当前位置:文档之家› 生物智能与算法-群体智能(1)

生物智能与算法-群体智能(1)

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述 学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 (1) 1 概述 (3) 2 定义及原理 (3) 2.1 定义 (3) 2.2 群集智能算法原理 (4) 3 主要群智能算法 (4) 3.1 蚁群算法 (4) 3.2 粒子群算法 (5) 3.3 其他算法 (6) 4 应用研究 (7) 5 发展前景 (7) 6 总结 (8) 参考文献 (9)

1 概述 优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2.1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中, i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的 可行域。

群体协同智能优化算法改进及其应用研究

群体协同智能优化算法改进及其应用研究优化问题广泛地存在于实际工程问题和科学研究中。优化问题具有解空间规模大、维数高的特点,一些传统优化算法在求解大规模优化问题时,存在计算复杂度高、时间长等问题。群体智能算法因其参数少、模型简单、易于实现等优点,已成为求解优化问题新的研究方向。随着人工智能的高速发展,电子商务、移动互联网金融无时无刻不断产生数据。 数据挖掘技术越来越受到众多领域的广泛关注。聚类技术是数据挖掘领域的一个重要分支,在无监督条件下,用于挖掘数据潜在结构,已成为人工智能领域研究热点。密度峰值快速搜索聚类算法是聚类算法中极具竞争力的一种新型聚类算法,已得到各领域广泛认可,但其仍存在手动设置参数的缺陷。本文将布谷鸟搜索算法作为主要研究对象,对其进行研究与改进,并对密度峰值快速搜索聚类算法存在缺陷进行改进。 本文主要内容和创新点如下:(1)针对布谷鸟搜索算法在处理复杂函数时,算法收敛速度慢;在处理多维数据时,算法寻优精度低,算法稳定性较差的问题,提出动态自适应步长的双重策略的布谷鸟搜索算法。算法引入动态自适应步长机制和双重评价策略,动态步长中学习因子加速算法在解空间中搜索速度,在算法迭代前期,双重评价策略中的逐列排序策略在全局搜索中快速定位,并引入动态发现概率增加全局搜索能力。(2)针对密度峰值快速搜索聚类算法存在手动设置截断距离d_c,欧式距离无法准确反映数据间的相似性等缺陷,提出布谷鸟优化的密度峰值快速搜索聚类算法。算法通过布谷鸟搜索算法优化截断距离,并引入余弦相似度,将方向与实际距离相结合,更好区分两类中间区域数据点的归属度。 仿真实验结果表明,改进密度峰值快速搜索聚类算法具有较好聚类性能。(3)基于布谷鸟优化的密度峰值快速搜索聚类算法,对银行个人信贷数据进行聚类。仿真实验结果表明,本文提出的方法能够较为有效地分析和预测银行个人信贷违约情况,帮助银行信贷部门合理地做出决策。

粒子群优化算法综述

粒子群优化算法综述 摘要:本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述。侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题和实际工业对象中的应用,并给出了粒子群算三个重要的网址,最后对粒子群算做了进一步展望。 关键词;粒子群算法;应用;电子资源;综述 0.引言 粒子群优化算法]1[(Particle Swarm Optimization ,PSO)是由美国的Kenned 和Eberhar 于1995年提出的一种优化算法,该算法通过模拟鸟群觅食行为的规律和过程,建立了一种基于群智能方法的演化计算技术。由于此算法在多维空间函数寻优、动态目标寻优时有实现容易,鲁棒性好,收敛快等优点在科学和工程领域已取得很好的研究成果。 1. 基本粒子群算法]41[- 假设在一个D 维目标搜索空间中,有m 个粒子组成一个群落,其中地i 个粒子组成一个D 维向量,),,,(21iD i i i x x x x =,m i ,2,1=,即第i 个粒子在D 维目标搜索空间中的位置是i x 。换言之,每个粒子 的位置就是一个潜在的解。将i x 带入一个目标函数就可以计算出其适 应值,根据适应值得大小衡量i x 的优劣。第i 个粒子的飞翔速度也是一个D 维向量,记为),,,(21iD i i i v v v v =。记第i 个粒子迄今为止搜索到的最优位置为),,,(21iD i i i p p p p =,整个粒子群迄今为止搜索到的最优位置为),,,(21gD gi g g p p p p =。 粒子群优化算法一般采用下面的公式对粒子进行操作

