当前位置:文档之家› 生物柴油

生物柴油

生物柴油
生物柴油

生物柴油(Biodiesel)提炼自动植物油,普遍用于拖拉机、卡车、船舶等。它是指以油料作物如大豆、油菜、棉、棕榈等,野生油料植物和工程微藻等水生植物油脂以及动物油脂、餐饮垃圾油等为原料油通过酯交换或热化学工艺制成的可代替石化柴油的再生性柴油燃料。生物柴油是生物质能的一种,其在物理性质上与石化柴油接近,但化学组成不同。生物柴油是含氧量极高的复杂有机成分的混合物,这些混合物主要是一些分子量大的有机物,几乎包括所有种类的含氧有机物,如:酯、醚、醛、酮、酚、有机酸、醇等。复合型生物柴油是以废弃的动植物油、废机油及炼油厂的副产品为原料,再加入催化剂,经专用设备和特殊工艺合成。

生物柴油标准中要考虑很多指标,有些指标是与石油柴油共有的,包括密度、运动粘度、闪点、硫含量、10%蒸余物残碳、十六烷值、灰分、水含量、机械杂质、铜片腐蚀、燃料安定性、低温性能等;还有一些指标是生物柴油所特有的,包括总酯含量、游离甘油含量、甘油单酯、二酯及三酯含量、甲醇含量、碘价及多元不饱和脂肪酸甲酯的含量、酸值、磷含量、碱及碱土金属含量等;另外,还有一些额外的指标包括馏程、燃烧热值、润滑性、皂化物含量等,是可以选择的。

闪点:为了储存和运输的安全,燃料都要最低闪点的要求。生物柴油的闪点一般高于110℃,远超过石油柴油的70℃,所以生物柴油储运比石油柴油安全。甲醇的含量是影响生物柴油闪点高低的重要因素。即使在生物柴油中含有少量的甲醇,其闪点也会降低。除此之外,较多的甲醇也会对燃料泵、橡塑配件等有影响,并且会降低生物柴油的

燃烧性能。美国生物柴油标准要求闭口闪点不低于130℃,欧洲标准要求不低于120℃。

水分:游离水会导致生物柴油氧化并与游离脂肪酸生成酸性水溶液,水本身对金属就有腐蚀。美国生物柴油标准要求生物柴油水分和沉渣不超过0.05%,欧洲标准要求水含量不超过500 mg/kg。

机械杂质:指存在于油品中所有不溶于规定溶剂的杂质。机械杂质对发动机零部件的磨损以及运转是否正常都有严重影响。生物柴油中不允许有机械杂质。欧洲生物柴油标准要求总杂质含量不超过24 mg/kg。

运动粘度:运动粘度表示生物柴油在重力作用下流动时内摩擦力的量度,其值为相同温度下生物柴油的动力粘度与密度之比。对于一些发动机而言,为了防止喷射泵和喷射器泄漏而造成功率损失,可设定一个粘度最小值;另一方面,通过对发动机的设计尺寸、喷油系统特性的考虑,限定了允许粘度的最大值。生物柴油的粘度高于石油柴油,调入2~20%的生物柴油到石油柴油中后,柴油的粘度会增加,但也能满足标准对柴油运动粘度的要求。美国标准要求生物柴油40℃运动粘度为1.9~6.0 mm2/s,欧洲标准要求40℃运动粘度为3.5~5.0 mm2/s。

硫酸盐灰分:在生物柴油中灰分以三种形式存在:固体磨料、可溶性金属皂及未除去的催化剂。固体磨料和未除去的催化剂能导致喷射器、燃油泵、活塞和活塞环磨损以及发动机沉积。可溶性金属皂对磨损影响很小,但却能导致滤网堵塞和发动机沉积。美国和欧洲标准都

要求生物柴油硫酸盐灰分不超过0.02%。

硫:硫含量对于发动机磨损和沉积以及尾气污染物的排放都有很大影响,清洁燃料的一个重要指标就是低硫要求。生物柴油的一个主要优点就是硫含量低。美国标准要求生物柴油硫含量不超过0.05%,欧洲标准要求低于0.001%。

铜片腐蚀:是在规定条件下测试油品对铜的腐蚀倾向。由于酸或含硫化合物的存在能使得铜片褪色,此试验可用来评测燃料系统中紫铜、黄铜、青铜部件产生腐蚀的可能性。按照目前的标准,生物柴油的铜片腐蚀一般都能达到要求,但长期与铜接触,可能会导致生物柴油发生降解,产生游离脂肪酸和固体物质。美国标准要求生物柴油铜片腐蚀不高于3级,欧洲标准为1级。

十六烷值:是指在规定条件下的发动机试验中,采用和被测定燃料具有相同发火滞后期的标准燃料中正十六烷的体积百分数。十六烷值可以评价燃料油的点火性能、白烟影响及燃烧强度。十六烷值规格要求取决于发动机的设计尺寸、转速、负载变化特性以及初始和大气条件。与石油柴油相比,生物柴油的一个优点就是十六烷值较高。美国标准要求生物柴油十六烷值不低于47,欧洲标准要求超过51。

氧化安定性:氧化安定性也是生物柴油质量的一个重要指标,氧化安定性差的生物柴油易生成如下老化产物:不溶性聚合物(胶质和油泥),这会造成发动机滤网堵塞和喷射泵结焦,并导致排烟增加、启动困难;可溶性聚合物,其可在发动机中形成树脂状物质,可能会导致熄火和启动困难;老化酸,这会造成发动机金属部件腐蚀;过氧化

物,这会造成橡胶部件的老化变脆而导致燃料泄漏等。由于生物柴油很难通过纤维素滤膜,用于评价柴油氧化安定性的方法不能评价生物柴油。目前已经发展了很多方法可评定生物柴油的氧化安定性,比较得到公认的标准方法使ISO 6886——动植物油脂氧化安定性测定法(加速氧化法)和基于此的EN 14112:2004——脂肪酸甲酯氧化安定性测定法(加速氧化法)。欧洲标准规定生物柴油在110℃下的诱导期不低于6小时,美国规准还没有规定这一指标。

