当前位置:文档之家› 高考物理二轮典型例题冲刺测试《专题8磁场》(含解析)

高考物理二轮典型例题冲刺测试《专题8磁场》(含解析)

高考物理二轮典型例题冲刺测试《专题8磁场》(含解析)
高考物理二轮典型例题冲刺测试《专题8磁场》(含解析)

2013年高考物理二轮典型例题冲刺测试《专题8磁场》(含解析)

1. 2012·河北衡水中学调研如图所示,平行于纸面水平向右的匀强磁场,磁感应强度B 1=1T .位于纸面内的细直导线,长L =1m ,通有I =1 A 的恒定电流.当导线与B 1成60°夹角时,发现其受到的安培力为零,则该区域同时存在的另一匀强磁场的磁感应强度B 2的可能值是( )

A.1

2T B.32

T C .1T

D.3T

[解析] 当导线与B 1成60°夹角时,发现其受到的安培力为零,说明该区域同时存在着另一匀强磁场B 2,并且B 2与B 1的合磁场的磁感应强度方向沿导线方向,根据矢量合成的三角形定则,可知B 2≥B 1sin60°=

32T ,所以B 2的值不可能为1

2T ,选项A 错误,本题选B 、C 、D. [答案] BCD 2.

2012·全国,17质量分别为m 1和m 2、电荷量分别为q 1和q 2的两粒子在同一匀强磁场中做匀速

圆周运动.已知两粒子的动量大小相等.下列说法正确的是( )

A .若q 1=q 2,则它们做圆周运动的半径一定相等

B .若m 1=m 2,则它们做圆周运动的半径一定相等

C .若q 1≠q 2,则它们做圆周运动的周期一定不相等

D .若m 1≠m 2,则它们做圆周运动的周期一定不相等

[解析] 带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,即qvB =mv 2

r

,得轨道半径r

mv qB =p qB ,已知两粒子动量大小相等,若q 1=q 2,则r 1=r 2,A 项正确;若m 1=m 2,r 与1

q

有关,B 项错误;带电粒子在磁场中运动的周期T =2πm qB

=2πp qBv

,因此运动周期T ∝m q 或1qv

,若m 1≠m 2,但m 1q 1=m 2q 2

,周期T 可相等,D 项错误;若q 1≠q 2,但q 1v 1=q 2v 2,周期T 也可相等,C 项错误.

[答案] A 3.

2012·吉林实验中学二模,18如图所示,一带电塑料小球质量为m ,用丝线悬挂于O 点,并在

竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面.当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为( )

A .0

B .2mg

C .4mg

D .6mg

[解析] 设小球自左方摆到最低点时速度为v ,则12mv 2=mgL (1-cos60°), 此时qvB -mg =m v

2

L

,当小

球自右方摆到最低点时,v 大小不变,洛伦兹力方向发生变化,T -mg -qvB =m v 2

L

,得T =4mg ,故C 正确.

[答案] C 4.

2012·北京理综,16处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将

该粒子的运动等效为环形电流,那么此电流值( )

A .与粒子电荷量成正比

B .与粒子速率成正比

C .与粒子质量成正比

D .与磁感应强度成正比

[解析] 粒子仅在磁场力作用下做匀速圆周运动有qvB =m v 2R ,得R =mv qB ,周期T =2πR v =2πm

qB ,其等

效环形电流I =q T =q 2B

2πm

,故D 选项正确.

[答案] D 5.

