当前位置:文档之家› 吸收曲线

吸收曲线

吸收曲线

题目:紫外——可见吸收曲线的测绘及维生素B12的含量测定

一、目的:

掌握紫外─可见分光光度计的原理和操作。熟悉测绘吸收曲线的一般方法。比较自动扫描型仪器与手工绘制吸收曲线的差别。掌握两种测定含量的方法。

二、原理:

维生素B12是含Co的有机物,深红色。可以用其水溶液作测量液。用与配置其水溶液相同的溶剂─本实验为水,作为参比溶液。测不同浓度下的吸光度A对C作图,得吸收曲线。也可配置好溶液后在自动扫描的仪器上自动绘制出吸收曲线。

由吸收曲线可得到VB12三个吸收峰峰位。361nm的吸收峰干扰因素少,可依朗伯—比尔定律A=E·C·L以比较法,通过测量待测液及标准溶液的吸光度。计算得到样品含量,也可以按药典规定以361±1nm处吸光系数值(207)计算得到含量。

三、仪器药品:

紫外——可见分光光度计(两种型号)比色器

VB12标准溶液VB12注射液

四、实验内容:

(一)吸收曲线绘制

吸收曲线方法一

1、将被测液与空白液分别盛装于1cm比色皿中,并置于仪器中比色皿架上,按仪器使用方

法进行操作。

2、从仪器上限开始每隔20nm测量一次吸光度在吸收峰谷的波段以5nm或更小的间隔测定

一些点

3、以波长为横坐标,吸收度为纵坐标绘图,得吸收曲线。

吸收曲线方法二

1、将被测液与空白液分别盛装于1cm比色皿中,并置于仪器中比色皿架上,按仪器使用方法进行操作。

2、按仪器使用方法操作得到吸收曲线

(二)吸光系数法测含量

取维生素B12注射液样品,按照其标示含量,精密吸取一定量,用蒸馏水准确稀释k倍,使稀释液每ml含量约为25μg,置1cm石英池中,以蒸馏水作空白,在紫外分光光度计(或有足够精度的其他仪器)上,找出361±1nm范围内的吸收峰,读取其吸光度,与48.31相乘,即得样品稀释液每ml含B12的μg数。

(三)标准比色法测含量

(1)、标准溶液取质量较好的维生素B12注射液,按上述方法去测定其实际含量,准确稀释k倍,使其每ml含B12为50-100μg,以此溶液作为标准溶液。

(2)样品溶液参照被测样品的标示含量,精确吸取适量,用蒸馏水准确稀释m倍,使其含量与标准含量接近。

(3)测定用蒸馏水为空白,用1cm玻璃吸收池在分光光度计上550nm分别测定标准溶液的吸光度(As)与样品溶液的吸光度(Ax),计算样品含量。

五、思考题:

吸收系数法中为什么吸光度乘48.31即得每毫升VB12的μg数?

差分吸收光谱技术DOAS

差分吸收光谱技术(DOAS:Differential Optical Absorption Spectroscopy)是一种光谱监测技术,其基本原理就是利用空气中的气体分子的窄带吸收特性来鉴别气体成分,并根据窄带吸收强度来推演出微量气体的浓度.凭借其低廉且简单的设备装置和出色的监测能力,DOAS技术在大气监测领域内在国外已经被广泛应用.鉴于国内的污染形势的日益严峻及对此新兴技术知识的匮乏,对于DOAS技术的工作原理、浓度反演方法及其在大气研究领域内的应用与发展前景做了较为详细的介绍,为今后在大气监测领域里研究和应用DOAS技术提供了必要的理论知识. DOAS技术主要是以大气中的痕量污染气体对紫外和可见光波段的特征吸收光谱为基础,通过特征吸收光谱鉴别大气污染气体的类型和浓度,因此适用于在该波段有特征吸收的气体分子。 D0As是基于痕量气体分子的窄带吸收特征的检测。吸收的光强度遵守Lambert-Beer吸收定律,同时要考虑散射对测量的影响,如考虑瑞利散射(Rayleigh)、米散射(Mie)的影响。 为了消除Rayleigh散射和Mie散射等的影响,在数学上通常采用滤波技术,将包含在大气吸收光谱中由分子吸收引起的光谱变化分离出来。这种数学上的处理是基于:由Rayleigh散射和Mie散射等引起的光学厚度的变化随波长缓慢变化,而由分子吸收特性引起的光学厚度的变化随波长快速变化。为此将散射引起的光谱变化称为“宽带”光谱(低频部分),将分子吸收引起的光谱变化称为“窄带”光谱(高频部分)。计算过程中使用高通滤波器将随波长快速变化的“窄带”光谱分离出来,被分离出来的分子吸收光谱用参考光谱进行拟合,来计算出存在于被测大气中的光吸收物质的浓度。这就是差分吸收光谱法的基本思想。 图所示δ0为随波长缓慢变化的“宽带”光谱部分,δ…随波长快速变化的“窄带”光谱部 分,即差分吸收截面 总的吸收截面δ减去数字平滑计算得到的δ…就是差分吸收截面