低温流动性:柴油在低温条件下的流动性能不仅关系到柴油发动机燃料供给系统在低温下能否正常供油,而且与柴油在低温下的贮存、运输、装卸等作业能否进行都有密切关系。柴油的低温流动性能一般用浊点、冷滤点、凝点/倾点等来衡量。在冷滤点方法出现之前,一般用浊点、凝点/倾点来评价油品的低温性能。美国使用浊点和倾点指标划分柴油的牌号。冷滤点与燃料实际使用温度有很好的对应关系,对柴油燃料的使用有实际指导意义,而浊点、凝点/倾点与实际情况有偏差。100%的生物柴油的低温流动性普遍较差,冷滤点高于石油柴油。石油柴油与生物柴油调和后,低温流动性与石油柴油的性质、生物柴油的性质、掺入量以及是否使用流动性改进剂等都有很大关系。美国和欧洲标准都未明确规定。残炭:残炭量用来评测燃料油中炭沉积的趋势。残炭值越大,在柴油发动机气缸内生成积炭的倾向越大,但由于与发动机没有直接的关联性,这项性能指标被认为是一个粗劣估计。美国生物柴油标准用100%的样品来替代10%蒸余物,并按照10%蒸余物来计算,其值要求小于0.050%。欧洲生物柴油标准是直

接测试,要求100%蒸余物残炭不大于0.3%.

酸值:是指中和1克油品中的酸性物质所需要的氢氧化钾毫克数。生物柴油的酸值测定的对象是生产过程中残余的游离脂肪酸和储存过程中降解产生的脂肪酸。高酸值的生物柴油能加剧燃料油系统的沉积并增加腐蚀的可能性,同时还会使喷油泵柱塞副的磨损加剧,喷油器头部和燃烧室积炭增多,从而导致喷雾恶化以及柴油机功率降低和气缸活塞组件磨损增加。美国生物柴油标准酸值不大于0.80 mg KOH/g,欧洲标准为不大于0.50 mg KOH/g。

游离甘油:高含量的游离甘油可产生喷射器沉积,也会阻塞供油系统和腐蚀发动机以及黑烟的生成,同时还能导致储存和供油系统底部游离甘油的形成。美国和欧洲生物柴油标准都要求游离甘油的含量不超过0.02%。

总甘油、甘油单酯、二酯及三酯:总甘油方法是用来评测油品中甘油的含量,包括游离甘油和未反应或部分反应的油脂。较低的总甘油含量能够确保油脂在转变成脂肪酸甲酯的高转化率。甘油单酯和二酯是甘油三酯未转化完全的副产物,如果它们的浓度太高,可能导致喷射器发生沉积,并且影响低温操作性能,造成过滤器阻塞。美国标准只规定了总甘油含量不超过0.240%,没规定甘油单酯、二酯和三酯的含量;欧洲标准规定甘油单酯、二酯和三酯含量分别为不超过0.80%、0.20%和0.20%,总甘油含量不超过0.25%。

磷含量:磷能够破坏用于排放控制系统的催化转换器,一定要保持它的低含量。在国外,随着排放标准的曰益严格,催化转换器在柴油

动力设备上的应用越来越普遍,因此低含磷量的重要性将逐渐升高。美国和欧洲生物柴油标准都要求磷含量不大于10 mg/kg。90%回收温度:由于生成生物柴油的动植物油脂主要是有16到18碳的脂肪酸甘油酯组成,因此所生成的生物柴油的馏程范围一般为330℃到360℃。这一指标的作用是防止生物柴油中混入其它高沸点污染物。美国标准规定90%回收温度不超过360℃,欧洲标准没有规定这一项目。

金属含量:残留的金属可导致发动机沉积和磨损,并造成泵和注射器失效,使柴油车排烟增大,启动困难。酯交换反应的催化剂可向生物柴油中引入Na、K、Ca、Mg等金属,欧洲标准要求一价金属和二价金属的含量都不超过5 mg/kg,美国标准没作要求。

生物柴油生产工艺

生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。 1 生物柴油生产工艺 目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来 生产生物柴油。因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。 1 地沟油制取生物柴油 地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH)

/(mg/g) 油左右。由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。 碱法催化制备生物柴油工艺流程 氢氧化钠→甲醇粗甘油→脱溶→精制→甘油 ↓↑ 地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油 2酸化油制取生物柴油 酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。因酸化油中含有一定量的悬浮细白土颗粒及胶杂, 在反应过程易被硫酸炭化, 在反应釜底部会有一定量的黑色废渣。在酯化反应过程国内有采用均相反应的, 也有采用非均相反应的, 各有利弊。均相反应( 反应体系温度60~65℃) 甲醇在体系内分布均匀, 接触面积大, 利于参与反应, 但生成的水没有带走, 阻碍反应进程; 非均相反应( 反应体系温度105~115℃) 甲醇以热蒸汽形式鼓入, 可以带走一部分生成的水, 有利于反应进程, 以及免去反应釜的搅拌装置, 但甲醇气体在油相的停留时间短、接触面积小, 不利于参与反应,需要更多的热能和甲醇循环量。由酸化油制得的生物柴油颜色也较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。一步酸催化制备生物柴油工艺流程:

年产10万吨生物柴油工厂预处理系统工艺设计【文献综述】

文献综述 化学工程与工艺 年产10万吨生物柴油工厂预处理系统工艺设计 [前言] 随着全球范围内的能源需求不断增加、原油价格飙升及愈加严格的环保要求,开发可再生、环保的替代燃料已成为经济可持续发展和国防战略最重要课题之一,利用生物质资源和废油生产燃料技术应运而生。生物柴油是指以油料作物、野生油料作物和工程微藻等水生植物油脂,以及动物油脂、餐饮业废油等为原料油通过酯交换工艺制成的甲酯或乙酯燃料。作为可替代石化柴油的清洁生物燃料, 生物柴油的生产成本和使用性能都与现用石化柴油基本相当,且具有良好的环境特性和可生物降解性, 具有广阔的发展前景,但是生物柴油原料的预处理直接关系到酯交换反应的速率,为了防止酯交换时发生皂化,预处理工艺中降低酸值是要解决的关键问题。原料油脂中含有的胶质是影响成品油质量的主要因素,因为这些胶质常包裹住油脂细小粒子, 使油脂与催化剂不能有效地相接触, 从而降低了催化效率与裂解速度。另外胶质含量高还会使油脂在炼制过程中易翻泡、易乳化、增加残渣、影响产品的色泽及稳定性等。 [主题] 目前对地沟油的预处理主要包括脱胶、脱酸、除杂、干燥脱水,其中除杂、干燥脱水方法比较简单主要是通过过虑跟蒸煮、真空干燥来实现,脱胶与脱酸的方法比较多。 1.脱胶[1,2] 脱胶主要有水化脱胶、干法脱胶、特殊湿法脱胶、Unilever超级脱胶、特殊脱胶工艺、完全脱胶(特殊脱胶加干法脱胶)、超滤脱胶、吸附脱胶、超临界二氧化碳脱胶、酶法脱胶、乙醇胺脱胶、膜分离脱胶等工艺。 1.1水化脱胶 一般从毛油中除去磷脂, 采用水化脱胶是最简单的方法。但油和水混合后只能除去水化性磷脂, 而非水化性磷脂则不能被脱除,水化后的油脂一般仍含有80~ 200mg/kg的磷脂,这样的含磷量不能满足油脂进行进一步加工的工艺要求。 去离子水