2012·安徽“江南十校”联考如图所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,

边界OA 上有一粒子源S .某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T

6(T 为粒子在磁场中运动的周

期),则从边界OC 射出的粒子在磁场中运动的最长时间为( )

A.T

3 B.T

2 C.2T 3

D.5T 6

[解析]

由左手定则知,粒子做逆时针圆周运动;粒子速度大小相同,故弧长越小,粒子在磁场中运动的时间就越短,过S 作OC 的垂线SD ,如图所示,粒子轨迹过D 点时在磁场中运动的时间最短;因磁场中运动的最短时间等于T

6,故∠SO ′D =60°,由几何关系得,粒子做圆周运动的半径等于SD ;由于粒子沿逆时针方

向运动,故沿SA 方向射入的粒子在磁场中运动的时间最长,由几何关系知,粒子在磁场中运动的轨迹恰为半圆,故粒子在磁场中运动的最长时间为T

2

,选项B 正确.

[答案] B 6.

2012·郑州三模,16如图甲所示,某空间存在着足够大的匀强磁场,磁场沿水平方向.磁场中

有A 、B 两个物块叠放在一起,置于光滑水平面上.物块A 带正电,物块B 不带电且表面绝缘.在t =0时刻,水平恒力F 作用在物块B 上,物块A 、B 由静止开始做加速度相同的运动.在物块A 、B 一起运动的过程中,图乙反映的可能是( )

A.物块A所受洛伦兹力大小随时间t变化的关系

B.物块A对物块B的摩擦力大小随时间t变化的关系

C.物块A对物块B的压力大小随时间t变化的关系

D.物块B对地面压力大小随时间t变化的关系

[解析] 洛伦兹力F=qvB=qBat,所以A错误.物块A对物块B的摩擦力大小f=m A a,所以f随时间t的变化保持不变,B错误.A受的支持力N=m A g+qvB=m A g+qBat,C正确.B受地面的支持力N′=(m A +m B)g+qBat,D正确.

[答案] CD

7.2012·全国,18如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、o、b在M、N的连线上,o为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到o点的距离均相等.关于以上几点处的磁场,下列说法正确的是( )

A.o点处的磁感应强度为零

B.a、b两点处的磁感应强度大小相等,方向相反

C.c、d两点处的磁感应强度大小相等,方向相同

D.a、c两点处磁感应强度的方向不同

[解析] 根据安培定则可知M、N导线中的电流在o点产生的磁场方向均垂直MN连线,由o→d,故o 处的磁感应强度不为零,选项A错误;由于M、N两导线中电流大小相等,根据对称性知B a=B b,磁感应强度方向均垂直于M、N连线,方向相同,选项B错误;c、d关于o点对称,M、N两导线中的电流在c、d 两点产生的磁感应强度的矢量和相等且方向均为c→d,选项C正确,由于a、b、c、d四点磁感应强度方

向均相同,选项D 错误.

[答案] C 8.

2012·山西省高三如图,足够长的U 形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中

MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止

开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,金属棒的速度大小为v ,则金属棒ab 在这一过程中( )

A .ab 棒运动的平均速度大小为1

2v

B .沿导轨方向的位移大小为qR BL

C .产生的焦耳热为qBLv

D .受到的最大安培力大小为B 2L 2v

R

sin θ

[解析] 由ab 棒受力情况可知,ab 棒不是匀变速直线运动,因此ab 棒运动的平均速度大小不是1

2

v ,

选项A 错误;当流过ab 棒某一横截面的电荷量为q 时,q =I t ,I =

BL v

R

,沿导轨方向的位移x =v t

=qR BL ,选项B 正确;由功能关系可知选项C 错误;当金属棒的速度大小为v 时,安培力最大,F =BIL =B 2L 2v R

,故D 错误.

[答案] B 9.