半导体的带间光吸收谱曲线

半导体的带间光吸收谱曲线 Xie Meng-xian. (电子科大,成都市) (1)光吸收系数: 半导体吸收光的机理主要有带间跃迁吸收(本征吸收)、载流子吸收、晶格振动吸收等。吸收光的强弱常常采用描述光在半导体中衰减快慢的参量——吸收系数α来表示;若入射光强为I,光进入半导体中的距离为x,则定义: 吸收系数的单位是cm-1。 (2)带间光吸收谱曲线的特点: 对于Si和GaAs的带间跃迁的光吸收,测得其吸收系数a与光子能量hν的关系如图1所示。这种带间光吸收谱曲线的特点是:①吸收系数随光子能量而上升;②各种半导体都存在一个吸收光子能量的下限(或者光吸收长波限——截止波长),并且该能量下限随着温度的升高而减小(即截止波长增长);③GaAs的光吸收谱曲线比Si的陡峭。 为什么半导体的带间光吸收谱曲线具有以上一些特点呢?——与半导体的能带结构有关。 (3)对带间光吸收谱曲线的简单说明: ①因为半导体的带间光吸收是由于价带电子跃迁到导带所引起的,则光吸收系数与价带和导带的能态密度有关。而在价带和导带中的能态密度分布较复杂(在自由电子、球形等能面近似下,能态密度与能量是亚抛物线关系),不过在价带顶和导带底附近的能态密度一般都很小,因此,发生在价带顶和导带底附近之间跃迁的吸收系数也就都很小;随着能量的升高,能态密度增大,故吸收系数就相应地增大,从而使得吸收谱曲线随光子能量而上升。 但是由于实际半导体能带中能态密度分布函数的复杂性,而且电子吸收光的跃迁还必须符合能量守恒、动量守恒和量子力学的跃迁规则——选择定则,所以就导致半导体光吸收谱曲线变得很复杂,可能会出现如图1所示的台阶和多个峰值或谷值。 ②因为价电子要能够从价带跃迁到导带,至少应该吸收禁带宽度Eg大小的能量,这样才能符合能量守恒规律,所以就存在一个最小的光吸收能量——光子能量的下限,该能量下限也就对应于光吸收的长波限——截止波长λg :

实验三 自由曲线的生成

实验三 Bezier曲线生成 一、实验目的 1. 理解并会自己编程实现二维Bezier曲线的画图 二、实验内容和要求 1.选择自己熟悉的任何编程语言, 建议使用VB,VC或JAVA。 2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。 3.实现二维2、3、4阶Bezier曲线的描画。 4.将生成算法以菜单或按钮形式集成到用户界面上。 5.坐标参数可以用鼠标或键盘输入。 三.实验报告 1.用户界面的设计思想和框图。 2.各种实现算法的算法思想。 3.算法验证例子。 4.上交源程序。 四.Bezier曲线生成程序设计的步骤如下: 1.创建工程名称为“Test”单文档应用程序框架 (1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。 (2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入“Test”作为工程名称,单击“确定”按钮,出现Step 1对话框。 (3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。 (4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。 (5)在Step 6对话框中单击“完成”按钮,即完成“Test”应用程序的所有选项,随后出现工程信息对话框(记录以上步骤各选项选择情况),如图1-2所示,单击“确定”按钮,完成应用程序框架的创建。

图1-2 信息程序基本 2.编辑菜单资源 设计如图1-1所示的菜单项。在工作区的ResourceView标签中,单击Menu项左边“+”,然后双击其子项IDR_MAINFRAME,并根据表1-1中的定义编辑菜单资源。此时VC已自动建好程序框架,如图1-2所示。 表1-1菜单资源表 3.添加消息处理函数 利用ClassWizard(建立类向导)为应用程序添加与菜单项相关的消息处理函数,ClassName栏中选择CTestView,根据表1-2建立如下的消息映射函数,ClassWizard会自动完成有关的函数声明。 表1-2菜单项的消息处理函数 onRButtonDown()。

12维生素B12的吸收曲线绘制及注射液的含量测定之欧阳光明创编

新乡医学院分析化学实验课教案首页 欧阳光明(2021.03.07) 授课教师姓名及职称: 一、实验名称维生素B12的吸收曲线绘制及注射液的含量测定 二、授课对象药学授课形式实验教学 三、教学目标1.掌握分光光度计的使用方法 2.掌握注射剂含量的测定和计算方法3.熟悉测绘吸收曲线的一般方法 四、教学内容1.吸收曲线的绘制方法 2.应用吸光系数法测定注射剂含量及计算方法3.752型紫外-可见分光光度计的使用方法 五、教学安排 与课时分配1.讲解演示 40 min 2.学生操作教师辅导 120min 六、授课重点1.吸收曲线的绘制方法 2.752型紫外-可见分光光度计的使用方法 七、注意事项1.752型分光光度计光源的使用2.每次改变波长,需重新调T为“0”3.B12应避光 八、授课方法教师示范讲述,学生操作 九、使用教材《分析化学实验》自编教材

十、教研室 主任签字 审查意见 新乡医学院化学教研室年月日 实验维生素B12的吸收曲线绘制及注射液的含量测定 一、实验目的 1.掌握分光光度计的使用方法; 2.掌握注射剂含量的测定和计算方法; 3.熟悉测绘吸收曲线的一般方法。 二、实验原理 维生素B12是含Co的有机化合物,其注射液为粉红色至红色的澄明液体。要测定B12注射液的含量,可以用紫外-可见分光光度法测定,用此法进行含量测定,必须知道B12的λmax,λmax可以通过绘制吸收曲线来得到。 吸收曲线:将不同波长的单色光依次通过被分析的物质,分别测得不同波长下的吸光度,以波长为横坐标,以吸光度为纵坐标所描绘的曲线。吸光度最大时对应的波长为λmax,在λmax处测吸光度。B12在278,361,550nm处有最大吸收,在λmax处测得A,根据吸光系数法可以求出注射液中B12的含量。 吸光系数法:A=Ecl E为207。 实验中要求测361nm处的A,相应的吸光系数%11cm 三、仪器与试剂 752型紫外-可见分光光度计,10mL容量瓶,5mL吸量管;0.1g·L-1维生素B12水溶液,维生素B12注射液(市售品)。

实验1-高锰酸钾的吸收曲线的绘制和含量测定(精)

