当前位置:文档之家› 认识晶体教案

认识晶体教案

认识晶体教案
认识晶体教案

第一节、认识晶体

【教材分析】

通过前面的学习,学生已经初步掌握了原子结构、微粒间的相互作用及实质,

在此基础上过度到宏观的认识物质的聚集状态和性质,学生一般能顺利接受。

本节内容分两课时,第一课时分别从宏观和微观的角度分析晶体的特性和

晶体结构;第二课时采用截取晶胞的方法分析晶体微粒排列的周期性及晶胞中微

粒数的计算方法。

本节课起到承上起下的衔接作用,既是对微粒间相互作用的比较总结,又引

领晶体结构的基本知识与分析结构的方法。学生在日常生活中已经接触过许多晶

体实物,但对什么是晶体还没有一个完整的认识,本节从晶体实物出发,密切联

系学生已有的知识,借助多媒体和实物模型及探究实验,帮助学生理解晶体的典

型特性和晶体微粒周期性的重复排列方式及不同晶体中微粒在空间的堆积方式。

鼓励学生大胆尝试,勇于创新,不拘泥于课本知识,培养发散思维,创新思维意

识;提高自主学习,合作学习的能力。

【教学目标】

知识目标:

从晶体学的角度初步学习晶体的典型特性,会区分晶体和非晶体,会分析晶体微粒及微粒间作用力;通过认识等径球和不等径球的堆积模型来理解晶体中微粒排列的周期性规律。通过对晶胞的认识,学会计算晶胞中微粒的实际个数。

技能目标:

建立思维模型,发挥空间想象力,初步掌握解释物质聚集状态和性质的一般分析方法。

情感态度与价值观目标:

通过了解人类建立晶体学系统知识的历史及模型思想和化学技术在研究晶体中的作用,激发学生的学习兴趣,培养他们科学探究的精神。

【教学方法】启发式、探究式、自主学习、合作学习

【教学工具】多媒体、晶体结构模型、黄白两色乒乓球18个、相同的纸盒两个。【教学重点】使学生初步建立关于晶体的比较完整的知识结构和认知方法。

【教学难点】

1.晶体微粒的空间堆积方式。

2.晶胞中微粒的实际个数的计算方法。

、晶体的特归纳总结:晶体的自

范性

晶体的对称性晶体微粒按

规律周期

性重复排

晶体的各向

异性

将晶体特性与微

粒排列相联系,

加深理解,

自然的导出晶体

的概念

根据晶体特性完善晶体、非晶体

一、晶体的特性

1、晶体的特性晶体的自范性

晶体的对称性晶体微粒按规律周期性重复排列

晶体的各向异性

2、晶体:微粒在空间按一定规律周期性重复排列构成的固体物质

非晶体:微粒在空间杂乱无章的排列形成的固体物质

3

二、晶体结构的堆积模型

1、等径圆球的密堆积(金属晶体)

①密置层:每个等径圆球与其它六个球相接触

②密置双层:每一个球与另一层的三个球相接触

③A

3

型密堆积:ABAB… 例Mg

④A

1

型密堆积:ABCABC…例Cu

2、非等径圆球的密堆积(离子晶体)

①离子晶体的堆积方式:大球先按一定方式做等径圆球的密堆积,小球再填充在大球所形成的空隙中。

②配位数:一个原子或离子周围所邻接的原子或离子的数目称为配位数。例NaCl 中配位数分别为6,6;CsCl中配位数分别为8,8。

1、分子晶体的堆积方式

分子排列与分子形状有关,例:CO

2为A

1

型密堆积

2、原子晶体不是密堆积

三晶体结构的最小重复单元---晶胞

1.晶胞概念:晶体结构中最小的重复单元

2.晶胞中粒子数的计算方法:

切割法的根本原则是:晶胞任意位置上的一个原子如果是被x个晶胞所共有,那么,每个晶胞对这个原子分得的份额就是1/x。

【反思与评价】

该案例设计的理念是从学生与教师在教学过程中各自扮演的角色,到学生学习方式的变革;从学生质疑精神的培养与关注,到学生自主实验探究,结合本课时实际和学生实情制订具体的教学目标,既体现了学生的知识积累,也体现了学生的能力发展,同时给学生的自主发展创造了较大空间。

在教学过程中将教学活动和程序、方法、形式及媒体等各方面之间相互交

织在一起,把教学的导入、教学的实施、拓展以及作业四个环节设计合理成一体。该案例开门见山的直接导入主题,使学生目的明确的进入求知状态,然后经过启发诱导使学生产生兴趣,有了主动探究的愿望;重难点的突破重在体现学生实验探究、自主学习、合作学习以及质疑精神的培养,真正使学生在学中学,在无意识中发展与进步;在作业设计中分为练习和书面作业,切合实际,这也是巩固课堂教学成果的重要环节。在整个教学过程中学生都是主动和积极的。

效果良好!

高中化学《金属晶体》教案 新人教版选修

高中化学《金属晶体》教案新人教版选修 第1 课时 【教材内容分析】 在必修2 中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。 本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。 教学目标1理解金属键的概念和电子气理论2初步学会用电子气理论解释金属的物理性质重点: 金属键和电子气理论难点: 金属具有共同物理性质的解释。 【教学过程设计】 【引入】 大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?