)()(22111t id t gd t id t id t id t id x p r c x p r c v v -+-+=+ω (1) 11+++=t id t id t id v x x (2) 式中,m i ,,2,1 =;D d ,,2,1 =;ω是惯性权重, 1c 和2c 是非负常数, 称为学习因子, 1r 和2r 是介于]1,0[间的随机数;],[max max v v v id -∈,max v 是常数,由用户设定。 2. 粒子群算法的改进 与其它优化算法一样PSO 也存在早熟收敛问题。随着人们对算 法搜索速度和精度的不断追求,大量的学者对该算法进行了改进,大致可分为以下两类:一类是提高算法的收敛速度;一类是增加种群多样性以防止算法陷入局部最优。以下是对最新的这两类改进的总结。 2.1.1 改进收敛速度 量子粒子群优化算法]5[:在量子系统中,粒子能够以某一确定的 概率出现在可行解空间中的任意位置,因此,有更大的搜索范围,与传统PSO 法相比,更有可能避免粒子陷入局部最优。虽然量子有更大的搜索空间,但是在粒子进化过程中,缺乏很好的方向指导。针对这个缺陷,对进化过程中的粒子进行有效疫苗接种,使它们朝着更好的进化方向发展,从而提高量子粒子群的收敛速度和寻优能力。 文化粒子群算法]6[:自适应指导文化PSO 由种群空间和信念空间 两部分组成。前者是基于PSO 的进化,而后者是基于信念文化的进化。两个空间通过一组由接受函数和影响函数组成的通信协议联系在一起,接受函数用来收集群体空间中优秀个体的经验知识;影响函数利用解决问题的知识指导种群空间进化;更新函数用于更新信念空间;

智能控制整理

第一章: 1、传统控制方法包括经典控制和现代控制,是基于被控对象精确模 型的控制方式,缺乏灵活性和应变能力,适于解决线性、时不变性等相对简单的控制。 2、智能控制的研究对象具备以下的一些特点:不确定性的模型、高度的 非线性、复杂的任务要求。 3、IC(智能控制)=AC(自动控制)∩AI(人工智能) ∩OR(运筹学) 4、AC:描述系统的动力学特征,是一种动态反馈。AI :是一个用来模拟人 思维的知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。OR:是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。 5、智能控制:即设计一个控制器,使之具有学习、抽象、推理、决策等功能, 并能根据环境信息的变化作出适应性,从而实现由人来完成的任务。 6、智能控制的几个重要分支为模糊控制、神经网络控制和遗传算 法。 7、智能控制的特点:1,学习功能2,适应功能3,自组织功能4,优化功能 8、智能控制的研究工具:1,符号推理与数值计算的结合2,模糊集理论3,神 经网络理论4,遗传算法5,离散事件与连续时间系统的结合。 9、智能控制的应用领域,例如智能机器人控制、计算机集成制造系统、工 业过程控制、航空航天控制和交通运输系统等。 第二章: 10、专家系统:是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。 11、专家系统的构成:由知识库和推理机(知识库由数据库和规则库两部分构成) 12、专家系统的建立:1,知识库2,推理机3,知识的表示4,专家系统开发语言5,专家系统建立步骤。 13、专家控制:是智能控制的一个重要分支,又称专家智能控制。所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