生物柴油文献综述

年产2万吨生物柴油生产技术简介 一、总论 生物柴油概念:生物柴油是清洁的可再生能源,它以生物质资源作为原料为基础加工而成的一种柴油(液体燃料),主要化学成分是脂肪酸甲酯。具体而言,动植物油,如菜籽油、大豆油、花生油、玉米油、米糠油、棉籽油;以及动植物油下脚料酸化油,脂肪酸;动物油:猪油、鸡油、鸭油、动物骨头油等经一系列化学转化,精制而成的液体燃料,是优质的石油柴油代用品。生物柴油是典型的“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重大的战略意义。 二、生物柴油的主要特性 与常规柴油相比,生物柴油具有下述无法比拟的性能。 1、优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%;生物柴油中不含对环境会造成污染的芳香族烷烃,如苯等化合物,因而废气对人体损害低于石化柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患癌率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2、具有较好的低温发动机启动性能,无添加剂冷滤点达–20℃。 3、具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损

率低,使用寿命长。运动粘度稍高,在不影响燃油雾化的情况下,更容易生气缸内壁形成一层油膜,从而提高运动机件的润滑性,保护发动机,降低机件磨损。 4、具有较高的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的安全性更高。 5、具有良好的燃烧性能。十六烷值高,含氧量高,燃烧性优于石化柴油,燃烧残留物呈微酸性,发动机油的使用寿命加长。 6、具有可再生性能。作为可再生能源,与石油储量不同,其通过农业和生物科学家的努力,可供应量不会枯竭。 7、无需改动柴油机,可直接添加使用,同时无需另添设加油设备、储存设备及人员的特殊技术训练。 8、使用性广。可广泛用于各种载重汽车、火车、公交车、卡车、舰船、工程机械、地质矿业设备、农用机械、发电机组等柴油内燃机;更是非动力的工民用窑炉、锅炉及灶具上佳燃料。 三、生物柴油的发展前景及意义 (一)国家立法、政策支持 从2006年1月1日起正式生效的《中华人民共和国可再生能源法》明确规定“国家将再生能源的开发利用列为能源的优先领域,——依法保护可再生资源开发利用者的合法权益”。并指出“生物液体燃料,是指利用生物质资源生产的甲醇、乙醇和生物柴油”。 (二)资源十分广泛 一是可利用各种动、植物油脂的各种废料、副产物,例如加工植

生物柴油技术

生物柴油技术 随着我国工农业、交通运输业的飞速发展,市场对汽、柴油的需求日益增长。现在我国每年消耗的汽、柴油约为1.15亿吨,进口原油及成品油已成为我国财政的沉重负担,而且天然石油的储备有限,人类面临日益严重的能源危机。另外,燃油燃烧不当所排放出的浮碳、碳氢化合物、一氧化碳、氮氧化物、硫化物已成为大中城市的主要污染物来源,严重影响生态环境和人类健康。中国是一个经济大国,也是一个能源消耗大国,节能减排与绿色环保已经成为中国能源战略的重要组成部分。 国家出台了多项节能减排的政策措施,抑制高耗能、高污染行业的过快增长。节约发展,清洁发展,安全发展,可持续发展日益受到重视。因此,本着节能和环保要求,研制燃油新配方、开发清洁柴油已经势在必行。 我公司最新研制的生物柴油是以植物油厂下脚料、动物脂肪、废餐饮油、工业废醇等为原料,再加入一定量的催化剂,经专用设备和特殊工艺合成。 目前,该技术已经通过科技部成果鉴定、质量技术监督局备案和全国唯一通过国家发改委及环保局批准立项且具有生产、销售资质(附:成果鉴定证书及备案、立项原件),现在已有多家合作单位规模化生产。 【技术咨询:186-3718 1635 张经理187-3817 2329 齐经理】 以下是汇绿生物柴油项目介绍: 1、生物柴油的技术特点 生物柴油是以动植物油厂下脚料、泔水油、地沟油、脂肪酸甲酯、重油、蜡油、轻油、洗油、常线油、减线油、重柴、催柴、废轮胎油、废塑料油、臭油、废机油、地炼油、土炼油、低温煤焦油、常柴、焦化柴油、燃料油、碳五、碳九、碳十四、碳十六、白柴、化工油、黑柴、乌油、减线油等的二种或三种为原料,经过处理后,再加入一定量的催化剂、乳化剂,经专用设备和特殊工艺合成。该产品外观清澈透亮,主要指标达到国家柴油相关标准。与国内同类产品相比,本产品具有以下特点: 1)生物柴油原材料广泛,化工厂、植物油厂、炼油厂、化工市场等均可提供。动植物油厂下脚料、泔水油、地沟油来源于饭店或者植物油厂;脂肪酸甲酯来源于生物柴油厂;轻油、洗油、焦化柴油来源于焦化厂;重油、蜡油、常线油、减线油、重柴、催柴、碳五、碳九、碳十四、碳十六、白柴、来源于各大小炼油厂;废轮胎油、废塑料油、臭油、废机油、地炼油、黑柴来源于各小炼油厂。 2)生物柴油生产工艺简单、上马快、投资周期短,设备安装仅需15-30天。

