵FH==,∴AF=AM+MH+FH=+1+.∴AF的最大值为+1+,故答案为:+1+.三、解答题(本大题共11小题,计78分.解答应写出过程)15.【解析】:原式=2+4×()2﹣(﹣1)=2+4×﹣+1=2+1﹣+1=+2.16.【解析】:去分母得:2+3x﹣6=x﹣1,解得:x=1.5,经检验x=1.5是分式方程的解.17.【解析】:如图正方形ABCD即为所求作的图形.18.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB.在△CDE和△BDF中,∴△CDF≌△BDE(AAS),∴DE=DF.19.(7分)【解析】:(1)10÷20%=50,∴被调查的人数为50,被抽查学生课外阅读量的中位数3;(2)50﹣4﹣10﹣15﹣6=15,补充如图;(4)2500×1050(人),答:估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有1050人.20.(7分)【解析】:过E作EF⊥AB于F,则四边形BDEF是矩形,∴EF=DB,BF=DE,在Rt△CDE中,∵∠EDC=90°,CE=6m,∠DCE=30°,∴DE=3m,CD=3m,设BC=xm,∵∠AEF=45°,∴EF=AF=BD=(3+x)m,∴AB=AF+BF=(3+3+x)m,在Rt△ABC中,tan60°===,解得:x=6+3,∴AB≈19m.答:楼房AB的高度大约为19米.21.(7分)【解析】:(1)设A种垃圾桶的单价为x元,B种垃圾桶的单价为y元,根据题意得,解得,答:A种垃圾桶的单价为50元,B种垃圾桶的单价为30元;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200﹣a)个,根据题意得,解得a≥150;设购买A,B两种垃圾桶的总费用为W元,则W=0.75×50a+30(200﹣a)=7.5a+6000,∵k=7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.22.(7分)【解析】:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是.故答案为.(2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.23.(8分)【解答】(1)证明:连接OC、OE,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,由圆周角定理得,∠BOC=2∠OAC,∠EOC=2∠DAC,∴∠BOC=∠EOC,∴CE=CB;(2)解:由(1)可知,BC=CE=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB===3,∵∠DAC=∠BAC,∠ADC=∠ACB=90°,∴△DAC∽△CAB,∴=,即=,解得,DC=.24.(10分)【解析】:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2∴OB===4,∴m=4,∴B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2得,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)解得,,,∴E(6,7),过E作EH⊥x轴于H,则H(6,0),∴AH=EH=7,∴∠EAH=45°,过D作DF⊥x轴于F,则F(1,0),∴BF=DF=3∴∠DBF=45°,∴∠EAH=∠DBF=45°,∴∠DBH=135°,90°<∠EBA<135°则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△BAE,则=,∴BP1===∴OP1=4﹣=,∴P1(,0);②若△DBP2∽△BAE,则=,∴BP2===∴OP2=﹣4=,∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).25.(12分)【解析】:(1)如图1中,△OP1P2是等腰直角三角形.理由:∵点P关于边OA、OB的对称点分别为P1,P2,∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2(∠AOP+∠BOP)=90°,∴△OP1P2是等腰直角三角形.故答案为等腰直角.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.∵AB=AC,AD⊥BC,∴∠EAC=∠BAC=15°,∵EA=EC,∴∠EAC=∠ECA=15°,∴∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,∵AD=2+,∴2x+x=2+,∴x=1,∴BC=2CD=2,∴S△ABC=•BC•AD=×2×(2+)=2+.(3)如图3中,不存在.理由:∵点P关于AB,BC的对称点分别为M,N,∴PB=BM=BN=10,∠PBA=∠ABM,∠PBC=∠CBN,∵∠ABC=60°,∴∠MBN=2(∠ABP+∠PBC)=120°,∴△BNM是顶角为120°,腰长为10的等腰三角形,∴MN为定值,∵PM+PN≥MN,∴当点P落在AB或BC上时,PM+PN=MN=定值,此时△PMN不存在,∴△PMN的周长不存在最小值.。