当前位置:文档之家› 近红外光谱快速鉴别酸奶的品种

近红外光谱快速鉴别酸奶的品种

近红外光谱快速鉴别酸奶的品种
近红外光谱快速鉴别酸奶的品种

近红外光谱快速鉴别酸奶的品种

提出了一种用近红外光谱技术快速鉴别酸奶品种的新方法。首先应用光谱仪获得5种典型酸奶品种的光谱曲线,用主成分分析法对5种酸奶品种进行聚类分析,建立模型后进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98.986%,前7个主成分的累积可信度达到99.197%。本实验选择前7个主成分的输入,建立模型。每个品种各27个样本,5个品种共135个样本用来建立模型,余下每个品种各5个共25个用于预测。建模品种的拟合率和预测品种的识别率均为100%。说明该方法能快速无损的检测酸奶品种,为酸奶的品种鉴别提供了一种新方法。

酸奶所含有的蛋白质经一定程度的分解后易于被人体消化吸收,有较高的营养价值和口味,也具有健美和减肥等功效,深受广大的消费群体(儿童、青少年、中青年女性等)喜爱。近年来我国一批大中型乳品企业在市场竞争中奇迹般地崛起,市场超市中的酸奶品种也五花八门,但市场中也不乏各种假冒产品。一些学者利用近红外光谱技术在牛奶的脂肪、蛋白质和乳糖等含量方面做了一些研究,但是对于酸奶品种鉴别方面的研究还做得很少,主要是在实验室进行。随着市场上酸奶品种的加速发展,品种鉴别将越来越凸现出它的必要性,所以研究一种简单、快速、无损的酸奶品种鉴别方法很有必要。

由于近红外光谱分析技术具有速度快、效率高、成本低、测试重现性好、测试方便等特点,已经被越来越多地应用于食品工业、石油化工、制药工业等领域。但进行光谱测试后如何从大量的信息中获取有效信息是研究的一个热点。主成分分析是多元统计中的一种数据挖掘技术。在不丢失主要光谱信息的前提下选择为数较少的新变量来代替原来较多的变量,解决了由于谱带的重叠而无法分析的困难。我们选用主成分分析(PCA)建立不同品种酸奶品种的近红外光谱鉴别模型。

一.仪器条件:

仪器为近红外光谱仪,主要部件包括:单色仪、集成电脑、电源适配器,置顶旋转测样系统。采集处理软件,建模软件。测样方式:漫反射方式;检测方法:置顶旋转测样系统;实验所用的参数设置为:波长范围:1400nm~2500nm,波长步长:1.0nm,平均次数:60次。二.实验方法:

从超市买来生产日期为同一天的三种原味酸奶,分别是蒙牛(内蒙古)、光明(上海)、伊利(内蒙古),每种酸奶各取30样本,共计90个样本。为减少实验过程中的操作误差,酸奶装样容器均采用直径为4cm,高度为,4cm的样品杯,装好的酸奶的样品杯放置于光谱仪置上方,通过样品杯的旋转,对每个样品扫描60次,取平均值。

为了消除外界环境的影响,提高光谱数据的有效信息量,我们对光谱数据采用平均平滑法进行预处理,选用平滑窗口大小为9,此时能很好地滤除各种因素产生的高频噪声。将光谱数据导入建模软件,采用PCA分析方法,分别建立三种原味酸奶的PCA模型。

图1.三种酸奶的吸收光谱

通过建立三种原味酸奶的PCA模型后,对三种厂家未知的酸奶作定性判别,拟合率和预测品种的识别率均为100%。

三.结论:

提出了一种应用光谱技术并结合主成分分析技术对酸奶品种进行快速无损检测的新方法,该方法使用方便,准确度高。试验表明对三种酸奶品种的识别率达到100%。说明运用近红外光谱技术可以快速、准确、无损的对酸奶品种进行鉴别。提出的基于主成分分析的光谱数据分析方法可大大地减少计算量,加快了分析和识别速度,同时得出的酸奶品种的主成分变量为快速鉴别酸奶种类和开发酸奶快速识别仪器提供了依据,也为其他液体食品品种的鉴别提供了有效的方法。