第一代生物柴油特性与各种方法介绍

生物柴油特性与技术介绍 生物柴油产品特性 与常规柴油相比,生物柴油下述具有无法比拟的性能。 1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。 4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的有是显而易见的。 5) 具有良好的燃料性能。十六烷值高,使其燃烧性好于柴油,燃烧残留物呈微酸性使催化剂和发动机机油的使用寿命加长。 6) 具有可再生性能。作为可再生能源,与石油储量不同其通过农业和生物科学家的努力,可供应量不会枯竭。 生物柴油的优良性能使得采用生物柴油的发动机废气排放指标不仅满足目前的欧洲Ⅱ号标准,甚至满足随后即将在欧洲颁布实施的更加严格的欧洲Ⅲ号排放标准。而且由于生物柴油燃烧时排放的二氧化碳远低于该植物生长过程中所吸收的二氧化碳,从而改善由于二氧化碳的排放而导致的全球变暖这一有害于人类的重大环境问题。因而生物柴油是一种真正的绿色柴油。 据美国能源部的研究,生物柴油对人比食盐的毒性还小,比糖更容易降解,生物柴油致癌物排放量比石化柴油降低93.6%。 由于生物柴油燃烧所排放的二氧化碳远低于植物生长过程中所吸收的二氧化碳。因此,与使用矿物柴油不同,理论上其用量的增加不仅不会增加,反而会降低因二氧化碳的排放,从而能缓解全球变暖这个影响人类生存的重大环境问题。 作为可再生能源,与石油不同,其可以通过农业和生物科学家的努力,使其可供应量不会枯竭。原料供应有保证,价格较稳定。油料作物增产空间大,加之转基因技术可使油料含油达70%左右,有一定降价空间。 目前生物柴油生产所用技术 目前生物柴油主要是用化学法生产,即用动物和植物油脂和甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温(230~250℃)下进行转酯化(酯交换)反应,生成相应的脂肪酸甲酯或乙酯,在经洗涤干燥即得生物柴油。生产设备与一般制油设备相同,生产过程中可产生10%左右的副产品甘油。 目前几种主要的工艺方法: ?碱催化法 ?酸催化法 ?脂肪酶或生物酶法 ?超临界萃取法 1.碱催化法:用氢氧化钠或氢氧化钾为催化剂,这是目前最常用的制取方法,将植物油脂与甲醇予以酯交换(交酯化)反应,并使用氢氧化钠(油脂重量的1%) 或甲醇钠(Sodium methoxide) 做为催化剂,大约混合搅拌反应2小时,即可制得生物柴油。 2.酸催化法:因废油脂通常含有大量的游离脂肪酸,而不能用碱性催化剂转化为生物柴油,

生物柴油生产工艺

学院:化学与环境保护学院专业:化学工程与工艺 姓名:朱慧芳 学号:201031204011

新型藻类制生物柴油生产工艺 摘要:我国石油资源紧缺,研究开发生物柴油是当务之急。结合我国情况介绍了几种可用于生产生物柴油的原料,并针对不同的原料,提出了几种可供使用的生产工艺。用泔水油、地沟油和油厂下脚料等原料生产生物柴油工艺成熟、经济合算, 值得推广。为适应我国生物柴油的研究与生产,建议加快制定我国生物柴油的相关标准。 关键词:生物柴油;酯化;醇解;酯交换;脂肪酸;脂肪酸甲酯 一生物柴油概述 生物柴油 (Biodiesel),又称脂肪酸甲酯 (Fatty Acid Ester)是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类 (甲醇、乙醇) 经交酯化反应 (Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr. Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使

用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外生物柴油是一种可再生能源,也是一种降解性较高的能源。 二生产生物柴油背景技术市场分析 1生物柴油原料 由于各国的资源差异,生物柴油的原料差异较大,欧盟主要是菜籽油为主,美国主要是以大豆油为主。我国主要生物柴油主要以废弃油脂以及木本原料为主,并在价格合适的情况下考虑进口棕榈油。 2 生物柴油的优缺点 (1)生物柴油优势 与常规柴油相比,生物柴油下述具有无法比拟的性能。 1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。 4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因

生物柴油综述

生物柴油综述 摘要:本文综述了生物柴油的特点和制备方法,重点阐述了酯交换制备生物柴油的方法,阐明各催化剂的优缺点,指出生物柴油未来发展方向。 关键字:生物柴油酯交换反应催化剂 Abstract: Areviewing the feature and preparation methods of biodiesel in the article. transesterification techniques for biodiesel synthesis were summarized. The merits and disadvantages of different catalysts were illustrated,and the development direction for transesterification was indicated. Key words: biodiesel; transesterification; catalyst 随着社会的快速发展和人们生活质量的提高,石油燃料已成为我们生活中不可缺少的使用能源。而石油作为一种不可再生能源,随着人们需求量的增大已经开始逐渐枯竭,并且石油燃料的燃烧产生大量的二氧化碳气体和粉尘颗粒,造成严重的环境污染。随着人们燃料危机意识和环保意识的提高,世界各国开始研发生物柴油作为一种可再生、环保能源来替代石油燃料。 早在1897年狄赛尔创造出的第一台柴油机就是用花生油作的燃料。但是植物油与柴油相比粘度过高、十六烷值低且含有大量的不饱和脂肪酸。故前人对植物油进行了大量的改进[1]。 生物柴油,即脂肪酸单酯,是对动植物油脂与甲醇或乙醇进行酯化反应或酯交换反应得到的液体燃料,它主要来源于动植物油脂、藻类和人类食用废弃油类,是可生物降解并且像太阳能、潮汐、风能一样是具有潜力的可再生能源。与石油相比,生物柴油不含对环境污染的芳烃类物质,燃烧排放的废气中基本不含硫,其中的碳氢化合物、二氧化碳的排放量也大大减少,在很大程度上减小了对环境的影响。 生物柴油的分子量、粘度、密度与轻柴油基本接近,十六烷值含量接近甚至超过轻柴油。但热值比石油柴油低7%,氮氧化物排放会微量增加,低温启动性能略差。 1生物柴油的制备方法 生物柴油的主要制备方法有直接混合法、微乳化法、高温裂解法、酯交换法和

生物柴油工艺流程图CAD图

一、概述 1.1生物柴油概述生物柴油(Biodiesel) ,又称脂肪酸甲酯(Fatty Acid Ester) 是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类(甲醇、乙醇) 经交酯化反应(Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr.Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上,Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外,生物柴油是一种可再生能源,也是一种降解性较高的能源。1.2使用生物柴油可降低二氧化碳排放生物柴油的使用能减少温室气体二氧化碳的排放,可以这样来理解:燃烧生物柴油所产生的二氧化碳与其原料生长过程中吸收的二氧化碳基本平衡,所以不会增加大气中二氧化碳的含量.而燃烧矿物燃料所释放的二氧化碳需要几百万年才能再转变为石化能,故使用生物柴油能大大减少石化燃料的消耗,相当于降低了二氧化碳的排放。美国能源部研究得出的结论是:使用B20(生