高锰酸钾的吸收曲线的绘制和含量测定 一、实验目的 1. 熟悉72型或721型分光光度计的使用方法 2. 熟悉光谱曲线的绘制方法,能从吸收光谱曲线中选择最大吸收波长λmax 3. 掌握分光光度计比色法的操作和测定有色物质含量的方法. 二、实验原理 1. 选择合适的波长间隔绘制KMnO4的吸收曲线并找出最大吸收波长λmax. 2. 从吸收光谱选定的λmax为测定波长用标准曲线法测定样品溶液的含量. 三、仪器和试剂 容量瓶, 移液管, 分光光度计, KMnO4(实验用) 四、实验步骤 (一) 标准溶液的制备 准确称取基准物KMnO40.2500g,在小烧杯中溶解后全部转入1000ml容量瓶中,用蒸馏水稀释到刻度,摇匀,每毫升含KMnO4为 0.25mg。 (二) 比色测定(用721型分光光度计) 1. 吸收曲线的绘制 精密吸取上述KMnO4标准溶液10ml于50ml容量瓶中,加蒸馏水至标线,摇匀,以蒸馏水为空白,依次选择440,450,460,470,

480,490,500,510,520,525,530,535,540,545,550,560,580,600,620,640,660,680,700nm波长为测定点,依法测出的各点的吸收度A。以测定波长为横坐标,以相应测出的吸光度A i为纵坐标,绘制吸收曲线;从吸收曲线处找出最大吸收波长λmax. 2. 标准曲线的绘制 取6支25ml容量瓶,分别加入0.00,1.00,2.00,3.00,4.00,5.00 ml KMnO4标准液,用蒸馏水稀释到刻度,摇匀。以第一管蒸馏水为空白,在最大吸收波长处,依次测定各溶液的吸光度A,然后以浓度C s(mg/ml)为横坐标,相应的吸光度A s为纵坐标,绘制标准曲线。 3. 样品的测定 取待测样品2ml于25 ml容量瓶中,用蒸馏水稀释到刻度,摇匀。按依上法操作,测出相应的A值。 (三) 计算 C样(KMnO4)(μg/ml)= C供? n C样为测样品中KMnO4的浓度(μg/ml) C供为标准曲线中查得的供试液的浓度(μg/ml) n:样品溶液稀释为供试液的倍数 六、思考题 1. 怎样选择测定波长 2. 比色测定的注意事项 (待测样品:取0.09-0.10g KMnO4于250 ml容量瓶中)

(完整word版)实验五 高锰酸钾吸收光谱曲线的绘制及含量测定

实践五高锰酸钾吸收光谱曲线的绘制及含量测定 一、实践目的 1、掌握紫外-可见分光光度计的操作方法。 2、熟悉紫外-可见分光光度计的基本构造及作用。 3、会依据吸收光谱曲线确定最大吸收波长。 4、会用标准曲线法测定高锰酸钾样品溶液的含量。 二、实践原理 高锰酸钾溶液呈紫红色,在可见光区有吸收,利用此可绘制吸收光谱曲线。通过吸收光谱曲线确定最大吸收波长,在最大吸收波长处进行含量测定。因此可以用紫外-可见分光光度法对高锰酸钾溶液进行定性和定量分析。 三、实践仪器、药品和试剂 1、仪器 紫外-可见分光光度计;分析天平;5mL移液管2支;1000mL容量瓶;25mL 容量瓶6个;100mL烧杯。 2、药品和试剂 高锰酸钾对照品(固体);高锰酸钾样品溶液。 四、实践内容 (一) 配制溶液 1、配制标准溶液(125mg/L) 精密称取高锰酸钾对照品0.1250g置100mL烧杯中,溶解后,定量转移 1000mL容量瓶中,用纯化水稀释至标线,摇匀,即为高锰酸钾标准溶液 (125mg/L)。 2、配制标准系列 分别精密量取1.00、2.00、3.00、4.00和5.00(mL)高锰酸钾标准溶液 (125mg/L),置于25mL容量瓶中,纯化水稀释至标线,摇匀。标准系列中各标准溶液的浓度依次为5.0、10.0、15.0、20.0和25.0(mg/L)。 3、配制样品溶液 精密量取高锰酸钾样品溶液5.00ml,置25mL容量瓶中,纯化水稀释至标线,摇匀。即为高锰酸钾供试品溶液。

(二) 绘制吸收光谱曲线 以纯化水为空白溶液调节仪器基线后,测定标准系列中溶液浓度为 15.0mg/L和高锰酸钾供试品溶液的吸收光谱曲线,并从吸收光谱曲线中确定最大吸收波长,比较二者的吸收光谱曲线和最大吸收波长。 (三) 测定溶液吸光度 1、标准曲线的绘制 在λmax处,以纯化水为空白溶液调节基线后,依次将标准系列各标准溶液放入光路中,测其吸光度A值。以浓度(c)为横坐标,吸光度值(A)为纵坐标,绘制标准曲线。 2.高锰酸钾供试品溶液的测定 在与绘制标准曲线相同的测定条件下,测定高锰酸钾供试品溶液吸光度值(A)。从标准曲线中查A值所对应的高锰酸钾供试品溶液的溶度c样。 (四) 岛津UV2450紫外-可见分光光度计的操作规程 (1)开机前检查仪器是否正常,如检查样品室内有无挡光物。 (2)分别开启紫外-可见分光光度计主机和计算机电源,从计算机桌面“UVProbe"进人操作程序。 (3)点击“连接”进人紫外-可见分光光度计自检系统,自检过程中,切勿开启样品室门,自检无误后进入主工作程序。 (4)编辑测定方法,输人所需数据。 (5)用纯化水分别清洗2个石英比色杯(手拿磨砂面)3次,再用空白溶液各洗3次,分别装入2/3的空白溶液,用镜头纸将比色杯外壁溶液吸干。 (6)打开样品室门,分别将比色杯放入样品池及参比池中,即置各自光路中。 关好样品室门。进行零点校正。 (7)将样品池中空白溶液更换为供试品溶液,置光路中,关好样品室门、测量吸光度值或吸收光谱曲线。 (8)关闭操作程序、紫外-可见分光光度计和计算机电源。清洗比色杯。 紫外可见分光光度计使用注意事项如下: (1)检测器预热时必须等待所有指示灯变为绿色,才可进行下一步操作。(2)放人比色杯时务必小心轻放,确保比色杯已完全进人光路中。 (3)必须扫描基线,空白溶液即未加样品的溶液,必须与样品溶液一致。(4)扫描过程中切忌打开或试图打开样品室门。