红外反射光谱原理实验技术及应用

高级物理化学实验讲义 实验项目名称:红外反射光谱原理、实验技术及应用 编写人:苏文悦编写日期:2011-7-7 一、实验目的(宋体四号字) 1、了解并掌握FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱表面分析技术的原理、实验技术及应用 2、比较分析FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱技术各自适用的样品、同一样品不同红外光谱的谱带位置及形状。 二、实验原理 衰减全反射(ATR)、漫反射(DRS)和反射吸收(RAS)都是傅里叶变换红外反射光谱,是FTIR常用的表面分析技术。 图1 入射角(θ)及折射率(n1,n2)对光在界面上行为的影响 θc为临界角,sinθc=n2/n1 1全反射光谱原理、实验技术及应用 全反射:光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。很多材料如交联聚合物、纤维、纺织品和涂层等,用一般透射法测量其红外光谱往往很困难,但使用FTIR及ATR技术却可以很方便地测绘其红外光谱。 (1)入射角与临界角 在通常情况下,光透射样品时是从光疏介质的空气射向光密介质样品的,当垂直入射(入射角θ为0°)时,则全部透过界面;当θ≠0°时,如果两者的折射率相差不大,则光是以原方向透射的,但如折射率差别较大,则会产生折射现象。 当n2与n1有足够的差值(0.5以上),且入射光从光密介质(n1)射向光疏介

质(n 2 ),入射角θ 大于一定数值时,光线会产生全反射现象。这个“一定数值”的角度称为临界角,也即当折射角φ 等于90°时的入射角θ称为临界角θc ,如图1,其中临界角θc 和折射率n 1和n 2有如下关系: sin θ=n 2/n 1 显然,临界角的数值取决于样品折射率与全反射晶体的折射率之比,对同一种全反射晶体,不同材质的样品会有不同的临界角值,表1所列数值可看出这一关系。 表1 在ATR 和MIR 方法中必须选用远大于临界角的入射角,即sin θ>n 2/n 1,以确保全反射的产生和所获光谱的质量,本实验运用单次衰减全反射ATR 附件,反射晶体是锗,入射角固定为45°,远大于临界角。 (2)衰减全反射 衰减全反射(Attenuated Total Reflectance)缩写为ATR 。当入射角大于临界角时,入射光在透入光疏介质(样品)一定深度后,会折回射入全反射晶体中。进入样品的光,在样品有吸收的频率范围内光线会被样品吸收而强度衰减,在样品无吸收的频率范围内光线被全部反射。因此对整个频率范围而言,由于样品的选择性吸收,使ATR 中的入射光能被部分衰减,除穿透深度dp 外,其衰减的程度与样品的吸收系数有关,还与多次内反射中的光接触样品的次数有关。这种衰减程度在全反射光谱上就是它的吸收强度。 全反射光谱的强度及分布 ATR 光谱的强度取决于穿透深度dp 、反射次数和样品与棱镜的紧密贴合情况以及样品本身吸收的大小。 内反射次数则是设计装置时的一个参数,入射角?越小,对同样尺寸的全反射晶体,全反射的次数就越多,谱峰越增强。 在全反射过程中光线穿透入样品的深度dp 的表示公式如下: 其中,dp :是光透入样品的垂直深度,称穿透深度 λl :是光在内反射晶体材料中的波长,与入射光波长λ成正比λ1=λ/n 1 ?:为入射角, n 21=n 2/n 1 :是样品与全反射晶体的折射率之比 21221 21)(sin 2n dp -=θπλ