物柴油和普通柴油按1:4混合)和B100(纯生物柴油)较之使用柴油,从燃料生命循环的角度考虑,能分别降低二氧化碳排放的15.6%和78.4%。 1.3生物柴油降低空气污染物的排放生物柴油由于本身含氧10%左右,十六烷值较高,且不含芳香烃和硫,所以它能够降低CO、HC、微粒、NOx和芳香烃等污染物的发动机排气管排放,尤其是微粒中PM10的排放,而它正是导致人类呼吸系统疾病根源的污染物。生物柴油具有许多优点:*原料来源广泛,可利用各种动、植物油作原料。*生物柴油作为柴油代用品使用时柴油机不需作任何改动或更换零件。*可得到经济价值较高的副产品甘油(Glycerine) 以供化工品、医药品等市场。*相对于石化柴油,生物柴油贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆) ;*可再生性(一年生的能源作物可连年种植收获,多年生的木本植物可一年种维持数十年的经济利用期,效益高;*可在自然状况下实现生物降解,减少对人类生存环境的污染。 生物柴油突出的环保性和可再生性,引起了世界发达国家尤其是资源贫乏国家的高度重视。德国已将生物柴油应用在奔驰、宝马、大众、奥迪等轿车上,全国现有900多家生物柴油加油站。美国、印度等其他发达国家和发展中国家也在积极发展生物柴油产业。目前,世界生物柴油年产量已超过350万吨,预计2010年可达3000万吨以上。1.4我国生物柴油发展的现状在生物柴油方面,我国的技术研究并不落后于欧美等发达国家,从各种公开的文献资料上,涉及生物柴油的文献80余篇,涉及技术研究的文献20余篇,内容包括了生物

生物柴油制备方法及国内外发展现状

生物柴油制备方法及国内外发展现状 摘要:通过查找文献,简要介绍了生物柴油的定义和优点,重点介绍它的制备方法,同时也对它在国内外的发展现状作了些介绍。 关键词:生物柴油;制备;现状; Abstract:This article gives a brief introduction to the definiton , advantages and development at home and abroad of the biodiesel,it also gives an emphasis introduction on prepation method . Keywords: biodiesel;prepation;actuality; 随着城市对能源需求的不断增加,石油资源的日益枯竭,全世界都将面临能源短缺的危机,而且石油燃烧对环境造成严重的污染,在很大程度上影响着人们的健康水平,于是对生物柴油的研究应用成为缓解日益恶化的能源和环境问题的焦点。 1生物柴油的定义及优点 1.1 定义 生物柴油是指以油料作物、野生油料植物、工程微藻等水生植物油脂以及动物油脂、餐饮废油等为原料,通过酯交换工艺制成的有机脂肪酸酯类燃料[1]。产业化生产中所说的生物柴油是指脂肪酸甲酯,是脂肪酸与甲醇发生酯化反应后的生成物。 基于美国生物柴油协会定义,生物柴油是指以植物、动物油脂等可再生生物资源生产的可用于压燃式发动机的清洁替代燃料。天然油脂由长链脂肪酸的甘油三酯组成,分子量大,接近700~1000,虽本身可以燃烧,但不能和普通柴油充分混合,直接用作柴油有很多缺陷,需要设计专门的柴油机。酯交换后得到脂肪酸甲酯,分子量降低至200-300,与柴油的分子量相近,性能也接近于柴油,可以按任意比例混合,也无需设计专门的柴油机。且具有接近于柴油的性能,是一种可以替代柴油使用的环境友好的环保燃料。 1.2 优点 生物柴油与石化柴油具有相近的性能,并具有显著的优越性[2,3]:(1)具有优良的环保特性。生物柴油中硫含量低,不含芳香烃,

年产10000吨生物柴油环评分析(简要稿)

年产10000吨生物柴油环评分析(简要稿) 4.2.3 脂肪酸甲酯(生物柴油)生产线 4.2.3.1 概述 生物柴油是指植物油与甲醇进行酯交换反应产生的脂肪酸甲酯,是一种洁净的生物燃料,也称之为“再生燃油”,用作柴油机燃料。生物柴油作为一种清洁的可再生能源,已经在世界围形成了可再生能源领域的研究开发热潮,生物柴油在欧美等发达国家已经是市场普遍接受的实用产品。目前,我国在生物柴油新能源领域技术和产业化才刚刚起步,石油资源的减少和原油涨价给生物柴油带来发展机遇。在不久的将来,生物柴油必定能够在我国能够形成一个巨大的可再生能源产业。 拟建项目以精炼植物油的直接酯交换反应为基础连续生产生物柴油,设计生产能力10000t/a 。其主要反应原理如下所示: 4.2.3.2 主要原料消耗 表4-27 脂肪酸甲酯(生物柴油)主要原材料消耗 主要原料为废弃餐饮油,其主要质量指标如表4-28示。 表4-28 原料油脂的主要质量指标 CH 2-O-CO-R CH-O-CO-R CH 2-O-CO-R 3OH 3-O-CO-R CH 2-OH CH-OH CH 2-OH

4.2.3.3 主要生产设备 该生产线含甲酯/甘油酯交换、甲酯/甘油分离、甲酯提纯、甲醇精馏回收、甘油提纯处理以及尾气收集和处理单元。 表4-29 脂肪酸甲酯(生物柴油)主要生产设备

甲醇精馏:BZ650科力化工设备 板框压漏机:XM(A)YZ800系列压滤机九龙过滤设备 搪玻璃开式反应罐扬阳化工设备制造 4.2.3.4 生产工艺和物料平衡 图4-9 脂肪酸甲酯(生物柴油)生产工艺总流程 该生产线连续生产,年生产运行时间330天,年生产能力1万吨脂肪酸甲酯产品,各生产单元物料平衡按单位产品进行核算。