植被光谱特性

在光谱的中红外阶段,绿色植物的光谱响应主要被1.4μm、1.9μm和2.7μm附近的水的强烈吸收带所支配。 地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。在中心波长分别为0.45μm(蓝色)和0.65μm(红色)的两个谱带内,叶绿素吸收大部分的摄入能量,在这两个叶绿素吸收带间,由于吸收作用较小,在0.54μm(绿色)附近行程一个反射峰,因此许多植物看起来是绿色的。除此之外,叶红素和叶黄素在0.45μm (蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。健康绿色植物在近红外波段的光谱特征是反射率高(45%-50%),透过率高(45%-50%),吸收率低(<5%)。在可见光波段与近红外波段之间,即大约0.76μm附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。 在光谱的中红外阶段,绿色植物的光谱响应主要被1.4μm、1.9μm和2.7μm附近的水的强烈吸收带所支配。2.7μm处的水吸收带是一个主要的吸收带,它表示水分子的基本振动吸收带。1.9μm,1.1μm,0.96μm处的水吸收带均为倍频和合频带,故强度比谁的基本吸收带弱,而且是依次减弱的。1.4μm和1.9μm处的这两个吸收带是影响叶子的中红外波段光谱响应的主要谱带。1.1μm和0.96μm处的水吸收带对叶子的反射率影响也很大,特别是在多层叶片的情况下。研究表明,植物对入射阳光中的红外波段能量的吸收程度是叶子中总水分含量的函数,即是叶子水分百分含量和叶子厚度的函数。随着叶子水分减少,植物中红外波段的反射率明显增大(Philip et al.,1978)

吸收曲线的测绘

实验十五吸收曲线的测绘 一、实验目的 1.掌握测定及绘制药物吸收曲线的方法; 2.掌握紫外-可见分光光度计的使用方法。 二、实验原理 在紫外-可见光区,物质对光的吸收主要是分子中电子能级跃迁所致,同时伴随着分子的转动和振动能级的变化,因此电子吸收光谱一般比较简单、平缓。 紫外吸收光谱能表征化合物的显色基团和显色分子母核,作为化合物的定性依据,相同的化合物其紫外吸收光谱一定相同。 实验证明,若溶剂固定不变,化合物吸收曲线所出现的λmax、λmin或λsh为一定值,且它们的数目也一定,从而为鉴别化合物提供了有力的依据。 根据药典规定,百分吸光系数是指当溶液浓度为1%,液层厚度为1cm时,指定波长的E=A/Cl 。 吸光度。即%1 1cm 化合物对光的选择吸收的波长以及相应的吸光系数,是该化合物的物理常数,当已知某纯化合物在一定条件下的吸光系数后,即可由上式计算出该化合物的含量。 三、实验仪器及试剂 1.仪器 紫外-可见分光光度计、容量瓶、吸量管。 2.试样 维生素B12注射液。 四、实验内容与步骤 取维生素B12注射液,稀释成100μg/mL的水溶液,作为试样溶液。将此被测溶液与空白溶液(水)分别盛装于1cm厚的吸收池中,放置在仪器的吸收池架上,按仪器使用方法进行操作。从仪器波长范围的上限(或下限)开始,每隔10cm测量一次,在吸收峰和吸收谷处,每隔2nm测量一次,每次测量均需用空白调节100%透光率,然后读取测定溶液的吸光度,记录不同波长处的测定值。以波长为横坐标,吸光度为纵坐标作图,并连成曲线,即得吸收曲线。 五、数据处理 1.记录波长及相应的吸光度:

波长(λ)nm 360 吸光度(A) 波长(λ)nm 362 吸光度(A) 2.以波长为横坐标,以吸光度为纵坐标绘制吸收曲线。 六、实验注意事项及讨论 1.严格按照仪器的操作要求进行。 2.每调整一次波长均需用空白重新调节100%透光率。 3.调整波长时,最好朝着一个方向旋转,即:波长由小到大,或又大到小。不要来回旋转。4.开关比色皿暗箱盖时,动作要轻,以防破坏。 5.此实验用到的波长位于紫外区,故要用石英比色皿,而不能用玻璃比色皿。 6.放大器灵敏度的选择是根据不同单色光波长光能量不一致时分别选用,其各档的灵敏度范围是:第一档×1倍,第二档×10倍,第三档×20倍。原则是能使空白档良好地用光量调节器调整于100%T处。 7.若吸光度值大于0.8,需要把待测溶液稀释,使得吸光度值在0.2~0.7范围内。

红外吸收光谱特征峰特别整理版.doc

表典型有机化合物的重要基团频率(/cm-1 ) 化合物基团X-H 伸缩振动区叁键区双键伸缩振动区烷烃-CH3 asCH:2962±10(s) sCH:2872±10(s) -CH2- asCH:2926±10(s) sCH:2853±10(s) CH:2890 ± 10(s) 烯烃 CH:3040~3010(m)C=C:1695~1540(m) CH:3040 ~ 3010(m) :1695 ~ 1540(w) C=C 炔烃-C≡C-H :2270~ 2100(w) CH: ≈ 3300(m) C≡C 芳烃泛频 :2000 ~ 1667(w) CH:3100~3000(变) :1650 ~ 1430(m) C=C 2~4 个峰 醇类R-OH OH:3700~3200(变) 部分单键振动和指纹区asCH:1450±10(m) sCH:1375±5(s) CH:1465±20(m) CH:~ 1340(w) CH:1310~1295(m) CH:770 ~ 665(s) CH:970 ~ 960(s) CH:1250~1000(w) CH:910~665 单取代: 770 ~ 730(vs) ≈700(s) 邻双取代 :770 ~ 735(vs) 间双取代 :810 ~ 750(vs) 725 ~ 680(m) 900 ~ 860(m) ~对双取代 :860 ~ 790(vs) OH:1410~1260(w) CO:1250~1000(s) OH:750 ~ 650(s)