粒子群算法综述

粒子群算法综述 【摘要】:粒子群算法(pso)是一种新兴的基于群体智能的启发式全局搜索算法,具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已得到广泛研究和应用。为了进一步推广应用粒子群算法并为深入研究该算法提供相关资料,本文对目前国内外研究现状进行了全面分析,在论述粒子群算法基本思想的基础上,围绕pso的运算过程、特点、改进方式与应用等方面进行了全面综述,并给出了未来的研究方向展望。 【关键词】:粒子群算法优化综述 优化理论的研究一直是一个非常活跃的研究领域。它所研究的问题是在多方案中寻求最优方案。人们关于优化问题的研究工作,随着历史的发展不断深入,对人类的发展起到了重要的推动作用。但是,任何科学的进步都受到历史条件的限制,直到二十世纪中期,由于高速数字计算机日益广泛应用,使优化技术不仅成为迫切需要,而且有了求解的有力工具。因此,优化理论和算法迅速发展起来,形成一门新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。这些优化技术在诸多工程领域得到了迅速推广和应用,如系统控制、人工智能、生产调度等。随着人类生存空间的扩大,以及认识世界和改造世界范围的拓宽,常规优化法如牛顿法、车辆梯度法、模式搜索法、单纯形法等已经无法处理人们所面的复杂问题,因此高效的

优化算法成为科学工作者的研究目标之一。 1.粒子群算法的背景 粒子群算法(particle swarm optimization,pso)是一种新兴的演化算法。该算法是由j.kennedy和r.c.eberhart于1995年提出的一种基于群智能的随机优化算法。这类算法的仿生基点是:群集动物(如蚂蚁、鸟、鱼等)通过群聚而有效的觅食和逃避追捕。在这类群体的动物中,每个个体的行为是建立在群体行为的基础之上的,即在整个群体中信息是共享的,而且在个体之间存在着信息的交换与协作。如在蚁群中,当每个个体发现食物之后,它将通过接触或化学信号来招募同伴,使整个群落找到食源;在鸟群的飞行中,每只鸟在初始状态下处于随机位置,且朝各个方向随机飞行,但随着时间推移,这些初始处于随机状态的鸟通过相互学习(相互跟踪)组织的聚集成一个个小的群落,并以相同的速度朝着相同的方向飞行,最终整个群落聚集在同一位置──食源。这些群集动物所表现的智能常称为“群体智能”,它可表述为:一组相互之间可以进行直接通讯或间接通讯(通过改变局部环境)的主体,能够通过合作对问题进行分布求解。换言之,一组无智能的主体通过合作表现出智能行为特征。粒子群算法就是以模拟鸟的群集智能为特征,以求解连续变量优化问题为背景的一种优化算法。因其概念简单、参数较少、易于实现等特点,自提出以来已经受到国内外研究者的高度重视并被广泛应用于许多领域。