【板书】 一、金属键金属晶体中原子之间的化学作用力叫做金属键。 【讲解】 金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。 这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。 【强调】 金属晶体是以金属键为基本作用力的晶体。 【板书】 二、电子气理论及其对金属通性的解释1电子气理论 【讲解】 经典的金属键理论叫做“ 电子气理论”。它把金属键形象地描绘成从金属原子上“ 脱落” 下来的大量自由电子形成可与气体相比拟的带负电的“ 电子气” ,金属原子则“ 浸泡” 在“ 电子气” 的“ 海洋” 之中。 2金属通性的解释

第三章晶体结构与性质全章教案

第三章晶体结构与性质 第一节晶体常识 第一课时 教学目标: 1、通过实验探究理解晶体与非晶体的差异。 2、学会分析、理解、归纳和总结的逻辑思维方法,提高发现问题、分析问题和解决问题的能力。 3、了解区别晶体与非晶体的方法,认识化学的实用价值,增强学习化学的兴趣。 教学重难点: 1、晶体与非晶体的区别 2、晶体的特征 教学方法建议:探究法 教学过程设计: [新课引入]:前面我们讨论过原子结构、分子结构,对于化学键的形成也有了初步的了解,同时也知道组成千万种物质的质点可以是离子、原子或分子。又根据物质在不同温度和压强 下,物质主要分为三态:气态、液态和固态,下面我们观察一些固态物质的图片。 [投影]:1、蜡状白磷;2、黄色的硫磺;3、紫黑色的碘;4、高锰酸钾 [讲述]:像上面这一类固体,有着自己有序的排列,我们把它们称为晶体;而像玻璃这一类 固体,本身原子排列杂乱无章,称它为非晶体,今天我们的课题就是一起来探究晶体与非晶体的有关知识。[板书]:—、晶体与非晶体 [板书]:1、晶体与非晶体的本质差异 [提问]:在初中化学中,大家已学过晶体与非晶体,你知道它们之间有没有差异? [回答]:学生:晶体有固定熔点,而非晶体无固定熔点。 [讲解]:晶体有固定熔点,而非晶体无固定熔点,这只是晶体与非晶体的表观现象,那么他 们在本质上有哪些差异呢? [投影]晶体与非晶体的本质差异 [板书]:自范性:晶体能自发性地呈现多面体外形的性质。 [解释]:所谓自范性即“自发”进行,但这里得注意,“自发”过程的实现仍需一定的条件。例如:水能自发地从高处流向低处,但不打开拦截水流的闸门,水库里的水不能下泻。 [板书]:注意:自范性需要一定的条件,其中最重要的条件是晶体的生长速率适当。 [投影]:通过影片播放出,同样是熔融态的二氧化硅,快速的冷却得到玛瑙,而缓慢冷却得到水晶过程。[设问]:那么得到晶体的途径,除了用上述的冷却的方法,还有没有其它途径呢?你能列举 哪些? [板书]:2、晶体形成的一段途径: (1)熔融态物质凝固; (2)气态物质冷却不经液态直接凝固(凝华); (3)溶质从溶液中析出。

《分子晶体与原子晶体》教案(人教版选修3)

2 分子晶体与原子晶体 第一课时分子晶体 [教材内容分析] 晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。本节延续前面一节离子晶体,以“构成微粒---晶体类型---晶体性质”的认知模式为主线,着重探究了典型分子晶体冰和干冰的晶体结构特点。并谈到了分子间作用力和氢键对物质性质的影响。使学生对分子晶体的结构和性质特点有里一个大致的了解。并为后面学习原子晶体做好了知识准备,以形成比较。 [教学目标设定] 1.使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。 2.使学生了解晶体类型与性质的关系。 3.使学生理解分子间作用力和氢键对物质物理性质的影响。 4.知道一些常见的属于分子晶体的物质类别。 5.使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。 [教学重点难点] 重点掌握分子晶体的结构特点和性质特点 难点是氢键的方向性和氢键对物体物理性质的影响 从三维空间结构认识晶胞的组成结构 [教学方法建议] 运用模型和类比方法诱导分析归纳 [教学过程设计] 复问:什么是离子晶体?哪几类物质属于离子晶体? (离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体) 教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的? 学生分组讨论回答 板书分子通过分子间作用力形成分子晶体 二、分子晶体 1.定义:含分子的晶体称为分子晶体 也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体 看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体问:还有哪些属于分子晶体? 2.较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。 3.分子间作用力和氢键

晶体的常识(晶胞)教学设计复习进程

晶体的常识(晶胞)教 学设计

教学设计]第三章第一节晶体的常识(晶胞) 江苏省如东高级中学张霞 教学设想 从教材看,本章首先从人们熟悉的固体出发,把固体分为晶体和非晶体两大类,引出了晶体的特征和晶胞的概念。晶胞是描述晶体结构的基本单元,是研究晶体结构的最基本概念,教科书利用图片、比喻等方式介绍了晶体与晶胞的关系,并通过例子介绍了如何计算晶胞中所含的原子数。 本教案选择《晶胞》作为学生自主学习的课题,试图利用多媒体课件和形象比喻等教学方式,使学生建构起晶胞的概念,通过动手制作晶胞模型并把自己制作的晶胞模型拼凑成晶体模型,体会晶胞与晶体之间的关系;再以课本上的问题设置矛盾,通过学生自学讨论,教师的适当点拨,总结归纳出一个晶胞中平均所含粒子个数的计算方法,在此过程中,提升学生的空间想象能力。 一、教学目标分析 知识与技能 1.了解晶体与晶胞的关系,体会由晶胞“无隙并置”构成晶体的过程。 2.通过自学讨论,掌握不同晶胞中平均所含粒子个数的计算方法。 过程与方法 1.运用多种教学媒体,借助形象的比喻,帮助学生建构抽象的空间结构。 2.知道研究晶体结构的一般方法。 情感态度和价值观 1、进一步形成求真务实、勤于思考的科学态度;形成敢于质疑、勇于创新的科学精神。 二、教学内容分析 对本节教学内容的处理方法:利用多媒体演示若干晶体和晶胞,组织学生讨论晶体与晶胞的关系,动手制作晶胞模型,引导学生建立以晶胞为基本结构研究晶体的思想,结合课本图3-7铜晶胞,展示实物模型,提出问题:为什么说一个晶胞里只含4个铜原子?学生自学、讨论并归纳出立方晶胞中平均所含粒子个数的计算方法,然后设置问题:如果为三棱柱晶胞或者六棱柱晶胞,又该如何计算?举一反三,巩固了学生对空间结构的理解和计算。最后利用课本学与问与课后习题3,进行训练反思。 三、教学过程设计 [多媒体演示](1)不同类型的晶体图片:玛瑙、水晶、碘等; (2)同一晶体,不同大小的图片。