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

红外光谱测试条件

红外光谱分析采用Nicolet Impact 410 型红外光谱仪,样品的结构及骨架振动采用KBr 支撑片,在400-4000 cm-1范围内记录样品的骨架振动红外吸收峰。 吡啶FT-IR 分析:首先将压成自支撑薄片的样品(~20 mg)装入原位红外样品池中,在200 ℃,10-4mmHg 高真空条件下处理0.5 h 以活化样品,降温至室温。将吡啶引入真空系统中。吸附0.5 h 后,抽真空至10-4mmHg 清除吸附后余气,再利用Nicolet-Impact 410 型红外光谱仪进行红外扫描,测定吡啶吸附态的红外光谱。 采用美国Nicolet公司的Nexus 670型傅立叶变换红外光谱仪测试,测试分辨率为4cm-1,扫描次数为32次,测试范围为400-4000cm-1。 红外光谱制样方法: 1、用玛瑙研钵将KBr固体研成极细的粉末,放入玻璃小盒内,放到100℃烘箱里保存,以防KBr粉末潮解; 2、称取0.2g KBr粉末和2-4mg样品(无机材料),放入研钵内研磨,将二者充分混合; 3、用药匙加适量样品至压片磨具中,用圆柱体铁棒旋转压实。套上空心圈及顶盖; 4、讲磨具放到压片机上,拧到上方转盘固定,拧紧下方螺旋钮; 5、摆动右侧长臂,至压力为8-9MPa,等待30s即可取出。 注意事项: 1、KBr粉末不用时,最好放入烘箱中,否则易潮解; 2、若样品为有机物,则加入样品量1mg即可; 3、样品量过多会造成出现宽峰的情况,此时数据无效; 4、KBr粉末潮解后,压片以后容易粘在磨具上,无法取下导致压片失败; 5、压力过大可能导致压片破裂,视破裂程度也可能进行红外测定(中间未破损即可测量)。红外光谱测试方法: 测试分辨率:4cm-1,扫描次数:64次,测试范围400-4000cm-1 点测量快捷键,改文件名和保存路径; 改变设置:OPTIC→Aperture Setting→1.5mm(狭缝设置) OPTIC→preamp Gain→Ref(放大倍数) Check signal:1万以上(若低于1万有可能液氮量不够,补充液氮即可) Basic→Background Signal Channel(采背景,大概60s,此时不放置样品) Background→Save Background 装样品,点Sample Signal Channel 选中点,可变换颜色,点---校准峰 保存:选中图(变换颜色按钮),File→Save as→名称→路径 Mode→Data point table(保存以后为DPH文件,大小为69k)

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

药典中红外吸收光谱对阿司匹林的鉴别

论文题目:药典中红外吸收光谱法对阿司匹林的鉴别课程名称:仪器分析 班级:2015级生物制药 教师:XXX 学生姓名:XXX 号:XXX

药典中红外吸收光谱法对阿司匹林的鉴别 摘要:目的:学习利用红外光谱法鉴别阿司匹林 原理:有机药物分子的组成、结构、官能团不同时,其红外吸收光谱也不同,可据此进行药物的鉴别。 依据:在进行药物鉴别实验时,《中国药典》采用与对照图谱比较法,要求按规定条件绘制供试品的红外光吸收图谱,与相应的标准红外图谱进行比 较,核对是否一致(峰位、峰形、相对强度),如果两图谱一致时,即为同一种药物。 关键词:阿司匹林、红外吸收光谱 阿司匹林为白色结晶或结晶性粉末;无臭或微带醋酸臭;遇湿气即缓缓水解。阿司匹林在乙醇中易溶,在三氯甲烷或乙醚中溶解,在水或无水乙醚中微溶;在氢氧化钠溶液或碳酸钠溶液中溶解,但同时分解。应密封,干燥处保存。 阿司匹林是一种历史悠久的解热镇痛药,诞生于1899年3月6日。用于治感冒、发热、头痛、牙痛、关节痛、风湿病,还能抑制血小板聚集,也是非甾体抗炎药,用于预防和治疗缺血性心脏病、心绞痛、心肺梗塞、脑血栓形成,应用于血管形成术及旁路移植术也有效。 与阿司匹林有关的制剂有阿司匹林片,阿司匹林肠溶片,阿司匹林肠溶胶囊,阿司匹林泡腾片,阿司匹林栓。 取阿司匹林约1mg置玛瑙研钵中,加入干燥的溴化钾细粉约200mg 充分研磨混匀,移置于直径为13mm勺压模中,使铺布均匀,压模与真空泵相连,抽真空约2min后,加压至800000 -1000000KPa,保持2 -5min,除去真空,取出制成的供试片,用目视检查应均匀透明,无明显颗粒。将供试品置于仪器的样品光路中,另在参比光路中置一按同法制成的空白溴化钾片作为补偿,录制光谱图。光谱图应与下图一致: 阿司匹林(C9H8O)