智能控制算法及其用于结构振动控制的实践

智能控制算法及其用于结构振动控制的实践 发表时间:2016-07-25T14:37:52.590Z 来源:《电力技术》2016年第4期作者:郝志伟[导读] 本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向。 新疆华隆油田科技股份有限公司新疆克拉玛依 834000 摘要:在智能控制的领域里有很多的研究方向可以供科研工作者们进行探索,而在土木工程的领域里结构振动的相关研究方向里,结构振动控制一直都是其中的热点。本篇文章主要是论述了智能控制算法的有关现状和发展的方向,并且还探讨了目前国内对于智能控制算法及其用于结构振动控制的实践上的发展前景。总的来说,在某种程度上智能控制算法的不断进化为土木工程的不断发展提供了充分的科学和技术支持,并且目前结构控制的热门研究方向就是结构智能控制【1】。本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向,也会对目前国内的智能控制算法在结构振动控制上的发展进行探讨。关键词:结构控制;智能算法;模糊推理;人工智能 国内的现代结构主动控制相关研究是在70年代的时候在国内刚刚兴起,目前已处于不断成熟的阶段,在国内的许多机械化的领域之内都十分的成功的应用了现代的控制理论,所以目前的结构控制的相关研究就是这样打下基础的。通过研究我们可以发现,在抗风和抗震程度上只有结构控制是能够得到的明显有效的效果。所以在国内的工程学一线领域里,结构控制是一个十分热门的研究方向。新兴的智能控制系统是一个十分新颖的理论技术,其具有十分强大的对整个局面的控制能力,即使面对复杂的系统操作也能进行有效的运算,容错能力显著,并且对于数学模型的处理能力很精通。 一、智能控制理论的起源 近百年以来各种新式技术不断的被发明发现,日新月异的更新着我们的生活和思想,而近十几年以来高新技术的迅速发展让越来越多的复杂数据需要更为精尖的科学技术理论和设备来进行操作处理,所以人工智能是顺应时代而生的产物。首次提出将人工智能和自动控制系统有效结合创新了这一领域的研究方向。从此以后,国内的相关领域便逐渐的转移到智能控制的高阶领域之中。除此之外,计算机领域的高速发展尤其是微计算机的研发和应用也为智能控制的研究提供了支持【2】。随着技术的不断进步和研究的逐渐深入,智能控制系统也在不断的完备。而智能控制算法和相关的智能控制结构也是以这个为基础得以被研究。 二、智能控制发展的相关方向 (一)模糊控制科研者通过制定一系列的控制策略和相关的数据规则总成一个控制规则并加给被操纵者和操作过程就是模糊控制的基本内容。模糊控制的鲁棒性较强,使用的时候不需要输入和建立具体的模型,在处理时滞或者时变等复杂程度较强的系统时易于给出专家的知识。然而模糊算法也有其短板,如果模糊处理的操作选择简单的处理时容易出现所控制的品质出现问题不易提高系统的精度,这种较大的局限性导致了模糊控制的系统性缺失。 (二)人工智能算法在某种程度上被称为机器智能的人工智能算法是一门较为边缘性的学科。通常被研发出来用于进行各种模拟替代人类行为,其研究前景极为广泛,在现阶段的发展范围之内,已经融入了多种学科并且涵盖了极为丰富的人文信息。并且根据现在科技的发展程度来看,其算法具有极强的可靠性和独立性。在进行运算的时候并不需要十分详细的具体参数数据和抗干扰能力十分了得。并且将人工智能算法用于产品的设计时,对于产品的设计整体性能都有更好的提升,其科学性设计理念和运算方式都对产品研发的效率大有裨益。 (三)优化算法优化算法是结合新式理论发展起来的应用前景十分广泛的热门研究,优化算法的出现成功的解决了神经网络应用中的短板和不足,对于神经网络的高效学习的有关算法和拓扑结构的优化设计的改善起到了十分关键的地步。而优化算法中的遗传算法是其中发展较为领先的方向。其通过模拟生物本身拥有的搜索功能和自身的优化算法,建立了一套独特的机制。现阶段的科研者们也在逐步的采用将遗传算法逐步的与神经网络控制和模糊控制相结合,通过将这三种各有优势和长处的智能控制算法相互取其长处的融在一起,在性能上既可以将模糊算法的推理规则和隶属的函数结构进行优化,还可以让神经控制算法的计算量得到有效的减少,对于实时控制的应用能够起到有效的实践作用【3】。 三、结构振动控制的实践 我国在早期就已经开始运用神经网络于智能控制的研究中,并且通过研究发现在非线性的建模中,神经网络算法的实际应用具有很强的作用。并且在近些年以来随着我国工业技术的不断革新,工业管理体系也在逐步的发展。在传统的研究方法之中,科研工作者们常常将神经网络和模糊算法的部分研究方向结合在一起,而在隶属函数的获取上应用更为广泛【4】。采用遗传算法来对隶属函数的参数进行操作节,可以较好的获得理想的实验数据。 到目前为止的国际上的结构振动控制相关的研究之中,智能控制一直是持续获得关注的研究热点。而目前,在无数科学家和相关科研人员们的努力之下,已经成功的将现代控制理论成功的转变为智能控制理论,该理论融合了大量的模糊识别和人工智能相关的理论知识,并且这一理论已经总结出了一系列成果例如结构智能控制等。近些年来由于智能控制系统的研发不断在进步,引起了我国许多社会部门和机械研究学科的相关领域的注意。例如在工业化生产中的油田开采就是极为重要的一项,所以现阶段国内的油田自动化技术与之前相比进步很大,尤其是油田自动化监控系统。在具体的生产运作中都是各个系统相互独立进行运作,但是彼此之间又是联系密切,共同组成一个完整综合的管理系统。基本上是可以实现从开采之前的数据采集研究到最后的生产管理都能在有效的自动体系之下进行运作【5】。除此之外还能实现数据的实时更新,方便企业对完成对数据库的完全掌握。而这些技术的革新,都会使油田的管理方式更加科学化和符合人工智能技术的要求,并且最终会带领着我国的油田工业在迈向更好更快发展的道路上,稳定前进。而现目前也有许多学者也对此提出了切实有效的研究策略和实验结果,例如以张顺宝为带头人的科研小组就实现了通过为结构的主动控制系统提供了时间差以便于能够缩短时迟的问题等。