2012·海南单科,10图中装置可演示磁场对通电导线的作用.电磁铁上下两磁极之间某一水平

面内固定两条平行金属导轨,L 是置于导轨上并与导轨垂直的金属杆.当电磁铁线圈两端a 、b ,导轨两端

e 、

f ,分别接到两个不同的直流电源上时,L 便在导轨上滑动.下列说法正确的是( )

A.若a接正极,b接负极,e接正极,f接负极,则L向右滑动

B.若a接正极,b接负极,e接负极,f接正极,则L向右滑动

C.若a接负极,b接正极,e接正极,f接负极,则L向左滑动

D.若a接负极,b接正极,e接负极,f接正极,则L向左滑动

[解析] 若a接正极,b接负极,电磁铁磁极间磁场方向向上,e接正极,f接负极,由左手定则判定金属杆受安培力向左,则L向左滑动,A项错误,同理判定B、D选项正确,C项错误.[答案] B D

10.2012·山东济南高三如图所示,在空间中存在垂直纸面向外,宽度为d的有界匀强磁场.一质量为m,带电荷量为q的粒子自下边界的P点处以速度v沿与下边界成30°角的方向垂直射入磁场,恰能垂直于上边界射出,不计粒子重力,题中d、m、q、v均为已知量.则

(1)粒子带何种电荷;

(2)磁场磁感应强度为多少.

[解析]

(1)粒子带正电.

(2)粒子在磁场中运动轨迹如图所示,设圆周运动半径为r ,由几何关系可得r cos30°=d

由向心力公式qvB =m v 2

r

由以上两式可解得B =

3mv 2qd

. 11.2012·福建龙岩市高三质检如图所示,真空中有一垂直纸面向内的匀强磁场,一根轻绳固定于场内的O 点,绳的末端拴一绝缘带电小球.已知磁场的磁感应强度为B ,绳长为L ,小球带电荷量为+q ,质量为m .让小球在图示的竖直平面内摆动,绳与竖直方向的最大偏角为θ.

[

(1)若摆球能正常摆动,求摆球从右向左运动与从左向右运动经过最低点时,绳子的拉力之差. (2)为保证摆球能正常摆动,对磁感应强度B 有什么限制? [解析] (1)从最高点向最低点运动时,有

mgL (1-cos θ)=12

mv 2

当摆球从左向右运动经过最低点时,有

T 1+qvB -mg =m v 2

L

当摆球从右向左运动经过最低点时,有

T 2-qvB -mg =m v 2

L

由①②③得T 2-T 1=2qB 2gL

1-cos θ

(2)摆球从右向左摆动时洛伦兹力背离O 点,摆动正常;摆球从左向右摆动时,洛伦兹力指向O 点(从最高点到最低点的摆动过程中,洛伦兹力增大,绳子拉力可能一直减小,也可能先减小后增大),设摆线与竖直方向成α角时,绳的拉力最小.

设摆球在角α位置时,速率为v 1,绳的拉力刚好为零. 由动能定理得mgL (cos α-cos θ)=12

mv 2

1

⑤ 在角α位置处,qv 1B -mg cos α=m v 21

L

⑥ 由⑤⑥解得:B =mg cos θqv 1+3mv 1

2qL

mg cos θqv 1=3mv 1

2qL

,即v 1=2

3

gL cos θ时 ⑧ 磁感应强度有最小值B min =

m

q

6g cos θ

L

(B 小于此值,绳子在任意位置都有拉力,能正常摆动;B 等于此值,绳子在此位置的拉力刚好为零,刚好能正常摆动;B 大于此值,摆球离开圆轨道,不能正常摆动)

把⑧代入⑤可得cos α=4

3

cos θ

讨论:cos α≤1才有意义,由⑩得cos θ≤34,即θ≥arccos 3

4

?

当θ≥arccos 3

4

时,满足正常摆动的条件是:

B ≤m q

6g cos θ

L

?

当θ

4时,摆球在最低点时洛伦兹力最大,绳子拉力最小

由①②并令T 1=0可解得:B max =

mg 3-2cos θ

q 2gL 1-cos θ

.