乙酰苯胺的制备及红外光谱鉴定

乙酰苯胺的制备及红外光谱鉴定

的。重结晶只适宜杂质含量在5%以下的固体有机混合物的提纯。从反应粗产物直接重结晶是不适宜的,必须先采取其他方法初步提纯,然后再重结晶提纯。重结晶提纯的一般过程为: (1)将不纯的固体有机物在溶剂的沸点或接近沸点的温度下溶解在溶剂中,制成接近饱和的浓溶液。若固体有机物的熔点较溶剂沸点低,则应制成在熔点温度以下的饱和溶液; (2)若溶液含有色杂质,可加入活性炭煮沸脱色; (3)过滤此热溶液以除去其中的不溶性物质及活性炭; (4)将滤液冷却,使结晶自过饱和溶液中析出,而杂质留在母液中; (5)抽气过滤,从母液中将结晶分出,洗涤结晶以除去吸附的母液。所得的固体结晶,经干燥后测定其熔点,如发现其纯度不符合要求,则可重复上述重结晶操作直至熔点达标。 重结晶的关键是选择适宜的溶剂。 合适的溶剂必须具备以下条件: (1)不与被提纯物质发生化学反应; (2)在较高温度时能溶解多量的被提纯物质,

而在室温或更低温度时只能溶解少量; (3)对杂质的溶解度非常大或非常小,前一种情况可让杂质留在母液中不随提纯物质一同析出,后一种情况是使杂质在热过滤时被滤去;(4)溶剂易挥发,易与结晶分离除去,但沸点不宜过低; (5)能给出较好的结晶; (6)价格低、毒性小、易回收、操作安全。 当一种物质在一些溶剂中的溶解度太大,而在另一些溶剂中的溶解度又太小,同时又不能找到一种合适的溶剂时,常可使用混合溶剂而得到满意的结果。 3、乙酰苯胺的红外光谱鉴定 红外光谱是基于分子中原子的振动。由于有机分子不是刚性结构,分子中的共价键就像弹簧一样,在一定频率的红外光辐射下会发生各种形式的振动,如伸缩振动(以υ表示)、弯曲振动(以δ表示)等,伸缩振动中又分为对称伸缩振动(以υa表示)和不对称伸缩振动(以υas表示)。不同类型的化学键,由于它们的振动能级不同,所吸收的红外射线的频率也不同,因而通过分析射线吸收频率谱图(即红外光谱图)就可以鉴别

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

红外光谱分析77952

红外光谱分析 二十世纪初叶,Coblentz 发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1 列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。 表1 常用的有机光谱及对应的微观运动

红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。通常红外光谱系指2-25 μ之间的吸收光谱,常用的为中红外区4000-650cm-1(2.5-15.4 μ) 或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振 动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分 子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱 对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C 为光速(3 ×1010cm/s) 。设υ为波数,其含义是单位长度(1cm) 中所含的波的个数,并应具有以下关系:波数(cm-1) =104/ 波长( μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的 波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%) 表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动( υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的 吸收频率相对在高波数区。 (2)弯曲振动( δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm -1(高) 400cm -1(低) 3、红外光谱吸收峰主要的几种类型 (1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。 (2)倍频峰:出现在基频峰波数二倍处。如基频为900cm-1,倍频为

仪器分析红外光谱实验

仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工112 姓名:王文标学号11402010233 指导教师:张宗勇 日期:2014.4.29

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

红外光谱法测定样品方法

一、红外光谱法测定样品方法 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样 (1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项 1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。 2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。 3. 压片过程应在红外灯照射下进行。 4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重) 5. 易吸水和潮解的样品不宜用压片法。 6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

实验1 红外光谱法鉴定聚合物的结构特征

实验1 红外光谱法鉴定聚合物的结构特征 1.实验目的 (1)了解红外光谱分析法的基本原理。 (2)初步掌握红外光谱样品的制备和红外光谱仪的使用。 (3)红外吸收光谱的应用和谱图的分析方法。 2.实验原理 红外光谱与有机化合物、高分子化合物的结构之间存在密切的关系。它是研究结构与性能关系的基本手段之一。红外光谱分析具有速度快、取样微、高灵敏并能分析各种状态的样品等特点,广泛应用于高聚物领域,如对高聚物材料的定性定量分析,研究高聚物的序列分布,研究支化程度,研究高聚物的聚集形态结构,高聚物的聚合过程反应机理和老化,还可以对高聚物的力学性能进行研究。 红外光谱属于振动光谱,其光谱区域可进一步细分为近红外区(12800~4000cm-1)、中红外区(4000~200cm-1)和远红外区(200~10cm-1)。其中最常用的是4000~400cm-1,大多数化合物的化学键振动能的跃迁发生在这一区域。 图2.18为典型的红外光谱。横坐标为波数(cm-1,最常见)或波长(μm),纵坐标为透光率或吸光度。 图1 聚苯乙烯的红外光谱 在分子中存在着许多不同类型的振动,其振动与原子数有关。含N个原子的分子有3N 个自由度,除去分子的平动和转动自由度外,振动自由度应为3N-6(线性分子是3N-5)。这些振动可分为两类:一类是原子沿键轴方向伸缩使键长发生变化的振动,称为伸缩振动,用υ表示。这种振动又分为对称伸缩振动(υs)和不对称伸缩振动(υas)。另一类是原子垂直键轴方向振动,此类振动会引起分子的内键角发生变化,称为弯曲(或变形)振动,用δ表示,这种振动又分为面内弯曲振动(包括平面及剪式两种振动),面外弯曲振动(包括非平面摇摆及弯曲摇摆两种振动)。图2为聚乙烯中-CH2-基团的几种振动模式。