智能优化算法

智能计算读书报告(二) 智能优化算法 姓名:XX 学号:XXXX 班级:XXXX 联系方式:XXXXXX

一、引言 智能优化算法又称为现代启发式算法,是一种具有全局优化性能、通用性强、且适用于并行处理的算法。这种算法一般具有严密的理论依据,而不是单纯凭借专家的经验,理论上可以在一定时间内找到最优解或者近似最优解。所以,智能优化算法是一数学为基础的,用于求解各种工程问题优化解的应用科学,其应用非常广泛,在系统控制、人工智能、模式识别、生产调度、VLSI技术和计算机工程等各个方面都可以看到它的踪影。 最优化的核心是模型,最优化方法也是随着模型的变化不断发展起来的,最优化问题就是在约束条件的限制下,利用优化方法达到某个优化目标的最优。线性规划、非线性规划、动态规划等优化模型使最优化方法进入飞速发展的时代。 20世纪80年代以来,涌现出了大量的智能优化算法,这些新颖的智能优化算法被提出来解决一系列的复杂实际应用问题。这些智能优化算法主要包括:遗传算法,粒子群优化算法,和声搜索算法,差分进化算法,人工神经网络、模拟退火算法等等。这些算法独特的优点和机制,引起了国内外学者的广泛重视并掀起了该领域的研究热潮,并且在很多领域得到了成功地应用。 二、模拟退火算法(SA) 1. 退火和模拟退火 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。 模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。 模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法就是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化就是智能优化的一个重要分支,它与人工生命,特别就是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互与合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 0 1 概述 (2) 2 定义及原理 (2) 2、1 定义 (2) 2、2 群集智能算法原理 (3) 3 主要群智能算法 (3) 3、1 蚁群算法 (3) 3、2 粒子群算法 (4) 3、3 其她算法 (5) 4 应用研究 (6) 5 发展前景 (6) 6 总结 (7) 参考文献 (8)

1 概述 优化就是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 与粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2、1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索与优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索与优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,就是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都就是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中,i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的可行

群体智能优化算法-群体智能总结

第十六章群体智能优化算法总结 总结一下最近一段时间关于群体智能优化算法的文章,这方面的文章目前一共发表了13篇,涉及粒子群(鸟)、人工蜂群、蜘蛛猴、蚁群、布谷鸟、萤火虫群、萤火虫、蝙蝠、鱼群、蟑螂、猫群、细菌觅食和烟花算法,虽然这都是些五花八门的小东西,但也不是无规律可循,这里需要注意的是,群体智能一般是指具有生命的种群(鸟、鱼等),但也有像烟花这样的无生命个体,这里我们将所有这些个体统称为智能体,认为它们具有一定的能动性,可以在解空间中进行搜索。图1为各主要优化算法的提出时间和提出者,可以看出大多数算法诞生于2000~2010年这十年左右,随着计算机计算能力的提升,人们开始依赖于这种既能得到较优的结果又不会消耗太多计算时间的元启发式算法。 图1 群体智能优化算法发展历程 下面总结一下这些算法的共同点: 1、都有多个粒子,代表每种智能体; 2、每个个体通过一定的机制进行位置的变化或者移动,来对解的空间进行搜索; 3、个体之间具有一定的独立性,利用局部信息和全局信息进行交互;