酚类Ar-OH OH: 3705 ~ 3125(s) 脂肪醚R-O-R' 酮 醛 CH:≈2820, ≈2720(w) 双峰 羧酸 OH: 3400 ~ 2500(m) 酸酐 酯 泛频C=O:≈3450(w) 胺-NH2 NH2:3500~3300(m) 双峰 -NH NH:3500~3300(m) 酰胺 asNH: ≈ 3350(s) sNH: ≈ 3180(s) NH:≈3270(s) 酰卤 :1650 ~ 1430(m) OH:1390 ~ 1315(m) C=C CO:1335~1165(s) CO:1230~1010(s) C=O:≈1715(vs) C=O:≈1725(vs) C=O:1740~1690(m) OH:1450~1410(w) CO:1266~1205(m) C=O:1850~1880(s) CO:1170~1050(s) C=O:1780~1740(s) C=O:1770~1720(s) COC:1300~1000(s) NH:1650~1590(s,m) CN(脂肪):1220 ~ 1020(m,w) CN(芳香 ):1340 ~ 1250(s) NH:1650~1550(vw) CN(脂肪):1220 ~ 1020(m,w) CN(芳香 ):1350 ~ 1280(s) C=O:1680~1650(s) :1420~ 1400(m) CN NH:1650 ~ 1250(s) NH2:750 ~ 600(m) C=O:1680~1630(s) + :1310~1200(m) CN NH NH+CN:1750~ 1515(m) C=O:1670~1630 C=O:1810~1790(s)

实验五 高锰酸钾吸收光谱曲线的绘制及含量测定(精编文档).doc

【最新整理,下载后即可编辑】 实践五高锰酸钾吸收光谱曲线的绘制及含量测定 一、实践目的 1、掌握紫外-可见分光光度计的操作方法。 2、熟悉紫外-可见分光光度计的基本构造及作用。 3、会依据吸收光谱曲线确定最大吸收波长。 4、会用标准曲线法测定高锰酸钾样品溶液的含量。 二、实践原理 高锰酸钾溶液呈紫红色,在可见光区有吸收,利用此可绘制吸收光谱曲线。通过吸收光谱曲线确定最大吸收波长,在最大吸收波长处进行含量测定。因此可以用紫外-可见分光光度法对高锰酸钾溶液进行定性和定量分析。 三、实践仪器、药品和试剂 1、仪器 紫外-可见分光光度计;分析天平;5mL移液管2支;1000mL 容量瓶;25mL容量瓶6个;100mL烧杯。 2、药品和试剂 高锰酸钾对照品(固体);高锰酸钾样品溶液。 四、实践内容 (一) 配制溶液 1、配制标准溶液(125mg/L) 精密称取高锰酸钾对照品0.1250g置100mL烧杯中,溶解后,定量转移1000mL容量瓶中,用纯化水稀释至标线,摇匀,即为高锰酸钾标准溶液(125mg/L)。 2、配制标准系列 分别精密量取1.00、2.00、3.00、4.00和5.00(mL)高锰酸钾标

准溶液(125mg/L),置于25mL容量瓶中,纯化水稀释至标线,摇匀。标准系列中各标准溶液的浓度依次为5.0、10.0、 15.0、20.0和25.0(mg/L)。 3、配制样品溶液 精密量取高锰酸钾样品溶液5.00ml,置25mL容量瓶中,纯化水稀释至标线,摇匀。即为高锰酸钾供试品溶液。 (二) 绘制吸收光谱曲线 以纯化水为空白溶液调节仪器基线后,测定标准系列中溶液浓度为15.0mg/L和高锰酸钾供试品溶液的吸收光谱曲线,并从吸收光谱曲线中确定最大吸收波长,比较二者的吸收光谱曲线和最大吸收波长。 (三) 测定溶液吸光度 1、标准曲线的绘制 在λmax处,以纯化水为空白溶液调节基线后,依次将标准系列各标准溶液放入光路中,测其吸光度A值。以浓度(c)为横坐标,吸光度值(A)为纵坐标,绘制标准曲线。 2.高锰酸钾供试品溶液的测定 在与绘制标准曲线相同的测定条件下,测定高锰酸钾供试品溶液吸光度值(A)。从标准曲线中查A值所对应的高锰酸钾供试品溶液的溶度c样。 (四) 岛津UV2450紫外-可见分光光度计的操作规程 (1)开机前检查仪器是否正常,如检查样品室内有无挡光物。(2)分别开启紫外-可见分光光度计主机和计算机电源,从计算机桌面“UVProbe"进人操作程序。

自由曲线及曲面word版

第九章自由曲线及曲面的加工 第一节概述 经数学处理 直线或圆弧 逼近 第二节曲线、曲面加工的基础知识一、基点和节点 基点——零件上各几何元素间的连接点(宏观)节点——被分割的逼近线段间的交点或切点(微观)求节点坐标值:求分割后逼近线段间的交点或切点坐标值,是粗插补的重要组成部分;也是完成精插补运算的依据。精确计算节点坐标值,才能按要求走出预期的轨迹。 [注] 数据采样法中圆弧插补时的分割线段是等长均布的。