生物柴油工艺流程简述

本项目所采用的是吸收发展日本HAVE技术及与公司技术研发合作方上海华东理工大学共同研制的脂肪酸甲脂提纯的分子蒸馏技术和自有的精制技术相结合,自主开发创新,独具特色的生产工艺和设备。是在国内外同行业中具有先进性的生物柴油生产新工艺。 叙述如下: STEP-1前处理 原料油在,多数场合时是含有一定的水分和微生物的,在加热100℃以上的情况下.甘油三酯(三酸甘油酯)的一部分加水分解,变为游离脂肪酸。因此,一般的原料油尤其是废食用油里含有2~3%的游离脂肪酸,饱和溶解度的水以及残渣的固定成分。这些杂质,特别是在由碱性触媒法的酯化交换过程中,使触媒活性下降,产生副反应生成使燃料特性变坏的副生物,所以,在酯交换反应前,有去除的必要.D/OIL 制造过程中,配合高速分离,真空脱水,脱酸等,几乎可以全部除去废食用油中的杂质。饱和脂肪酸采用烙合法断链转换成不饱和脂肪酸。 STEP-2 甲醇触媒的溶解 水分等杂质含有量在所定值以下的甲醇和触媒混合后,用来调制甲醇溶液.此过程中,特别要注意的是,由于溶解热的突然沸腾,有必要控制溶解速度和溶液的温度。另有,KOH触媒由于吸水性较高,所以,在储藏和使用阶段尽量防止吸收水分、一旦,吸收了大量的水分时, KOH就会变得难于溶解,将会影响到下一个工序。

STEP-3 酯交换反应 将经过前处理的原料油和触媒,甲醇混合,在65度左右时进行酯交换反应(Ⅲ--4)。在此工序中,为了达到完全反应的目的(tri-di-mono-甘油酯的转化率在99%以上),有必要控制甲醇/原料油比,触媒/原料油比,搅拌速度,反应时间等的参数。。通常,甲醇/原料油比和触媒/原料比越大,反应速度越快,投入化学反应理论以上的过剩甲醇时,不只是D/OIL的制造原价升高, D/OIL中的残存甲醇浓度也升高,燃料特性反而恶化。还有,此工程,如果原料油中水分和游离脂肪酸有残留的情况下,会引起如下图所示的副反应。过量甲醇通过闪蒸分离后经精馏回用。 STEP-4 甘油的分离 反应结束后,从酯交换反应的生成物甘油和甲酯的混合物中分离出甘油. 甘油的分离,虽然可以利用甘油(1.20g/cm3) 和甲酯(0.88g/cm3)的比重差,使之自然沉降,不仅分离速度很慢,也不能使甘油完全分离.所以, .D/OIL的制造过程是通过高效率的高速离心分离机来进行分离的. STEP-5 甲酯的精制 甲酯的精制是通过蛋白页岩吸附剂,去除生物柴油中的碱性氮、和黄曲霉素。

国内外生物柴油研究与应用现状及发展趋势

国内外生物柴油研究与应用现状及发展趋势 彭超 中国矿业大学化工学院生工10-1班 摘要:生物柴油来源于动植物油脂等可再生资源。作为矿物柴油的替代燃料,生物柴油具有空气污染物排放少、润滑性好、生物降解完全等优点,但生物柴油的成本高是制约其发展的瓶颈。本文综述了国内外生物柴油研究及生产的现状和发展趋势,指出了生物柴油的优势及生物柴油制备、应用中存在的问题,分析了发展生物柴油产业对我国石油安全、国民经济建设、农业产业结构调整和环境保护的作用,并展望了该产业的发展前景。 关键词:生物柴油油脂酯交换 1 引言 1.1生物柴油的定义 生物柴油(Biodiesel)提炼自石油,普遍用于拖拉机、卡车、船舶等。它是指以油料作物如大豆、油菜、棉、棕榈等,野生油料植物和工程微藻等水生植物油脂以及动物油脂、餐饮垃圾油等为原料油通过酯交换工艺制成的可代替石化柴油的再生性柴油燃料。生物柴油是生物质能的一种,它是生物质利用热裂解等技术得到的一种长链脂肪酸的单烷基酯。生物柴油是含氧量极高的复杂有机成分的混合物,这些混合物主要是一些分子量大的有机物,几乎包括所有种类的含氧有机物,如:醚、醛、酮、酚、有机酸、醇等。复合型生物柴油是以废弃的动植物油、废机油及炼油厂的副产品为原料,再加入催化剂,经专用设备和特殊工艺合成。 1.2生物柴油及其应用历史 生物柴油是植物柴油与动物柴油的总称。它基本不含硫和芳烃,十六烷值高达52.90,可被生物降解、无毒、对环境无害,可以达到美国“清洁空气法”所规定的健康影响检测要求,与使用石油柴油相比,可以降低90%的空气毒性,降低94%的致癌率,它的开口闪点高,储存、使用、运输都非常安全。在生产生物柴油的过程中,每消耗1个单位的矿物能量就能获得3.2个单位的能量,在所有的替代能源中它的单位热值最高。生物柴油的应用历史较长,1900年,鲁道夫·迪兹尔在巴黎世界博览会上首次展览其发明的柴油引擎时使用的就是花生油。 1.3生物柴油的特点 1)能达到欧洲2号排放(GB252-2000)标准; 2)密度比水小,相对密度在0.7424~0.8886之间; 3)稳定性好,长期保存不会变质; 4)优良的环保特性:硫含量低,二氧化硫和硫化物的排放低、生物柴油的生物降解性高达98%,降解速率是普通柴油的2倍,可大大减轻意外泄漏时对环境的污染; 5)生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油;