苏教版选修3高中化学原子晶体教案

原子晶体 教学目标1.理解原子晶体的概念、结构与性质 2.掌握原子晶体的结构分析 教学重点原子晶体的结构 教学难点原子晶体的结构 教学方法讲授法、探究法、归纳法 教学过程 教学内容 [引入] 原子与原子之间通过共用电子对形成的化学键为共价键,离子键构成离子晶体,金属键构成金属晶体,那么共价键呢?它会构成什么晶体呢? [知识梳理] 1.原子晶体 (1)定义:。 (2)构成微粒: (3)微粒间的作用: (4)典型的原子晶体有 (5)原子晶体的结构 ①金刚石(书P46 图3-26) a.5个碳原子构成正四面体(C—C键长相等,键角)SP3杂化 b.金刚石晶体中的最小碳环由个碳原子组成且它们不在同一平面内 c.金刚石中碳原子个数与C—C键数之比为 d.金刚石晶胞(书P47 图3-27)中的碳原子个数为 e.晶体硅的与金刚石相似。但硅硅键键长大于金刚石中碳碳键键长。 强调:石墨不是原子晶体,是一种混合晶体——层内存在共价键,层间以分子间作用力结合,兼具分子晶体、原子晶体的特征。石墨的结构特点: a.6个碳原子构成平面正六边形(C—C键长相等,键角)SP2杂化 b.石墨晶体中的最小碳环由个碳原子组成且它们在同一平面内,实际平均碳原 子数为个 c.石墨中碳原子个数与C—C键数之比为 d.石墨的熔点与金刚石相比:石墨金刚石(大于、小于、等于) C60也是分子晶体。 ②二氧化硅(书P54 图3-36) SiO2晶体中,每个Si原子周围以共价键结合个O原子,同时每个O原子跟个Si原子结合。其中硅氧原子个数比为,从而形成空间网状结构晶体。 a.每个硅原子与4个O原子构成正四面体,前者在正四面体的中心,后者在正四面

晶体的常识教案

第三章晶体结构与性质 第一节晶体的常识 教学目标: 1、了解晶体的有关常识,知道什么是晶体,什么是晶胞。 2、从微观角度认识晶体的排列方式,会简单计算晶胞的化学式。 3、了解人类探索物质结构的价值,认同“物质结构的探索是无止境的”观点,认识在分子等层次研究物质的意义。 教学重点:晶体、晶胞概念。 教学难点:计算晶胞的化学式。 教学过程: [导课]走进化学实验室,你能见到许多固体,如蜡状的白磷(P4)、黄色的硫黄、紫黑色的碘(I2)和高锰酸钾(KMnO4)、蓝色的硫酸铜(CuSO4·5H20)、白色的碳酸钙等。放眼世界,自然界中绝大多数矿物也都是固体。你一定还能说出生活中常见的更多的固体,如金属、玻璃、陶瓷、砖瓦、水泥、塑料、橡胶、木材…… 你是否知道固体有晶体和非晶体之分?绝大多数常见的固体是晶体,只有如玻璃之类的物质属于非晶体(又称玻璃体)。晶体与非晶体有什么本质的差异呢?今天我们开始学习…。 [板书]第三章晶体结构与性质 第一节晶体的常识 [投影] [思考] [ [ 发生的过程。不过,“自发”过程的实现,仍需要一定的条件。例如,水能白发地从高处流向低处,但不打开拦截水流的闸门,水库里的水就不能下泻。晶体呈现自范性的条件之一是晶体生长的速率适当。熔融态物质冷却凝固,有时得到晶体,但凝固速率过快,常常只得到看不到多面体外形的粉末或没有规则外形的块状物。 [板书]1、晶体的自范性即晶体能白发地呈现多面体外形的性质。 [投影]

[讲述]最有趣的例子是天然的水晶球。水晶球是岩浆里熔融态的Si02侵入地壳内的空洞冷却形成的。剖开水晶球,常见它的外层是看不到晶体外形的玛瑙,内层才是呈现晶体外形的水晶。其实,玛瑙和水晶都是二氧化硅晶体,不同的是,玛瑙是熔融态Si02快速冷却形成的,而水晶则是热液缓慢冷却形成的。 [讨论]除以上水晶和玛瑙是熔融态冷却得到的,根据所学知识还有那些方法得到晶体? [汇报并板书] 2、得到晶体一般有三条途径:(1)熔融态物质凝固;(2)气态物质冷却不经液态直接凝固(凝华); (3)溶质从溶液中析出。 [投影]硫晶体、碘晶体、硫酸铜晶体的获得 [分组实验1] 在一个小烧杯里加入少量碘,用一个表面皿盖在小烧杯上,并在表面皿上加少量冷水。把小烧杯放在石棉网上加热,观察实验现象。 [分组实验2]用显微镜观察几种晶体结构:(K2Cr2O7、KNO3、萘) [板书]3、晶体的自范性是晶体中粒子在微观空间里呈现周期性的有序排列的宏观表象。 [投影] [自学] [提问]什么是晶体的各向异性? [板书]4、晶体的特点①外形和内部质点排列的高度有序性;②各向异性;③晶体的熔点较固定。 [讲述]各向异性:像人们在观察大幅图案画时的视觉感受,对不同的图案画的感受当然是不同的,而对于同一幅图案画来说,由不同的方向审视时,也会产生不同的感受。所以,晶体的某些物理性质的各向异性同样反映了晶体内部质点排列的有序性,而且通过这些性质可以了解晶体的内部排列与结构的一些信息。而非晶体则不具有物理性质各向异性的特点。区分晶体和非晶体最可靠的科学方法是对固体进行X—射线衍射实验,有兴趣的同学可以阅读相关的科学视野。 [分组探讨]1、某同学在网站土找到一张玻璃的结构示意图如图3—5所示,这张图说明