(没有讨论直接求在最低点T =0,正确的给2分) 12.2012·重庆理综,24

有人设计了一种带电颗粒的速率分选装置,其原理如图所示.两带电金

属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1

k

的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间,

其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板.重力加速度为g ,PQ =3d ,

NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间相互作用.求

(1)电场强度E 的大小; (2)磁感应强度B 的大小;

(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. [解析] (1)设带电颗粒的电荷量为q ,质量为m .有Eq =mg

将q m =1

k

代入,得E =kg (2)如图1,有qv 0B =m v 20

R

R 2=(3d )2+(R -d )2

得B =

kv 0

5d

(3)如图2所示,有qλv 0B =m

λv 0

2

R 1

tan θ=

3d

R 21

-3d 2

y 1=R 1-R 21-

3d 2

y2=l tanθ,y=y1+y2

得y=d(5λ-25λ2-9+

3l

25λ2-9

.

高考物理经典专题:时间与空间

高考物理经典专题:时间与空间 力与运动 思想方法提炼 一、对力的几点认识 1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量. 2.力的效果 (1)力的静力学效应:力能使物体发生形变. (2)力的动力学效应: a.瞬时效应:使物体产生加速度F=ma b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p c.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W 3.物体受力分析的基本方法 (1)确定研究对象(隔离体、整体). (2)按照次序画受力图,先主动力、后被动力,先场力、后接触力. (3)只分析性质力,不分析效果力,合力与分力不能同时分析. (4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向. 二、中学物理中常见的几种力 三、力和运动的关系 1.F=0时,加速度a =0.静止或匀速直线运动 F=恒量:F与v在一条直线上——匀变速直线运动 F与v不在一条直线上——曲线运动(如平抛运动) 2.特殊力:F大小恒定,方向与v始终垂直——匀速圆周运动 F=-kx——简谐振动 四、基本理论与应用 解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高考物理二轮复习计划五步走

2019年高考物理二轮复习计划五步走 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 选考模块的复习不可掉以轻心,抓住规律区别对待。 选考模块的复习要突出对五个二级知识点的加强(选修3—4中四个,

选修3—5中一个)。由于分数的限制,该部分的复习重点应该放在扩大知识面上,特别是选修3—3,没有二级要求的知识点,应该是考生最容易拿分的版块,希望认真钻研教材。课本是知识之源,对这几部分的内容一定要做到熟读、精读课本,看懂、弄透,一次不够就两次,两次不行需再来,绝不能留任何的死角,包括课后的阅读材料、小实验、小资料等,因为大多的信息题是从这里取材的。 实验部分一直是高考复习的重点和难点 实验的理论部分一般在第一轮中进行,我们把“走进实验室”放在第二轮。历年来尽管在实验部分花费不少的时间和精力,但掌握的情况往往是不尽如人意,学生中高分、低分悬殊较大,原因在于很多学生思想重视不够、学习方法不对。实验中最重要的是掌握实验目的和原理,特别是《课程标准》下,高考更加注重考查实验原理的迁移能力,即使是考查教材上的原实验,也是改容换面而推出的。原理是为目的服务的,每个实验所选择的器材源于实验原理,电学中的控制电路与测量电路之间的关系是难以把握的地方。复习中还要注意器材选择的基本原则,灵活地运用这些基本原则是二轮实验复习的一个目的。针对每一个实验,注意做到“三个掌握、五个会”,即掌握实验目的、步骤、原理;会控制条件、会使用仪器、会观察分析、会处理数据并得出相应的结论、会设计简单的实验方案。选做题中考实验的可能性也很大,不要忽视这方面内容。 突出重点知识,狠抓主干知识,落实核心知识 二轮复习中我们不可能再面面俱到,切忌“眉毛胡子一把抓”,而且时