红外光谱习题答案解析

红外光谱习题 一. 选择题 1.红外光谱是(AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是(ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B ) A:乙烷中C-H 键,=k 510?达因1 -?cm B: 乙炔中C-H 键, =k 510?达因1 -?cm

C: 乙烷中C-C 键, =k 510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 510?达因1 -?cm E:蚁醛中C=O 键, =k 510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变(ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是(C )

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

红外光谱法答案详解

习题 1、下列两个化合物,C=O的伸缩振动吸收带出现在较高的波数区的是哪个为什么 答案: a(共轭效应)>b(空间位阻效应让共轭效应减小)。 2、下图为不同条件下,丁二烯(1,3)均聚物的红外光谱图, 试指出它们的键结构。 3、有一化合物C7H8O,它出现以下位置的吸收峰:3040;3380;2940;1460;690;740;不出现以下位置吸收峰:1736;2720;1380;1182.试推断其结构式 作业 1、试述分子产生红外吸收的条件。 2、何谓基团频率影响基团频率位移的因素有哪些 3、仅考虑C=O受到的电子效应,在酸、醛、酯、酰卤和酰胺类化合物中,出现C=O伸缩振动频率的大小顺序应是怎样 4、从以下红外特征数据鉴别特定的苯取代衍生物C8H10: ①化合物A:吸收带在约790和695cm-1处。 ②化合物B:吸收带在约795cm-1处。 ③化合物C:吸收带在约740和690cm-1处。 ④化合物D:吸收带在约750cm-1处。 5、分别在95%乙醇和正已烷中测定2-戊酮的红外光谱,试预测C=O的伸缩振动吸收峰在哪种溶剂中出现的较高为什么 8. 某化合物的化学式为C6H10O,红外光谱如下图所示,

试推断其结构式。 答案: μ=1+6-5=2说明可能是不饱和烃 3000以上无小尖峰,说明双键不在端碳上 1680-羰基1715连接双键导致共轭移到低波位 1618-碳碳双键 1461-CH- 1380、1360-分裂说明异丙基存在 1215、1175-双峰强度相仿验证双甲基在端碳 816-三取代呈链状 。 9. 某化合物的化学式为C8H14O3,红外光谱如下图所示,试推断其结构式。 答案: μ=1+8-7=2 3000以上无小尖峰,1370峰没分裂,说明没有cc双键

高聚物红外光谱

实验十六 高聚物的红外光谱结构研究 实验目的: (1)掌握红外光谱法的基本原理; (2)熟悉红外光谱仪的操作流程; (3)学会利用红外光谱仪进行不同形态高聚物的结构分析 前言 (1)电磁波 电磁波是一种不需要介质就能传播的波,其波长涵盖范围极大,通常人们将电磁波按照各自的波长范围划分为以下几个部分: -8-6-4-202 图1:电磁波的波长与范围划分 对于电磁波,英国物理学家James Clerk Maxwell(1831~1879)奠定了电磁波的主要理论,其中最基本的要点是在同种介质中,电磁波的波长与频率的乘积是个常数,也即:λν×=c 。 在19世纪末期,人们又提出了电磁波的微粒说,德国科学家Max Karl Ernst Ludwig Planck(1858~1947)与1900年推导出了ν×=h E ,即光量子的能量与其频率成正比,比例常数,也称作Planck 常数,,从而也宣告了量子论的诞生。 s J h /10626.634?×=从以上两个公式可以看出,不同波长的电磁波能量也不同。不同能量的电磁波都分别能引起分子中某一运动形式,因而在化学与材料科学中都有着一定的应用,比如: z 无线电波:磁性核自旋状态的改变;核磁共振(NMR); z 微波:单电子自旋状态的改变;电子自旋共振(ESR); z 红外:分子振动与转动状态的改变;红外谱仪(IR);