生物柴油介绍

摘要:面对能源紧缺和环境污染,生物柴油替代传统石化燃料已成为研究热点。本文从原料选取、生产方法和生产工艺的角度对生物柴油发展进行了评价和比选。生物柴油有改善生态环境、缓解能源消费压力、含氧量高、降低空气毒性和致癌率以及生物降解性高等诸多优点,近年来已成为各个国家竞相研究的热点,对我国来说,发展生物柴油具有良好的前景。综述了国内以餐饮废油脂、动植物油脂和工程微藻等为原料生产生物柴油的技术研究进展及主要装置的生产能力,分析了在我国发展生物柴油需要解决的问题。 Development and use of biodiesel Fan,yang (University of Science and Technology of Suzhou ,Jiangsu suzhou,215000,China) Abstract: Face energy shortage and environmental pollution, biodiesel is an alternative to traditional fossil fuels has become a hot topic. From the selection of raw materials, production methods and production technology evaluation, comparison and selection point of view of the development of bio-diesel. Biodiesel to improve the ecological environment, to ease the pressure on energy consumption, high oxygen content, reduce toxic and carcinogenic air rate as well as the biological degradability many advantages, and in recent years has become a hot research each country competing for our country, the development of bio-diesel has good prospects. The production capacity of the domestic the catering waste oils, animal and vegetable fats and oils, and engineering of microalgae as raw material to produce bio-diesel technology research progress and the main device, a problem to be solved in the development of bio-diesel in China. Keywords: biodiesel; production process; development prospects 近年来,全球石油供需矛盾日益突出,一方面由于交通运输燃料消费量不断增长对石油的需求不断 扩大,另一方面全球石油资源量日益减少,石油供应日趋紧张,此生物燃料技术开发已经引起世界许多国家的普遍重视。生物柴油作为主要生物燃料之,具有产品环保、原料可再生的优点,近年来在生物燃料的开发中发展速度较快。 生物柴油由动物和植物等油脂制得,属可降解再生能源。作为一种有潜力取代传统矿物柴油而使用的环保燃油,生物柴油不但可以有效降低环境污染,还能缓解我国能源危机,更能促进农副产品的综合开发与利用。前人经过大量的研究和长期的使用,发现生物柴油有着某些矿物柴油多不可比拟的优良性能。国际上,各国都开始转向生产、利用和发展生物柴油能源,并视作一种石油能源替代品加以研究。西方发达国家根据本国能源安全性和环境保护情况,已经对其进行非常深入广泛的研究,并有一大批工业规模的生产装置已经建立,生物柴油的产量和使用范围正不断扩大。欧盟通过替代燃料的立法,对生物柴油的生产者与消费者给予支持和优惠,大大刺激了和促进生物柴油的生产和使用。美国于1992年制定了能源政策法案中明确指出,2010年非石油燃料需占发动机燃料总量的30%,而非石油燃料主要指的就是生物柴油。其他国家在面临石化柴油紧缺的现实情况下,也正积极发展生物柴油相关科研项目。在国内,政府从2000年开始重视生物柴油的研发工作 J。尽管我国生物柴油的研究与开发起步晚,但发展较为迅速,且部分成果已达国际先进水平。2003年4月,生物柴油被国家科技部等政府机构列为“国家重点新产品”。相关高校和科研院所也进行了实验室研究和小型化工业实验,并取得了重大成果。 1、生物柴油的原料来源

生物柴油检测标准

生物柴油的理化指标及测定方法 生物柴油主要由C、H、0三种元素组成。作为柴油的替代燃料,生物柴油应当满足柴油的使用要求,才能保证其作为燃料使用。因此,评价生物柴油是否可以作为柴油的替代燃料,首先应当看其是否具有同矿物柴油相近的性质,主要有以下几方面的性质和考察指标: ① 良好的燃烧性能——十六烷值; ② 良好的蒸发性能——馏程及馏出温度; ③ 良好的常温和低温流动性能——黏度、密度及冷滤点; ④ 良好的安全性——闪点、燃点; ⑤ 对发动机无腐蚀——酸度及酸值; ⑥ 良好的动力性能——热值。 其次,受生产原料和工艺影响的生物柴油特有指标,如甲醇含量、甘油含量、游离脂肪酸、磷 含量等。 1.1 十六烷值(CN值) 燃烧性能是评价燃料油品质的重要指标,而CN值是衡量燃料在压燃式发动机中燃烧性能好坏的重要指标。柴油机属压燃式发动机,要求柴油喷入气缸与压缩空气相混和后,在高温高压条件下自燃,并在气缸中燃烧作功。柴油的CN值影响整个燃烧过程。CN值低,则燃料发火困难,滞燃期长,发动机工作时容易爆震;而当CN值过高时,反而会因滞燃期太短而导致燃烧不完全、发动机功率降低、耗油增加和冒黑烟等后果。一般认为,适宜的柴油CN值应为45—60,可以保证柴油均匀燃烧,热功率高,耗油量低,发动机工作平稳,排放正常。根据Harrngton和Gerhard 等人的研究,碳链长度的增加有助于CN值的提升,而不饱和双键数目的增加则会使CN值有所降低。生物柴油的CN值比普通矿物柴油要略高,通常为50—60之间。CN值的测定有“临界压缩比法”“延滞点火法”和“同期闪火法”,我国国家标准(GB386-64)规定采用“同期闪火 法”。 2 馏程(95% )

生物柴油的现状与发展前景

生物柴油的现状与发展前景 柴油作为一种重要的石油连炼制产品,在各国燃料结构中占有较高的份额,以成为重要的动力燃料。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。 目前世界每年新车产量大约5 000万辆,全世界汽车保有量大约7.5亿辆(含摩托车)。随着汽车工业的快速发展,汽油和柴油的用量随汽车保有量的增加而增加,同时也带来了汽车尾气污染等问题。近20年来,虽然在改善油品燃烧过程、尾气净化等方面都取得了很大进展,但仍然不能满足要求。为了改善汽车的运行性能和降低汽车尾气中害物质的排放量,美国、欧洲和日本汽车工业协会1998年6月4日提出了汽车燃料质量国际统一标准即”世界燃油规范”Ⅲ类标准。柴油”世界燃油规范”Ⅱ类、Ⅲ类标准(见表1、表2)。由表1、表2可以看出,Ⅱ类标准在目前基础上,提出了芳烃含量的限制,对硫含量、十六烷值等提出了更高的标准,Ⅲ类标准则在各项指标上比Ⅱ类标准都有更严格的规定。 随着我国汽车拥有量的急剧上升,大量的燃油被消耗,汽车尾气中污染物的排放量越来越大,汽车尾气已成为我国大气污染重要的原因。为保护环境,改善大气质量,我国国家质量技术监督局最近颁布了柴油机排放控制新标准(见表3)。新标准采用了联合国欧洲经济委员会汽车排放法规体系,使我国对新柴油机车的排放要求达到欧洲20世纪90年代初期的水平。 我国目前的车用无铅汽油和柴油标准介于世界燃油规范Ⅰ类油和Ⅱ类油水平之间,要满足汽车达到欧洲Ⅰ类排放标准都困难,更无法满足入世及举办奥运会的要求。为此,中国石化集团公司要求在清洁油品生产方面作出更大努力,以满足国家标准的要求。 炼油企业为了向市场提供清洁油品使燃烧柴油尾气排放达到标准要求,需要采取