高中物理选修3-5经典例题

物理选修3-5动量典型例题 【例1】质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 【例2】质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 【例3】质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为( ). A .m B .2m C .3m D . 2 3 m 【例4】一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释 放一个质量为m 的粒子后,则原子核剩余部分的速度为( ). A .0 m v M m - B . m v M - C .0m v M m -- D .0 m v M m - + 【例5】带有光滑圆弧轨道、质量为M 的滑车静止置于光滑水平面上,如图所示.一质量为m 的小球以速度v 0水平冲上滑车,当小球上滑再返回并脱离滑车时,有①小球一定水平向左做 平抛运动 ②小球可能水平向左做平抛运动 ③小球可能做自由落体运动 ④小球一定水平向右做平抛运动 以上说法正确的是( ) A.① B .②③ C.④ D.每种说法都不对 【例6】质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t . 【例7】将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时 的初速度为15m /s ,当小球落地时,求: (1)小球的动量; (2)小球从抛出至落地过程中的动量增量; (3)小球从抛出至落地过程中受到的重力的冲量. 【例8】气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

高考物理二轮复习攻略

2019高考物理二轮复习攻略 物理在绝大多数的省份既是会考科目又是高考科目,在高中的学习中占有重要地位。以下是查字典物理网为大家整理的高考物理二轮复习攻略,希望可以解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。 一、知识板块:以小综合为主,不求大而全 第一轮复习基本上都是以单元,章节为体系。侧重全面弄懂基本概念,透彻理解基本规律,熟练运用基本公式解答个体类物理问题。综合应用程度不太高。实际上知识与技能的综合是客观存在,所以,我们因势利导把知识进行适当综合。但要循序渐进,以小综合为主,不求一步到位的大而全。 所谓小综合,就是大家一眼就能审视出一个问题涉及那两个知识点,可能用到那几个物理公式的。譬如: 1.力和物体的运动综合问题(力的平衡、直线运动、牛顿定律、平抛运动、匀速圆周运动); 2.万有引力定律的应用问题; 3.机械振动和机械波; 4.动能定理与机械能守恒定律; 5.气体性质问题; 6.带电粒子在电场中的直线运动(匀速、匀加速、匀减速、往复运动),曲线运动(类平抛、圆周运动); 7.直流电路分析问题:①动态分析,②故障分析;

8.电磁感应中的综合问题:①导体棒切割磁感线(单根、双根、U形导轨、形导轨、O形导轨;导轨水平放置、竖直放置、倾斜放置等各种情景),②闭合线圈穿过有界磁场(线圈有正方形、矩形、三角形、圆形、梯形等),(有边界单个磁场,有分界衔接磁场)、(线圈有竖直方向穿过、水平方向穿过等各种情景); 9.物理实验专题复习:①应用性实验,②设计性实验,③探究性实验; 10.物理信息给予题(新概念、新规律、数据、表格、图像等) 11.联系实际新情景题(文字描述新情景、图字展现新情景、建物理模型,重物理过程分析); 12.常用的几种物理思维方法; 13.物理学习中常用的物理方法。 二、方法板块:以基本方法为主,不哗众取宠 分析研究和解答物理问题,离不开物理思想,这种思想直觉反应是思维方法。平时学习中大家已经接触和应用过多种方法,但仍是比较零乱的。因此,有必要适当地加于归纳总结,能知道一些方法的适用情况,区别普遍性与特殊性。其中要以基本方法为主。即必须掌握,熟练应用且平时用得最多的几种方法。 如受力分析法:从中判断研究对象受几个力,是恒力还是变力;过程分析法:能把较复杂的物理问题分析成若干简单的

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

高考物理二轮复习 专题十 高考物理模型

2013年高考二轮复习专题十 高考物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2

高考物理直线运动解题技巧及经典题型及练习题(含答案)

高考物理直线运动解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试直线运动 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理二轮复习计划(一)

2019年高考物理二轮复习计划(一) 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 抓住主干知识及主干知识之间的综合 高中物理的主干知识是力学和电磁学部分,在各部分的综合应用中,