[苏教版]选修3金属键 金属晶体教案

普通高中课程标准实验教科书-化学选修3[苏教版] 专题3微粒间作用力与物理性质 第一单元金属键金属晶体 [学习目标] 1.了解金属晶体模型和金属键的本质 2.认识金属键与金属物理性质的辨证关系 3.能正确分析金属键的强弱 4.结合问题讨论并深化金属的物理性质的共性 5.认识合金及其广泛应用 [课时安排] 3课时 第一课时 [学习内容] 金属键的概念及金属的物理性质 【引入】 同学们我们的世界是五彩缤纷的,是什么组成了我们的世界呢? 学生回答:物质 讲述:对!我们的自然世界是有物质组成的,翻开我们的化学课本的最后一页我们可以看到一张化学元素周期表,不论冬天美丽的雪花,公路上漂亮的汽车。包括你自己的身体都是有这些元素的一种或几种构成的。那么我们现在就来认识一下占周期表中大多数的金属。【板书】 §3-1-1 金属键与金属特性 大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢? 【展示】 几种金属的应用的图片,有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。 【讨论】 请一位同学归纳,其他同学补充。 1.金属有哪些物理共性? 2.金属原子的外层电子结构、原子半径和电离能?金属单质中金属原子之间怎样结合的?【板书】 一、金属共同的物理性质 容易导电、导热、有延展性、有金属光泽等。

二、金属键 【动画演示并讲解】 金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属晶体的组成粒子:金属阳离子和自由电子。金属离子通过吸引自由电子联系在一起, 形成金属晶体.经典的金属键理论把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子,金属原子则“浸泡”在“自由电子”的“海洋”之中。金属键的形象说法: “失去电子的金属离子浸在自由电子的海洋中”. 金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。这种键既没有方向性也没有饱和性, 【板书】 1.构成微粒:金属阳离子和自由电子 2.金属键:金属阳离子和自由电子之间的较强的相互作用 3.成键特征:自由电子被许多金属离子所共有;无方向性、饱和性 【板书】 三、金属键对金属通性的解释 【学生分组讨论】如何应用金属键理论来解释金属的特性?请一位同学归纳,其他同学补充。【板书】 1.金属导电性的解释 在金属晶体中,充满着自由电子,而自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向移动,因而形成电流,所以金属容易导电。 【强调】: 金属受热后,金属晶体中离子的振动加剧,阻碍着自由电子的运动。所以温度升高导电性下降。 2. 金属导热性的解释 金属容易导热,是由于自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。 3.金属延展性的解释 当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。 4.金属晶体结构具有金属光泽和颜色 由于自由电子可吸收所有频率的光,然后很快释放出各种频率的光,因此绝大多数金属具有银白色或钢灰色光泽。而某些金属(如铜、金、铯、铅等)由于较易吸收某些频率的光而呈现较为特殊的颜色。当金属成粉末状时,金属晶体的晶面取向杂乱、晶格排列不规则,吸收可见光后辐射不出去,所以成黑色。 【问题解决】 1.金属晶体的形成是因为晶体中存在() A.金属离子间的相互作用B.金属原子间的相互作用

【VIP专享】晶体结构分析教案

目录 一、结构解析的过程 (一)空间群的确定 (二)结构解析 (三)结构精修 1、结构精修 2、检验精修完毕的参考标准 3、Code.ins文件中的指令和意义 4、CIF文件 5、用WinGX生成键长键角表 二、画图 1、XP中的指令 2、操作实例 三、H键分析 1、策略 2、步骤 3、实例 四、芳香环间的相互作用 1、作用模型 2、判断芳香环间相互作用的步骤 3、实例 五、CIF格式

一、结构解析的过程 WinGX程序平台集成了下列主要程序: 1、确定空间群 (XPREP) 2、结构解析(SHELXS-97、SIR-92、SIR-97、SIR-2002) 3、结构精修 (SHELXL) (一)空间群的确定 打开WinGX, 从标题栏File命令中选择CHANGE PROJECT下的Slect New Project, 此时会出现一个对话框,添加测得数据中的.hkl文件。 1)标题栏Data命令中选择Xprep, 出现一个新的对话框,输入.hkl的文件名。2)出现Select option命令,(HKLF代表衍射强度数据的格式, 矿物晶体通常用HKLF 3进行计算,合成晶体通常用HKLF 4进行计算)通常默认[4]。 3)出现Mean(I/sigma)代表平均信/噪比(该数值要求>7,12~20之间比较好)。 在Enter cell corresponding to indices in files: 命令下输入相应的晶胞参数。4)出现Select option 命令,选择对称性高的选项作为可能的空间群。[ent]后程 序接着显示有关参数,包括晶胞参数,体积,晶格类别等,并提示下一个选项H:Search for higher Metric Symmetry(寻找更高的对称性). H[ent]。 5)程序显示目前的晶胞参数和其它可能的晶胞选择A(或B, C) [ent]。认同程序的选择后,程序提示下一选项:S:Determine or input space group(确定或输入已知的空间群)。S[ent]。 6)程序提供可能的晶系选择,如三斜(P),单斜(M),正交(O)等。[ent]认同程序的选择后,程序将检查各种可能存在的系统消光现象,确认各种可能的空间群,并通过计算衍射数据的Mean[E*E-1]值,提示晶体所属的空间群

《3-3 金属晶体》 教案3

《金属晶体》教案 第1课时 教材内容分析: 在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。 教学目标: 1.理解金属键的概念和电子气理论 2.初步学会用电子气理论解释金属的物理性质 重点: 金属键和电子气理论 难点: 金属具有共同物理性质的解释。 教学过程设计: 引入:大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢? 板书:一、金属键 金属晶体中原子之间的化学作用力叫做金属键。 讲解:金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。 强调:金属晶体是以金属键为基本作用力的晶体。 板书:二、电子气理论及其对金属通性的解释