二、非圆曲线节点坐标的计算 非圆曲线——除直线和圆弧之外,可以用数学方程 式表达的平面轮廓曲线。 非圆曲线的计算步骤: 1)选择插补形式 直线段逼近——数学处理简单、加工精度较低; 圆弧段逼近——数学处理较复杂、加工精度较高。2)确定编程允许误差 取零件公差的1/5 ~ 1/10 。 3)确定计算方法 即后面将提及的计算方法的确定。 4)画计算机处理流程图 5)用高级语言编写程序,完成计算

下面介绍两种常用的处理平面非轮廓曲线的方法: 1.弦线逼近法 对于弦线逼近曲线而言,弦线越短,则逼近误差越小,但弦线越短,弦线数量则越多;若弦线长度不变,则曲率越大处逼近误差越大。

(1)等插补段法(等步长法) 如上a)图,以确保最大曲率处精度为原则,将各插补段长度取得相等,这使得线段处理上比较简单,但插补工作量较大。 插补工作量增大,意味着成本提高。同时,此法使精度提高,但是,这个提高,是超过要求的提高,这是需要引起设计人员注意的。 (2)等插补误差法 如上b)图,按照规定的精度要求,使各插补段的误差相等,这就使插补段长度不等,显然,插补段数是减少的。 大型零件的插补工作量极大,这时减少插补段数意义重大。 2.圆弧逼近法 先采用弦线逼近法求出节点坐标,再利用节点做圆,使逼近线段不是直线而是圆弧。 此法显然比弦线逼近法具有更高的精度,但线段处理比较复杂。

紫外可见分光光度计的曲线绘制(特选参考)

一、测定溶液中物质的含量 可见或紫外分光光度法都可用于测定溶液中物质的含量。测定标准溶液(浓度已知的溶液)和未知液(浓度待测定的溶液)的吸光度,进行比较,由于所用吸收池的厚度是一样的。也可以先测出不同浓度的标准液的吸光度,绘制标准曲线,在选定的浓度范围内标准曲线应该是一条直线,然后测定出未知液的吸光度,即可从标准曲线上查到其相对应的浓度。 含量测定时所用波长通常要选择被测物质的最大吸收波长,这样做有两个好处: ⑴灵敏度大,物质在含量上的稍许变化将引起较大的吸光度差异; ⑵可以避免其它物质的干扰。 二、用紫外光谱鉴定化合物 使用分光光度计可以绘制吸收光谱曲线。方法是用各种波长不同的单色光分别通过某一浓度的溶液,测定此溶液对每一种单色光的吸光度,然后以波长为横座标,以吸光度为纵座标绘制吸光度──波长曲线,此曲线即吸收光谱曲线。各种物质有它自己一定的吸收光谱曲线,因此用吸收光谱曲线图可以进行物质种类的鉴定。当一种未知物质的吸收光谱曲线和某一已知物质的吸收光谱曲线开关一样时,则很可能它们是同一物质。一定物质在不同浓度时,其吸收光谱曲线中,峰值的大小不同,但形状相似,即吸收高峰和低峰的波长是一定不变的。紫外线吸收是由不饱和的结构造成的,含有双键的化合物表现出吸收峰。紫外吸收光谱比较简单,同一种物质的紫外吸收光谱应完全一致,但具有相同吸收光谱的化合物其结构不一定相同。除了特殊情况外,单独依靠紫外吸收光谱决定一个未知物结构,必须与其它方法配合。紫外吸收光谱分析主要用于已知物质的定量分析和纯度分析。 选几个体积梯度,然后稀释成相同的体积,得到了不同浓度C的几个标准溶液样组,用紫外分光光度计分别测得相应的吸光度A1、A2、A3……,然后要以浓度为横坐标,吸光度A为纵坐标,绘制曲线。当然有时候根据实际需要,也会有小小的变动。 配制标准溶液,用紫外可见分光光度计测量,得到浓度与吸光度的曲线,并且利用线性拟合得到回归方程,直接利用Origin的线性拟合功能得到的方程往往截距不等于零,即方程的形式为y=A+Bx。那是否需要强制令A=0,再来进行拟合呢?如果y=A+Bx这样的形式可以,那么A需要多小才是可以接受的? 答:如果用样品空白溶液做参比,一般可以设置强制过零点;如果用蒸馏水做参比,一般不能强制过零点。 做曲线时一是要带双空白并减去空白A0, 二是应加0回归。减去A0是希望消除试验方法固定偏倚对校准曲线的影响,当用校准曲线来估计未知样的浓度时,要考虑到试样的测量吸光度也会受到固定偏倚的影响,如果校准曲线和试样测定过程中出现的偏倚一样,偏倚是无需校正的,可有时两者的操作往往不是同时同批进行的,如由于时间或批次不同,固定偏倚有所变化,那么两者的吸光度就要做不同的校正。即在每批分析时带空白,并对相应的信号进行校正。试验证明加零回归的校准曲线与不加零回归校准曲线比较,两者的r和b值均无差异,但加零回归校准曲线截距a的绝对值明显变小,因此在作校准曲线的回归计算时必须加零回归,使回归线接近原点。