主要以下面几种方式的综合较多:①牛顿三定律与匀变速直线运动和曲线运动的综合(主要体现在动力学和天体问题、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式);②以带电粒子在电场、磁场中运动为模型的电学与力学的综合,如利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场 中的运动、利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动、利用能量观点解决带电粒子在电场中的运动;③电磁感应现象与闭合电路欧姆定律的综合,用力与运动观点和能量观点解决导体在匀强磁场中的运动问题;④串、并联电路规律与实验的综合(这是近几年高考实验命题的热点),如通过粗略地计算选择实验器材和电表的量程、确定滑动变阻器的连接方法、确定电流表的内外接法等。对以上知识一定要特别重视,尽可能做到每个内容都过关,绝不能掉以轻心,要分别安排不同的专题重点强化,这是我们二轮复习的重中之重,希望在这些地方有所突破。

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

高考物理二轮专项

高考物理二轮专项:功和机械能压轴题训练 1.(10分)如图21所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计。水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B,方向竖直向下。质量均为m、电阻均为R的金属棒a和b垂直导轨放置在其上,金属棒b置于磁场Ⅱ的右边界CD处。现将金属棒a从弯曲导轨上某一高处由静止释放,使其沿导轨运动。设两金属棒运动过程中始终与导轨垂直且接触良好。 (1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为mg,将金属棒a从距水平面高度h处由静止释放。求: 金属棒a刚进入磁场Ⅰ时,通过金属棒b的电流大小; 若金属棒a在磁场Ⅰ运动过程中,金属棒b能在导轨上保持静止,通过计算分析金属棒a释放时的高度h应满足的条件; (2)若水平段导轨是光滑的,将金属棒a仍从高度h处由静止释放,使其进入磁场Ⅰ。设两磁场区域足够大,求金属棒a在磁场Ⅰ运动过程中,金属棒b中可能产生焦耳热的最大值。 2.(8分)如图所示,长为l的绝缘细线一端悬于O点,另一端系一质量为m、电荷量为q的小球。现将此装置放在水平向右的匀强电场中,小球静止在A点,此时细线与竖直方向成37°角。重力加速度为g,sin37°=0.6,cos37°=0.8。 (1)判断小球的带电性质; (2)求该匀强电场的电场强度E的大小; (3)若将小球向左拉起至与O点处于同一水平高度且细绳刚好紧,将小球由静止释放,求小球运动到最低点时的速度大小。 3.(10分)如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 0.5T。质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r。现从静止释放杆a b,测得最大速度为v m。改变电阻箱的阻值R,得到v m与R的关系如图乙所示。已知轨距为L = 2m,重力加速度g取l0m/s2,轨道足够长且电阻不计。 (1)当R = 0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;(2)求金属杆的质量m和阻值r;

高中物理选修3-3大题知识点及经典例题

高中物理选修3-3大题知识点及经典例题 气体压强的产生与计算 1.产生的原因:由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强。 2.决定因素 (1)宏观上:决定于气体的温度和体积。 (2)微观上:决定于分子的平均动能和分子的密集程度。 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强。 (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。 (3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等。液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强。 4.加速运动系统中封闭气体压强的求法 选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解。 考向1 液体封闭气体压强的计算 若已知大气压强为p0,在图2-2中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强。 图2-2 [解析]在甲图中,以高为h的液柱为研究对象,由二力平衡知 p甲S=-ρghS+p0S 所以p甲=p0-ρgh 在图乙中,以B液面为研究对象,由平衡方程F上=F下有: p A S+ρghS=p0S p乙=p A=p0-ρgh 在图丙中,仍以B液面为研究对象,有 p A′+ρgh sin 60°=p B′=p0 所以p丙=p A′=p0- 3 2 ρgh 在图丁中,以液面A为研究对象,由二力平衡得p丁S=(p0+ρgh1)S 所以p丁=p0+ρgh1。 [答案]甲:p0-ρgh乙:p0-ρgh丙:p0- 3 2 ρgh1丁:p0+ρgh1 考向2 活塞封闭气体压强的求解 如图2-3中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

相关主题
文本预览
相关文档 最新文档