高二化学选修3第3章第3节金属晶体教案一

高中化学选修——物质结构与性质 专题3 微粒间作用力与物质性质 【教材内容分析】 在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等微粒间作用力的知识,又初步了解了离子晶体、分子晶体和原子晶体等结构知识。本专题内容是在学生学习必修2和从原子、分子水平上认识物质构成的基础上,以微粒之间不同的作用力为线索,侧重研究不同类型物质的有关性质,使学生能更深层次上认识物质的结构与性质之间的关系。本专题分四个单元介绍微粒间作用力与物质性质的关系。第一单元的内容首先从介绍金属键入手,对金属的特性作出了解释,又介绍了影响金属键的主要因素;并在金属键的基础上,简单介绍了金属晶体中晶胞的几种常见的堆积模型以及有关晶胞的计算;最后又拓展了合金的性质与结构。让学生对金属晶体有一个较为全面的认识。第二单元通过复习钠与氯形成氯化钠的过程,使学生理解离子键的形成过程和特点;晶格能与离子型化合物的物理性质的关系以及有关晶胞的计算;最后拓展了离子晶体中阴、阳离子半径比与配位数的关系。使学生对于离子晶体有一个较全面的了解。第三单元通过对氢分子的形成过程的分析,使学生理解共价键的本质和特征;以氮分子、乙烯等共价型物质为例介绍共价键的类型;共价键的键能与化学反应热的关系;原子晶体的性质与键能的内在联系。第四单元介绍范德华力、氢键的形成,以及范德华力、氢键对分子晶体性质的影响。通过本专题的学习,使学生进一步认识晶体的结构与性质之间的关系,也可使学生进一步深化“结构决定性质”的认识。 【课时分配】 第一单元 3课时 第二单元 3课时 【教案设计】 第一单元金属键金属晶体 【知识与技能】 1.通过联系金属实物,复习金属的一些物理共性,使学生理解金属键的概念,初步学会用金属键知识解释金属的物理性质 2.理解金属晶体的概念、构成及物理性质特征;了解金属晶体中晶胞的堆积方式,掌握有关晶胞的计算方法。 【过程与方法】1。通过多媒体动画来展示金属的导电、导热、延展性,使学生理解金属键与金属性质的关系。培养学生的想象力和从微观到宏观的认识方法。 2.通过对晶体结构示意图和晶体模型的观察认识,教会学生研究方法,培养学生的观察

《金属晶体》教案

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 《金属晶体》教案 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

示范课 金属晶体(第二课时) 大同县一中刘华 金属晶体(第二课时) 【教学目标】 知识与技能:1.了解金属晶体内原子的几种常见排列方式 过程与方法:1. 活动探究 情感态度与价值观:1.训练学生的动手能力和空间想象能力。 2.培养学生的合作意识 【教学重点难点】 金属晶体内原子的空间排列方式 【教学过程设计】 【引入】分子晶体中,分子间的范德华力使分子有序排列;原子晶体中,原子之间的共价键使原子有序排列;金属晶体中,金属键使金属原子有序排列。今天,我们一起讨论有关金属原子的空间排列问题。 【分组活动】 利用20个大小相同的玻璃小球,有序地排列在水平桌面上(二维平面上),要求小球之间紧密接触。可能有几种排列方式。讨论每一种方式的配位数。(配位数:同一层内与一个原子紧密接触的原子数) 【学生活动1】 学生分四组活动,各由一人汇报结果。利用多媒体展示,学生排列结果主要介绍以下两种方式。(配位数:同一层内与一个原子紧密接触的原子数)非密置层,配位数4 密置层,配位数6 我们继续讨论,原子在三维空间的排列。首先讨论非密置层这种情况。 【学生活动2】

非密置层排列的金属原子,在空间内可能的排列。汇总各类情况逐一讨论。 (一)简单立方体堆积 这种堆积方式形成的晶胞是一个立方体,每个晶胞含1个原子,被称为简单立方堆积。这种堆积方式的空间利用率太低(52%),只有金属钋采取这种堆积方式。 (二)体心立方堆积(钾型) 如果是非密置层上层金属原子填入下层的金属原子形成的凹穴中,每层均照此堆积,如下图: 这种堆积方式的空间利用率显然比简单立方堆积的高多了(68%),许多金属是这种堆积方式,如碱金属,简称为钾型。 【学生活动3】 密置层的原子按钾型堆积方式堆积,会得到两种基本堆积方式,镁型和铜型。镁型如下图左侧,按ABABABAB……的方式堆积;铜型如图右侧,按ABCABCABC……的方式堆积.这两种堆积方式都是金属晶体的最密堆积,配位数均为12,空间利用率均为74℅,但所得的晶胞的形式不同. (三)六方最密堆积(镁型) (四)面心立方最密堆积(铜型) B C A [归纳与整理]金属晶体的四种堆积模型对比 (五)资料卡片 混合晶体 石墨不同于金刚石,这的碳原子不像金刚石的碳原子那样呈sp3杂化.而是呈sp2杂化,形成平面六元并环结构,因此石墨晶体是层状结构的,层内的碳原子

MaterialsStudio软件辅助晶体结构教学-最新教育资料

Materials Studio 软件辅助晶体结构教学 i=r 晶体的结构及其规律性是固体物理课程的重要组成部分,时也是材料科学与基础、固体电子学等课程的重要基础内容 [1-4] 。其所涉及的晶体结构复杂,概念、原理抽象,学生普遍反映难学、教师感觉难教。鉴于晶体结构的教学对于后续课程内容的基础地位,如何激发学生学习这部分内容的兴趣进而提高教学效果,教师教学观念的转变、教学方法的改进以及先进教学手段的引入就显得尤为重要。Materials Studio 是一款功能强大,操作简便且可在一般PC 机上运行的分子模拟软件[5]。该软件不仅能方便地建立各种晶体的三维结构模型,还能计算和模拟晶体的X 射线、中子及电子等粉末衍射图谱,进而确定晶体的结构 [6-7] 。本文选取晶体结构教学中晶体的结构及其对称性、晶胞/ 原胞、晶面/晶向、X射线衍射等概念及原理,使用Materials Studio 分子模拟软件对这些知识点、概念及原理进行了可视化及具体的计算分析,以期为提高晶体结构的教学效果提供参考。 1 Materials Studio (MS 软件应用 1.1直观显示晶体结构,加深对晶体对称性的认识 中导入不同从MS软件菜单命令File f Import f Structure 的晶体结构,图1给出了超导体YBa2Cu3O7勺晶体结构,向学生直观、生动形象地展示了YBa2Cu3O7l体的3D结构,以开阔学