生物柴油工艺

车用生物柴油工艺 随着我国工农业、交通运输业的飞速发展,市场对汽、柴油的需求日益增长。现在我国每年消耗的汽、柴油约为1.15亿吨,进口原油及成品油已成为我国财政的沉重负担,而且天然石油的储备有限,人类面临日益严重的能源危机。另外,燃油燃烧不当所排放出的浮碳、碳氢化合物、一氧化碳、氮氧化物、硫化物已成为大中城市的主要污染物来源,严重影响生态环境和人类健康。中国是一个经济大国,也是一个能源消耗大国,节能减排与绿色环保已经成为中国能源战略的重要组成部分。全球瞩目的中国共产党第十七次全国代表大会上,党中央、国务院明确提出要重点改变经济增长模式,从单纯追求GDP的增长模式向建设资源节约型、环境友好型社会、节能环保型社会转变,实现经济又好又快的发展。国家出台了多项节能减排的政策措施,抑制高耗能、高污染行业的过快增长。节约发展,清洁发展,安全发展,可持续发展日益受到重视。因此,本着节能和环保要求,研制燃油新配方、开发清洁柴油已经势在必行。 我公司最新研制的生物柴油是以植物油厂下脚料、动物脂肪、废餐饮油、工业废醇等为原料,再加入一定量的催化剂,经专用设备和特殊工艺合成。本产品:理化指标经“国家乙醇汽油质量监督检验中心”检测合格(附:理化指标检测报告原件);动力性能经“国家拖拉机质量监督检验中心”检测与纯柴油相当(附:动力检测报告原件);尾气排放经“省环境检测中心站”检测降低排放40%左右(附:尾气排放指标检测报告原件)。 目前,该技术已经通过科技部成果鉴定、质量技术监督局备案和全国唯一通过国家发改委及环保局批准立项且具有生产、销售资质(附:成果鉴定证书及备案、立项原件),现在已有多家合作单位规模化生产。 采用我公司合成的生物柴油适用于各种拖拉机、农用运输车、抽水机、发电机、燃油热风炉、烘干炉、柴油机轮船等。此种新型燃料与柴油性能相当,并且能大大提高燃烧效率,不污染环境,这种清洁柴油经权威机构检测,环保指标还优于柴油,价格比原柴油低800~1000元/吨左右,是一种经济高效的新型燃料。 1、生物柴油的技术特点

化学法生产生物柴油与生物法生产生物柴油有何优缺点

化学法生产生物柴油与生物法生产生物柴油有何优缺点 随着石油日益枯竭和人们对环境的重视, 迫切需要寻找一种对环保的新的可再生能源以解决能源及环境问题, 在此背景下产生了生物柴油。生物柴油是指以动植物油脂等可再生的生物资源生产的可用于压燃式发动机的清洁替代燃油, 它是由一系列长链脂肪酸甲酯组成。到目前为止, 已有多种生产生物柴油的方法, 包括高温裂解法、酯交换法等化学法和用固定化酶法,全细胞催化剂法等生物技术法 1化学法生产生物柴油 化学法包括热烈解法、酯交换法等。 1.1 热裂解法 植物油热烈解是对植物油进行热裂解反应Schwab 和Pioch 分别在这一方面进行了探索,所得生物柴油的性能与普通柴油相接近。 1.2 酯交换法 酯交换法是目前生产生物柴油的主要方法。目前, 生物柴油主要是用化学法生产, 即用动物和植物油脂和甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温( 230~ 250 ℃ ) 下进行转酯化反应, 生成相应的脂肪酸甲酯或乙酯, 再经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循环使用, 生产设备与一般制油设备相同, 生产过程中可产生10 % 左右的副产品甘油。目前生物柴油的主要问题是成本高, 据统计生物柴油制备成本的75 %是原料成本。因此, 用廉价原料及提高转化率从而降低成本是生物柴油能否实用化的关键。美国已开始通过基因工程方法研究高油含量的植物。日本采用工业废油和废煎炸油。欧州是在不适合种植粮食的土地上种植富油脂的农作物。但化学法合成生物柴油有以下缺点: 工艺复杂、醇必须过量, 后续工艺必须有相应的醇回收装置, 能耗高, 色泽深, 由于脂肪中不饱和脂肪酸在 高温下容易变质, 酯化产物难于回收, 成本高,生成过程有废碱液排放。 2生物法生产生物柴油 2.1 固定化脂肪酶 脂肪酶在水溶液中不稳定, 易失活, 因此常用固定化脂肪酶。将酶固定在合适的载体上, 催化结束后便能很容易地从反应混合物中分离出来, 简化了下游工艺。另外, 载体的支撑使酶稳定性及最佳温度提高, 增大了转化率, 缩短了反应时间。酶的高稳定性还能降低失活率, 使酶能被重复利用。。Du 等报道了载体的另一有利影响, 载体材料能影响酰基对酶的有效性, 如1, 3-氯代脂肪酶理论上转化率只能达到66% , 但在基质上却转化了90% 以上。固定化技 术可分为吸附、截留、封装和交叉链接。最常用的是基于范德华力或其他弱作用力的表面吸附技术, 此法简单, 成本低, 不含有毒化学物质,酶活性易保持且在酯交换后还能恢复。用于吸附脂肪酶的载体材料中丙烯酸树脂是最常用的,另外还有大孔树脂、硅胶、硅藻土等, 甚至还有纺织薄膜。用吸附法时所有植物油的转化率普遍高于90%。 酶的交叉链接是固定化的合适方法。通过多功能化学物质的反应可实现分子间的交叉链接, 如戊二醛、环己烷二异氰酸盐与酶分子,总量较小,但稳定性提高。Kumari 等报道了P-洋葱假单胞菌的交叉链接在紫藤木印迪卡油与乙醇酯交换上的应用, 收率为92%。交叉链接脂肪酶形成粒度只有10 um 的无基质聚合物,在非均匀反应系统中使用会加大产物分离的难度。将不同的固定化方法结合起来, 能够克服只使用一种方法带来的问题。Yadav 等将C-南极脂肪酶吸收进六角中孔二氧化硅中, 用海藻酸钙密封, 对氯苯甲醇和乙烯基乙酸盐进 行酯交换反应[。这种固定化杂化酶系统的转化率为68%, 活性消耗仅为4%, 且有极好的可重复利用性。该系统结合了蛋白质载体吸收及密封技术的优点, 因为它提供了稳定的类似笼子的保持架, 有助于酶限制和酶溶滤作用。 2.2 全细胞催化剂 酶催化的酯交换反应, 尤其当使用固定化脂肪酶时耗能少, 利于甘油的分离和生物催

相关主题
文本预览
相关文档 最新文档