4、群体在演变过程中都引入了随机数,以便进行充分地探索。 其实人群也算是一种特殊的群体,只不过他不像其他的群体那样,仅仅是觅食,人作为一种高级动物,除了吃饱肚子以外,还有其他很多精神方面的需求,比如幸福度、快乐度和舒适度等等各个方面,并且人类具有的最大优势是语言沟通和学习能力,因此,基于这样的特性也可以提出基于人群的优化算法,只不过可能需要结合更多的组织行为学和行为心理学等相关的知识,对人的群集行为进行理论解释,同时可以采用更多以机器学习或人工智能为基础的高级策略,并应用于多目标优化问题。不过好像在2006年就已经有类似的算法了,至于为什么没有普及开来,可能还是人的行为太复杂了吧。 对于群体智能优化方面的更新将暂时告一段落,接下来将更多的关注另一种元启发式算法-进化计算,这类算法主要是基于生物的进化理论,包括遗传算法、进化策略、进化规划等,都将在后续的内容中逐渐详细讲解。

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

一种新型的智能优化方法—人工鱼群算法

浙江大学 博士学位论文 一种新型的智能优化方法—人工鱼群算法 姓名:李晓磊 申请学位级别:博士 专业:控制科学与工程 指导教师:钱积新 2003.1.1

加,,Z掌博士学位论文一III- 摘要 (优化命题的解决存在于许多领域,对于国民经济的发展也有着巨大的应用前景。随着优化对象在复杂化和规模化等方面的提高,基于严格机理模型的传统优化方法在实施方面变得越来越困难。厂吖 本文将基于行为的人工智能思想通过动物自治体的模式引入优化命题的解决中,构造了一种解决问题的架构一鱼群模式,并由此产生了一种高效的智能优化算法一人工鱼群算法。 文中给出了人工鱼群算法的原理和详细描述,并对算法的收敛性能和算法中各参数对收敛性的影响等因素进行了分析;针对组合优化问题,给出了人工鱼群算法在其中的距离、邻域和中心等概念,并给出了算法在组合优化问题中的描述;针对大规模系统的优化问题,给出了基于分解协调思想的人工鱼群算法;给出了人工鱼群算法中常用的一些改进方法;给出了人工鱼群算法在时变系统的在线辨识和鲁棒PID的参数整定中两个应用实例j最后指出了鱼群模式和算法的发展方向。 f在应用中发现,人工鱼群算法具有以下主要特点: ?算法只需要比较目标函数值,对目标函数的性质要求不高; ?算法对初值的要求不高,初值随机产生或设定为固定值均可以; ?算法对参数设定的要求不高,有较大的容许范围; ?算法具备并行处理的能力,寻优速度较快; ?算法具备全局寻优的能力; 鱼群模式和鱼群算法从具体的实施算法到总体的设计理念,都不同于传统的设计和解决方法,同时它又具有与传统方法相融合的基础,相信鱼群模式和鱼群算法有着良好的应用前景。∥ / 关键词人工智能,集群智能,动物自治体,人工鱼群算法,f优∥ ,l/。7

智能控制技术及其发展趋势

智能控制技术及其发展趋势 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。 一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统。智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。