生的视野;通过旋转、移动、缩放所建晶体结构,使学生从不同角度观察认识所建的晶体结构及其对称性;再从菜单命令 Build fShow SymmetryfSymmetry Group,向学生讲解菜单对话框中各种符号的含义,加深学生对晶体对称性的认识。 1.2晶胞、原胞的区别 晶胞与原胞是晶体学中两个重要且易混淆的概念。在教学中一般告诉学生原胞是晶体中最小的周期性重复单元,而晶胞是晶 体最小周期性重复单元的几倍。多数教材此处是以简立方、体心 立方、面心立方结构为例向学生说明原胞、晶胞的区别[1-3] 。有了MS软件以后,可以扩充到其它结构的晶体。以图2给出的 Si的晶体结构为例来说明原胞与晶胞的区别。从MS软件点击菜 单命令File f Import f Structure f Semic on ductor f Si,导入 的结构即为Si 的晶胞结构(也叫惯用原胞,单胞),接着点击菜单Build fSymmetryfPrimitive Cell ,即可得到该晶体的原 胞,点击菜单Build fSymmetryfConventional Cell ,可在Si 晶体的晶胞和原胞间进行转换。引导学生得出以下结论:晶胞所在重复单元体积大于原胞所在单元的体积;一个晶胞中可包含多个原子(一个Si 晶胞中包含8 个原子),而一个原胞中一般仅含一个原子;晶胞的对称性程度高于原胞的。 1.3晶面、晶向概念的引入 以Cu晶体结构为例,在一个新的3D文档中导入金属Cu的 晶体结构,建立Cu晶体的超胞结构,显示该晶体在不同平面上 及不同方向上原子的排列情况,使学生首先对晶体的周期性结构 有一个直观的认识,接着向学生演示Cu晶体可看成是由一系列 分布在(100)、(110)或(111)等相互平行等距的晶面上的

分子晶体与原子晶体教案

教学过程1.概念: 只含分子的晶体称为分子晶体。 2.结构特点: (1)分子晶体中存在的粒子:分子。 (2)粒子间的作用力: ①分子内原子间以共价键相结合。 ②若分子间作用力只是范德华力,由于范德华力不具有方 向性,因此分子晶体有分子密堆积特征,即通常每个分子 周围有12个紧邻的分子。 例如:干冰晶体 干冰结构模型每个分子周围有12个紧邻的分子 a.干冰在常压下极易升华 b.干冰中的CO 2 分子间只存在范德华力而不存在氢键, 一个CO 2 分子周围等距紧邻的CO 2 分子有12个。 ③若分子间含有其它作用力,如氢键,则每个分子周围紧 邻的分子数要少于12个。 例如:冰 冰的结构模型每个水分子周围只有4个紧邻的分子 a.冰晶体中水分子间的主要作用力是氢键,当然也存在 范德华力。 从本质上揭示 分子内部的结 构。 使用模型、图 片,增强学生 的观察力。 借助图片的观 察,增强学生 的总结归纳能 力。

教学过程 b.氢键有方向性,它的存在迫使在四面体中心的每个水 分子与四面体顶角方向的4个相邻水分子互相吸引。 3.分子晶体种类: (1)所有非金属氢化物,如:H2O、H2S等。 (2)部分非金属单质,如:白磷(P4)、卤素(X2)等。 (3)部分非金属氧化物,如:CO2、SO2等。 (4)几乎所有的酸,如:HNO3、H2SO4等。 (5)绝大多数有机物的晶体,如:乙酸、苯等。 4.分子晶体的物理性质及熔沸点变化规律: (1)因为分子晶体是通过分子间作用力结合构成的,分子 间作用力较弱,故分子晶体的熔、沸点较低,硬度较小。 (2) 熔沸点变化规律: ①对组成和结构相似、晶体中不含氢键的物质来说,随 着相对分子质量的增大,分子间作用力增强,熔沸点升高。 如:卤素单质,四卤化碳,稀有气体等。 ②有机物中,同分异构体支链数越多,熔沸点越低。 ③如果分子间存在氢键,则其沸点要高于组成和结构相 似的没有氢键的分子晶体,如沸点:H 2 O>H 2 S;HF>HCl;NH 3 >PH 3 二.原子晶体: 1.概念: 相邻原子间以共价键相互结合形成的具有三维的共价键网 状结构的晶体,叫原子晶体,又叫共价晶体。 2.结构特点: (1)原子晶体的基本粒子:原子。 (2)形成原子晶体的作用力:共价键。 3.典型的原子晶体: (1)金刚石: ①在晶体中每个碳原子以 四个共价键与相邻的4 个碳原子相结合。金刚石的晶体结构模型 按类别总结, 便于学生记 忆。 由物质的本质 (结构)决定 物质的特征 (现象),增强 学生辩证唯物 主义观念。 从本质上定 义,便于学生 今后判断。 利用图形和模 具直观教学,

2019-2020年高中化学《金属晶体》教案22 新人教版选修3

2019-2020年高中化学《金属晶体》教案22 新人教版选修3 【教学目标】 1.了解金属晶体内原子的几种常见排列方式 2.训练学生的动手能力和空间想象能力。 3.培养学生的合作意识。 【教学重点】金属晶体内原子的空间排列方式 【教学难点】金属晶体内原子的空间排列方式 【教学方法】讲授法、探究法、实验法。 【教学具备】铁架台、烧杯、铁圈、分液漏斗(球形、锥形)、试管、试管架、胶头滴管;四氯化碳、碘水、油水混合物 【教学过程】