z 可见光-紫外:价电子能级跃迁;UV-Vis 分光光度计; z X 射线:激发出内层轨道电子;X 射线光电子能谱(XPS); z γ射线:引起原子核裂变 (2)红外光谱 红外光谱是波长介于0.8~1000μm 的电磁波,而且其还可以更进一步细分为一下三部分: z 远红外(25~1000μm 或 400~10cm-1):分子的振动光谱、重原子成键、氢健、络合物和超分子化合物的非共价键的振动光谱; z 中红外(2.5~25μm 或4000~400cm-1):有机化合物的振动跃迁基频; z 近红外(0.8~2.5μm 或12500~4000cm-1):氢原子成键,如、等的振动倍频和合频。 H O ?H N ?(3)红外光谱仪与实验方法 z 色散型红外光谱:光源发出的红外光先照射试样,而后经过分光器,分解成单 色光,再经过监测器检测其强度,从而得到光谱; z 傅立叶变化红外光谱:光源发射出来的光经过Michelson 干涉仪成为干涉光, 在用干涉光照射样品,经过监测器的只是干涉图。再经过计算机对干涉图进行傅立叶变换才能得到光谱图。 这两种光谱仪的结构原理分别如下所示。 实验原理 本实验的原理:利用傅立叶变化红外光谱仪(FTIR)对具有未知结构的高聚物(或其单体)进行光谱扫描,然后根据特征吸收谱带的信息,并结构其它物理化学性质的信息,来判断所分析物质的化学结构。 仪器与试剂 Nicolet Avatar 370傅立叶变化红外光谱仪(FTIR)、油压制样机、制样模具,人造玛瑙研钵、人造玛瑙研棒、光谱级KBr。 待分析的样品,包括聚合物与相应单体。

红外光谱分析

红外光谱分析 序言 二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。 红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振

动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ) 波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动(υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的吸收频率相对在高波数区。 (2)弯曲振动(δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm-1(高) 400cm-1(低) 3、红外光谱吸收峰主要的几种类型 (1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。 (2)倍频峰:出现在基频峰波数二倍处。如基频为900cm-1,倍频为 1800cm-1。 4、红外光谱吸收峰的强度

油品的红外光谱实验数据分析

图1. 干涉法测液池厚度干涉图

图2.润滑油第一次分析所得图谱及峰数据

图3.润滑油第二次分析所得图谱及峰数据

讨论分析: 由公式l=n/(2*(δ1-δ2)) (1) 注:n为干涉图中波峰数目;【δ1 δ2】扫描波数范围大小 结合图1得出如下结果: n=33 δ1=2000cmˉ1δ2=600cmˉ1 l=0.117857mm 可以看出l的值足够小,能够满足实验的需要。 数据处理: 由图2及图3 的数据记录,结合公式(2)~(4)得到如下表格: C A%=10.32*A1610/l+0.23 (2) C P%=6.9*A720/l+28.38 (3) C N%=100-(C A%+C N%) (4) 表1.图2 数据处理表 峰 基点1 基点2 高度面积C A% C P% C N% 液池池程l 名 1 1620.58 1589.15 0.0384 1.29 3.592448 65.8257 2 30.5818 3 0.117857 2 760.16 691.54 0.6396 12.72

表2.图3数据处理表 峰 基点1 基点2 高度面积C A% C P% C N% 液池池程l 名 1 1683.81 1589.94 0.0426 2.71 3.960215 55.52171 40.51808 0.117857 2 736.84 704.4 3 0.4636 5.92 实验注意事项: 1.实验时液体样品池内两盐片的宽度应该始终保持一致。 2.液体样品用注射器注入液体池中,并且要求没有气泡。 3.在第二次重复操作时,应该将液体池和垫片上的溶剂用四氯化碳洗净吹干。 20091161034 文昊 2011年12月5日

相关主题
文本预览
相关文档 最新文档