群智能优化算法_萤火虫算法

2012年第32 期 群智能算法是人们受自然界或生物界种群规律的启发,根据其原理,仿生模拟其规律而设计求解问题的算法。近几十年来,人们通过模拟自然生态系统机制以求解复杂优化问题的仿生智能算法相继被提出和研究。群智能算法有遗传算法、模拟退火算法、蚁群算法、粒子群算法等。 萤火虫算法是一种新颖的仿生群智能算法,是受自然界中的萤火虫通过荧光进行信息交流这种群体行为的启发演变而来的。萤火虫算法目前有两种版本:a)由印度学者Krishnanand等人[1]提出,称为GSO(glowworm swarm optimization);b)由剑桥学者Yang[2]提出,称为FA( firefly algorithm)。两种算法的仿生原理相同,但在具体实现方面有一定差异。 本文分析了萤火虫算法的仿生原理,并从数学角度对两种版本的算法实现优化过程进行定义。 1.GSO算法 1.1算法的数学描述与分析 在基本GSO中,把n个萤火虫个体随机分布在一个D维目标搜索空间中,每个萤火虫都携带了萤光素li。萤火虫个体都发出一定量的萤光相互影响周围的萤火虫个体,并且拥有各自的决策域r i d(0<r i d ≤r s)。萤火虫个体的萤光素大小与自己所在位置的目标函数有关,荧光素越大,越亮的萤火虫表示它所在的位置越好,即有较好的目标值,反之则目标值较差。决策域半径的大小会受到邻域内个体的数量的影响,邻域内萤火虫密度越小,萤火虫的决策域半径会加大,以便找到更多的邻居;反之,则萤火虫的决策域半径会缩小。最后,大部分萤火虫会聚集在多个位置上。初始萤火虫时,每个萤火虫个体都携带了相同的萤光素浓度l0和感知半径r0。 定义1萤光素更新 l i(t)=(1-ρ)l i(t-1)+γJ(x i(t))(1) 其中,J(x i(t))为每只萤火虫i在t迭代的位置x i(t)对应的目标函数值;l i(t)为荧光素值转化为荧光素值;γ为荧光素更新率。 定义2概率选择选择移向邻域集N i(t)内个体j的概率p ij(t): p ij(t)=l j(t)-l i(t) k∈N i (t) Σ(l k(t)-l i(t)) (2) 其中,邻域集N i(t)={j:d ij(t)

第1章群体智能算法概述

第1章 群体智能算法概述 1975年,美国Michigan大学的John Holland[1]教授发表了其开创性的著作《Adapatation in Natural and Artificail System》,在该著作中John Holland教授对智能系统及自然界中的自适应变化机制进行了详细阐述,并提出了计算机程序的自适应变化机制,该著作的发表被认为是群体智能(Swarm Intelligence)[2]算法的开山之作。随后,John Holland和他的学生对该算法机制进行了推广,并正式将该算法命名为遗传算法(Gentic Algorithm,GA)[3]~[5]。遗传算法的出现和成功,极大地鼓舞了广大研究工作者向大自然现象学习的热情。经过多年的发展,已经诞生了大量的群体智能算法,包括:遗传算法、蚁群优化(Ant Colony Optimization,ACO)[6]~[7]算法、差异演化(Differential Evolution,DE)[8]~[12]算法、粒子群优化(Particle Swarm Optimization,PSO)[13]~[16]算法等。 随着群体智能算法在诸如机器学习、过程控制、经济预测、工程预测等领域取得了前所未有的成功,它已经引起了包括数学、物理学、计算机科学、社会科学、经济学及工程应用等领域的科学家们的极大兴趣。目前关于群体智能计算的国际会议在全世界各地定期召开,各种关于信息技术或计算机技术的国际会议也都将智能进化技术作为主要研讨课题之一。甚至有专家指出,群体智能计算技术、混沌分析技术、分形几何、神经网络等将会成为研究非线性现象和复杂系统的主要工具,也将会成为人们研究认知过程的主要方法和工具。 1.1 群体智能算法的特点 1.1.1 智能性 群体智能算法通过向大自然界中的某些生命现象或自然现象学习,实现对于问题的求解,这一类算法中包含了自然界生命现象所具有的自组织、自学习和自适应性等特性。在运算过程中,通过获得的计算信息自行组织种群对解空间进行搜索。种群在搜索过程中依据事先设定的适应度函数值,采用适者生存、优胜劣汰的方式进化,所以算法具有一定的智能性。 由于群体智能算法具有的这种优点,应用群体智能算法求解问题时,不需要事

相关主题
文本预览
相关文档 最新文档