两种排列方式小球的配位数分别

2019-2020年高中化学《金属晶体》教案5 新人教版选修3教学目标: 1. 知道金属键的涵义,能用金属键理论解释金属的一些物理性质。 2.能列举金属晶体的基本堆积模型。 教学重点、难点:能用金属键理论解释金属的一些物理性质。 探究建议: 1,讨论:为什么金属晶体具有导电性、导热性和金属光泽? 2、讨论:模型方法在探索原子结构中的应用。 3、用橡皮泥制作三种晶体的模型。 课时划分:一课时 教学过程: [设问]同学们都知道金属能导电、导热、有延展性,金属为什么具有这些性质?金属中的自由电子来源于哪里? [板书]第三节金属晶体 一、金属键 [讲述]要想解释金属的各种物理性质,让我们先来认识“金属键与电子气理论”。 [板书]1、金属键与电子气理论: [讲解]描述金属键本质的最简单理论是“电子气理论”。该理论把金属键描述为金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起。由此可见,金属晶体跟原子晶体一样,是一种“巨分子”。金属键的强度差别很大。例如,金属钠的熔点较低、硬度较小,而钨是熔点最高、硬度最大的金属,这 [板书]金属键为金属原子脱落下来的价电子形成遍布整块晶体的“电子气”。脱落下来的价电子又称自由电子。 [思考]怎样用电子气理论解释的各种物理性质呢? [讲解]电子气理论还可以用来解释金属材料良好的延展性。当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,而且弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以金属都有良好的延展性。当向金属晶体中掺人不同的金属或非金属原子时,就像在滚珠之间掺人了细小而坚硬的砂土或碎石一样,会使这种金属的延展性甚至硬度发生改变,这也是对金属材料形成合金以后性能发生改变的一种比较粗浅的解释。 [ [

高中化学选修3第三章《晶体结构与性质》章教学设计

选修3第三章《晶体结构与性质》章教学设计 东莞市第一中学刘国强 一、本章教材体现的课标内容 1、主题:第一节晶体的常识 了解晶胞的概念,会计算晶胞中原子占有个数,并由此推导出晶体的化学式。 2、主题:第二节分子晶体与原子晶体 知道分子晶体与原子晶体的结构微粒、微粒间作用力的区别。 了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 3、主题:第三节金属晶体 知道金属键的涵义,能用金属键理论解释金属的一些物理性质。 能列举金属晶体的基本堆积模型。 知道金属晶体的结构微粒、微粒间作用力与分子晶体、原子晶体的区别。 4、主题:第四节离子晶体 能说明离子键的形成,能根据离子化合物的结构特征解释其物理性质。 知道离子晶体的结构微粒、微粒间作用力与分子晶体。原子晶体、金属晶体的区别。 了解晶格能的应用,知道晶格能的大小可以衡量离子晶体中离子键的强弱。 二、本章教材整体分析 (一)教材地位 本单元知识是在原子结构和元素周期律以及化学键等知识的基础上介绍的,是原子结构和化学键知识的延伸和提高;本单元知识围绕晶体作了详尽的介绍,晶体与玻璃体的不同,分子晶体、原子晶体、金属晶体、离子晶体,从构成晶体的微粒、晶胞、微粒间的作用力,熔沸点比较等物理性质做了比较,结合许多彩图及详尽的事例,对四大晶体做了阐述;同时,本单元结合数学立体几何知识,充分认识和挖掘典型晶胞的结构,去形象、直观地认识四种晶体,在学习本单元知识时,应多联系生活中的晶体化学,去感受生活中的晶体美,去感受环境生命科学、材料中的晶体知识。 “本章比较全面而系统地介绍了晶体结构和性质,作为本书的结尾章,与前两章一起构成“原子结构与性质、分子结构与性质、晶体结构与性质”三位一体的“物质结构与性质”模块的基本内容。” “通过本章的学习,结合前两章已学过的有关物质结构知识,学生能够比较全面地认识物质的结构及结构对物质性质的影响,提高分析问题和解决问题的能力。” (二)内容体系 本单元知识内容分为两大部分,第一节简单介绍晶体的常识,区别晶体与非晶体,认识什么是晶胞:第二部分分为三节内容,第二节“分子晶体和原子晶体”分别介绍了分子晶体和原子晶体的结构特征及晶体特性,在陈述分子晶体的结构特征时,以干冰为例,介绍了如果分子晶体中分子问作用力只是范德华力时,分子晶体具有分子密堆积特征;同时,教科书以冰为例,介绍了冰晶体里由于存在氢键而使冰晶体的结构具有其特殊性。在第三节“金属晶体”中,首先从“电子气理论”介绍了金属键及金属晶体的特性,然后以图文并茂的方式描述了金属晶体的四种基本堆积模式。在第四节“离子晶体”中,由于学生已学过离子键的概念,教科书直接给出了NaCl和CsCl两种典型离子晶体的晶胞,然后通过“科学探究”讨论了NaCl和CsCl两种晶体的结构;教科书还通过例子重点讨论了影响离子晶体结构的几何因素和电荷因素,而对键性因素不作要求。晶格能是反映离子晶体中离子键强弱的重要数据,教科书通过表格形式列举了某些离子晶体的晶格能,以及晶格能的大小与离子晶体的性质的关系。

原子晶体教案(公开课)

专题3 第三单元《原子晶体》导学案 【考纲要求】 1、了解原子晶体的特征; 2、能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 【学习目标】 1、了解原子晶体的特征; 2、学会比较原子晶体熔沸点高低、硬度大小; 3、掌握金刚石、二氧化硅原子晶体的结构; 4、了解判断原子晶体的方法。 【学习重难点】 原子晶体的特征、原子晶体熔沸点高低的影响因素、金刚石、二氧化硅原子晶体的结构 【导学过程】 引言:同学们好,很高兴有时间能与同学们共同学习。高二(2)班班风正、学风浓,今天我们将以小组为单位,采取组内合作、组间竞争的方式展开学习,相信同学定能勇于提出回答问题,展现高二(2)班的学生风采,你们有信心吗? 学生:有 让我们先来看两幅图片: 投影幻灯片1: 图片1:在象征最高权利的英王权杖上,镶嵌着世界上最大的一颗钻石,无瑕中透着淡蓝,形似水滴,重530.2克拉。 图片2:世界上最大的有色钻石,原石890克拉,切磨出了407.48克拉(81.50克)的梨形钻,在1988年拍卖会中以1250万美元成交。 教师:钻石莹剔透,光芒四射,一句话“钻石恒久远,一颗永流传”的已深入人心。 教师(边说边投影投影幻灯片2:金刚石图片、项链、钻头和玻璃刀):纯净的金刚石是无色透明、正八面体形状的固体。天然采集到的金刚石经过仔细琢磨后,可以成为璀璨夺目的装饰品——钻石,可制成项链。这是用金刚石制成的钻头和玻璃刀。 质疑: (1)通过刚才的图片,结合已有的知识,谈谈金刚石有哪些用途以及 这些用途反映了金刚石的什么性质? 金刚石钻头和切具、砂轮和石英都很坚固,硅太阳能电池中的硅板历经 风吹雨淋日晒,不改其性等 熔点和沸点高、硬度大、难溶于一些常见的溶剂…… 追问:为什么金刚石具有这些物理特性呢? 结构决定性质。事实上,金刚石具有很高的熔点、沸点和很大的硬度, 你能结合金刚石晶体结构示意图(图示和桌上模型),解释其中的原因吗? (提示:结构的特点是什么?共价键的特点是什么?) 学生:由于金刚石晶体中所有原子都是通过共价键结合的,而共价键的键能大,如C-C键的键能为 348kJ·mol-1。所以金刚石晶体熔、沸点很高,硬度很大。

第三章《晶体结构与性质》《晶体的常识》教学设计

第三章《晶体结构与性质》《晶体的常识》教学设计 一、教学目标 1、知识与技能 (1)知道获得晶体的几种途径 (2)理解晶体的特点和性质及晶体与非晶体的本质区别 (3)初步学会确定一个晶胞中平均所含粒子数的方法 2、过程与方法 (1)收集生活素材,结合已有知识和生活经验对晶体与非晶体进行分类 (2)学生通过观察、实验等方法获取信息 (3)学会运用比较、分类、归纳、概括等方法对获取的信息进行加工 3、情感态度与价值观 (1)培养学生科学探究的方法 (2)培养学生的动手能力、观察能力、自主学习的能力,保持对生活中化学的好奇心和探知欲,增强学生学习化学的兴趣。 二、教学重点 1、晶体的特点和性质及晶体与非晶体的本质区别 2、确定一个晶胞中平均所含粒子数的方法 三、教学难点 1、确定一个晶胞中平均所含粒子数的方法 四、教学用品 课前学生收集的各种固体物质、玛瑙耳坠和水晶项链、蜂巢、晶胞实物模型、乒乓球、铁架台、酒精灯、蒸发皿、圆底烧瓶、碘、水、多媒体等 五、教学过程 1.新课导入: [教师]上课前,我已经请同学们收集了一些身边的固体物质,大家都带来了吗?(学生:带来了)你们都带来了哪些固体呢?(学生七嘴八舌,并展示各自的固体)[教师]同学们带来的固体物质可真是琳琅满目啊!但是,我们每个人可能只带了几样,想知道别人收集了哪些固体物质吗?(学生:想)下面我们请前后四个同学组成一个小组,然后互相交流一下收集的各种固体物质,并讨论如何将这些固体物质进行分类呢? [分组讨论]互相交流各自所带的物品,并分类(教师进行巡视) [教师]:请这组同学将你们带来的固体和交流的结果汇报一下。 [学生汇报]:(我们讨论后觉得将粗盐、明矾、樟脑丸分为一类;塑料、玻璃片、橡胶分为另一类。教师追问:你们为什么会这样分呢?生:根据这些有规则的几何外形,而另一些没有。) [教师总结]这组同学收集的物品很丰富,并通过组内讨论确定了分类依据,然后进行了恰当的分类。其实,同学们也许没有留心观察,我们身边还有许多美丽的固体,当然也有的可能是我们日常生活中不易接触到的。下面,我们就一起欣赏一下这些美丽的固体。 [视频投影]雪花放大后的形状、烟水晶、石膏、毒砂、绿柱石、云母等晶体实物(并配以相应的解说,给学生了解到这些固态物质都有规则的几何外形。) [教师讲述]我们就将这些有规则几何外形的固体称之为晶体,而另一些没有规则几何外形的固体称之为非晶体。 [板书]一、晶体与非晶体 设计意图:课前请同学收集身边的固态物质,然后在课堂上展示,并分组交流讨论,最后进行分类,并在课堂上汇报。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化

《金属晶体》教案

示范课 金 属 晶 体 ( 第 二 课 时 ) 大同县一中刘华

金属晶体(第二课时) 【教学目标】 知识与技能:1.了解金属晶体内原子的几种常见排列方式 过程与方法:1. 活动探究 情感态度与价值观:1.训练学生的动手能力和空间想象能力。 2.培养学生的合作意识 【教学重点难点】 金属晶体内原子的空间排列方式 【教学过程设计】 【引入】分子晶体中,分子间的范德华力使分子有序排列;原子晶体中,原子之间的共价键使原子有序排列;金属晶体中,金属键使金属原子有序排列。今天,我们一起讨论有关金属原子的空间排列问题。 【分组活动】 利用20个大小相同的玻璃小球,有序地排列在水平桌面上(二维平面上),要求小球之间紧密接触。可能有几种排列方式。讨论每一种方式的配位数。(配位数:同一层内与一个原子紧密接触的原子数) 【学生活动1】 学生分四组活动,各由一人汇报结果。利用多媒体展示,学生排列结果主要介绍以下两种方式。(配位数:同一层内与一个原子紧密接触的原子数) 非密置层,配位数4 密置层,配位数6 我们继续讨论,原子在三维空间的排列。首先讨论非密置层这种情况。 【学生活动2】 非密置层排列的金属原子,在空间内可能的排列。汇总各类情况逐一讨论。(一)简单立方体堆积

这种堆积方式形成的晶胞是一个立方体,每个晶胞含1个原子,被称为简单立方堆积。这种堆积方式的空间利用率太低(52%),只有金属钋采取这种堆积方式。(二)体心立方堆积(钾型) 如果是非密置层上层金属原子填入下层的金属原子形成的凹穴中,每层均照此堆积,如下图: 这种堆积方式的空间利用率显然比简单立方堆积的高多了(68%),许多金属是这种堆积方式,如碱金属,简称为钾型。 【学生活动3】 密置层的原子按钾型堆积方式堆积,会得到两种基本堆积方式,镁型和铜型。镁型如下图左侧,按ABABABAB……的方式堆积;铜型如图右侧,按ABCABCABC……的方式堆积.这两种堆积方式都是金属晶体的最密堆积,配位数均为12,空间利用 率均为74℅,但所得的晶胞的形式不同.

相关主题
文本预览
相关文档 最新文档