红外吸收光谱特征峰特别整理版

:770 ?735(vs) :810 ?750(vs) 725 ?680(m) 900 ?860(m) ?对双取代:860?790(vs) CO 1250 ?1000(s) ''OH :750 ?650(s) 表典型有机化合物的重要基团频率( /cm-1) 化合物 基团 X-H 伸缩振动区 叁键区 双键伸缩振动区 部分单键振动和指纹区 烷烃 -CH3 P asCH 2962 士 10(s) 右 asCH 1450 士 10(m) 卩 sCH 2872 士 10(s) 占 sCH 1375 士 5(s) -CH2- P asCH 2926 士 10(s) 5 CH 1465 士 20(m) P SCH 2853 士 10(s) _______________ —— 1 1 P CH 2890 士 10(s) 右 CH ?1340(w) 烯烃 >=\ H H v CH 3040 ?3010(m) V C=C 1695 ?1540(m) ? CH 1310 ?1295(m) 丫 CH 770 ?665(s) H ?-< P CH 3040 ?3010(m) V C=C 1695 ?1540(w) Y CH 970 ?960(s) 炔烃 dC-H P CH - 3300(m) y OC2270?2100(w) 芳烃 泛频:2000 ? 1667(w) CH 3100 ?3000(变) 右 CH 1250 ?1000(w) 'C =C 1650 ?1430(m) 2?4个峰 丫 CH 910 ?665 单取代: 770 ?730(vs) ?700(s) 邻双取代 间双取代 醇类 R-OH 1 OH :3700 ?3200(变) OH :1410 ?1260(w)

红外吸收光谱特征峰特别整理版

表15、1 典型有机化合物得重要基团频率(/cm-1)

*表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。 中红外光谱区一般划分为官能团区与指纹区两个区域,而每个区域又可以分为若干个波段。 官能团区 官能团区(或称基团频率区)波数范围为4000~1300cm-1, 又可以分为四个波段。 ★4000~2500cm-1为含氢基团x—H(x为O、N、C)得伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收 ●醇、酚中O—H:3700~3200cm-1, 无缔合得O—H在高一侧,峰形尖锐, 强度为s 缔合得O—H在低一侧, 峰形宽钝, 强度为s ●羧基中O—H: 3600~2500 无缔合得O—H在高一侧,峰形尖锐, 强度为s

cm-1, 缔合可延伸至2500 cm-1,峰非常宽钝, 强度为s ●N—H: 3500~3300 cm-1, 伯胺有两个H,有对称与非对称两个峰, 强度为s—m 叔胺无H,故无吸收峰 ●C—H: <3000 cm-1为饱与C: ~2960 cm-1 (),~2870 cm-1 () 强度为m-s ~2925 cm-1 (),~2850 cm-1 () 强度为m-s ~2890 cm-1强度为w>3000 cm-1为不饱与 (及苯环上C-H)3090~3030 cm-1强度为mC: ~3300 cm-1强度为m 强度为m-s ●醛基中C—H:~2820及~2720 两个峰 ★2500~2000 cm-1为叁键与累积双键伸缩振动吸收峰,主要包括-C≡C-、-C≡N叁键得伸缩振动及、等累积双键得非对称伸缩振动,呈现中等强度得吸收。在此波段区中,还有S—H、Si—H、P—H、B—H得伸缩振动。 ★2000~1500 cm-1为双键得伸缩振动吸收区,这个波段也就是比较重要得区域,主要包括以下几种吸收峰带。 ●C=O伸缩振动,出现在1960~1650 cm-1,就是红外光谱中很特征得且往往就是最强得 吸收峰,以此很容易判断酮类、醛类、酸类、酯类、酸酐及酰胺、酰卤等含有C=O得有机化合物。 ●C=N、C=C、N=O得伸缩振动,出现在1675~1500 cm-1。在这波段区中,单核芳烃得 C=C骨架振动(呼吸)呈现2~4个峰(中等至弱得吸收)得特征吸收峰,通常分为两组,分别出现在1600 cm-1与1500 cm-1左右,在确定有否芳核得存在时具有重要意义。 ●苯得衍生物在2000~1670 cm-1波段出现C—H面外弯曲振动得倍频或组合数。由于 吸收强度太弱,应用价值不如指纹区中得面外变形振动吸收峰,如图15、9所示。如在分析中有必要,可加大样品浓度以提高其强度。

W3501绘制标准溶液的吸收曲线-4-微教材

《仪器分析技术》课程-微教材 微课编号W3501 微课名称绘制标准溶液的吸收曲线 所属模块可见分光光度分析技术子模块实训3.3:邻二氮菲法测定铁离子—标准曲线的制作及定量 关键词吸收曲线;最大吸收波长; 是否通用√通用农产品食品是否重点建设√是否 微课类型讲授型;实验实训 型 微课形式 PPT录屏+实 地拍摄式 教学设计模式任务驱动法 教学目标1.了解分光光度法测定物质含量的一般条件及其选定方法 2.掌握分光光度法绘制标准溶液吸收曲线的步骤及方法 3.了解721E型(或其他型号)分光光度计的构造和使用方法 教学内容 知识点技能点 无 1.不同波长下,标准溶液吸光度的测 定及最大吸收波长的确定 2.标准溶液吸收曲线的制作 知识讲解 1.光度法测定的条件 分光光度法测定物质含量时应注意的条件主要是显色反应的条件和测量吸光度的条件。显色反应的条件有显色剂用量、介质的酸度、显色时溶液温度、显色时间及干扰物质的消除方法等;测量吸光度的条件包括应选择的入射光波长,吸光度范围和参比溶液等。 2.测定原理 在PH=2-9的条件下,Fe2+与邻二氮杂菲(o-ph)生成极稳定的橘红色配合物,反应式如下:

此配合物的lgK 稳=21.3 摩尔吸收系数ε 510 =1.1×104 在显色前,首先用盐酸羟胺把Fe2+ 还原成Fe3+.其反应式如下: 2Fe 3+ +2NH 2 OH· HC1 =2Fe 2+ +N 2 ↑+2H 2 O+4H + +2C1- 测定时,控制溶液酸度在PH=5左右较为适宜。酸度过高时,反应进行较慢;酸度太低,则Fe 2+水解,影响显色。 边学边练 任务:邻二氮菲法测定微量铁,绘制标准溶液吸收曲线。 1.邻二氮菲法测定铁的条件实验 (1)吸收曲线的测绘准确吸取20 μg·mL-1铁标准溶液5 mL于50 mL容量瓶中,加入5%盐酸羟胺溶液1 mL,摇匀,加入1 mol·L-1NaOAc溶液5 mL和0.1%邻二氮杂菲溶液3 mL。以水稀释至刻度,摇匀。放置10 min,在722型分光光度计上,用1 cm比色皿,以水为参比溶液,波长从570 nm到430 nm为止,每隔10 nm测定一次吸光度。如图1所示,其最大吸收波长为510 nm,故该实验选择测定波长为510 nm。 (2)邻二氮杂菲-亚铁配合物的稳定性 用上面溶液继续进行测定,其方法是在最大吸收波长510 nm处,每隔一定时间测定其吸光度,及再加入显色剂后立即测定一次吸光度,经10、20、30、120 min后,再各测一次吸光度。 (3)显色剂浓度实验取50 mL容量瓶7只,编号。每只容量瓶中准确加入20 ug·mL-1铁标准溶液5 mL以及1mL5%盐酸羟胺溶液,经2 min后。再加入5 mL1 mol·L-1NaOAc溶液,然后分别加入0.1%邻二氮杂菲溶液0.3mL、0.6mL、1.0 mL、1.5 mL、2.00 mL、3.0 mL和4.0 mL,用水稀释至刻度,摇匀,在分光光度计上,用最大吸收波长510 nm、1 cm比色皿,以水为参比,测定上述溶液的吸光度。 2.吸收曲线的测绘 (1)数据纪录

分子吸收光谱解析

分子吸收光谱 首页资讯法规技术质量检验标准资料仪器图库商城人才英语课堂专题网刊网址论坛当前位置:首页>>检验技术>>食品理化检验>>仪器分析>>正文 分子吸收光谱 一. 分子吸收光谱的产生 (一)分子能级与电磁波谱 分子中包含有原子和电子,分子、原子、电子都是运动着的物质,都具有能量,且都是量子化的。在一定的条件下,分子处于一定的运动状态,物质分子内部运动状态有三种形式: ①电子运动:电子绕原子核作相对运动; ②原子运动:分子中原子或原子团在其平衡位置上作相对振动; ③分子转动:整个分子绕其重心作旋转运动。 所以:分子的能量总和为 E分子= Ee +Ev +Ej +⋯ (E0 +E平) (3) 分子中各种不同运动状态都具有一定的能级。三种能级:电子能级E(基态E1 与激发态E2) 振动能级V= 0,1,2,3 ⋯ 转动能级J = 0,1,2,3 ⋯ 当分子吸收一个具有一定能量的光量子时,就有较低的能级基态能级E1 跃迁到较高的能级及激发态能级E2 ,被吸收光子的能量必须与分子跃迁前后的能量差∆E 恰好相等,否则不能被吸收。 图1 双原子分子的三种能级跃迁示意图

对多数分子对应光子波长光谱∆E 约为1~20eV 1.25 ~ 0.06㎛ 紫外、可见区(电子) ∆E 约为0.5~1eV 25 ~ 1.25㎛ (中)红外区(振动) ∆E约为10-4~0.05eV 1.25cm~ 25㎛ (远)红外区(转动) 分子的能级跃迁是分子总能量的改变。当发生电子能级跃迁时,则同时伴随有振动能级和转动能级的改变,即“电子光谱”——均改变。 因此,分子的“电子光谱”是由许多线光谱聚集在一起的带光谱组成的谱带,称为“带状光谱”。 由于各种物质分子结构不同® 对不同能量的光子有选择性吸收® 吸收光子后产生的吸收光谱不同® 利用物质的光谱进行物质分析的依据。 二. 紫外-可见吸收光谱与有机分子结构的关系 (一)电子跃迁的类型 许多有机化合物能吸收紫外-可见光辐射。有机化合物的紫外-可见吸收光谱主要是由分子中价电子的跃迁而产生的。 分子中的价电子有: 成键电子:s 电子、p 电子(轨道上能量低) 未成键电子:n 电子(轨道上能量较低) 这三类电子都可能吸收一定的能量跃迁到能级较高的反键轨道上去,见图-3: 图2 分子中价电子跃迁示意图 1. s - s* 跃迁 s-s*的能量差大®所需能量高®吸收峰在远紫外(l<150nm) 饱和烃只有s 、s* 轨道,只能产生s - s*跃迁,例如: 甲烷吸收峰在125nm;乙烷吸收峰在135nm ( < 150nm ) ( 因空气中O2对< 150nm辐射有吸收,定量分析时要求实验室有真空条件,要求一般难达到) 2. p-p* 跃迁 p-p*能量差较小®所需能量较低®吸收峰紫外区(l200nm左右) 不饱和烃类分子中有p电子,也有p* 轨道,能产生p-p*跃迁:CH2=CH2 ,吸收峰165nm。(吸收系数e 大,吸收强度大,属于强吸收) 3. n- s*跃迁 n- s* 能量较低® 收峰紫外区(l 200nm左右) (与p-p*接近)

最新整理ppt中怎么画自由曲线

p p t中怎么画自由曲线 有时我们在做流程图或者栏目总览时候会用到自 由曲线,但是一些用户不知道怎么制作。具体方法是什么呢?下面就对这些问题探讨下,希望能对大家有点用吧。 p p t画自由曲线的方法 打开p p t,内容版式空白,自选图形线条直线。按住s h i f t键拖动鼠标画出一条水平线,右键点击线条,编辑顶点。 2右键点击左边的端点,选择角部顶点。 3这时出现了一条蓝色线条,蓝色线条的一段连接直线左边的端点,一段是黑色边框、内部白色的正方形为端点,鼠标单击该正方形不松手,向右下方向拖动。由于下面多次要说线条,我们这里说蓝色调节的线叫调节线,这里的线条是指原本我画的那个直线。 4同样,对线条右边的端点进行角度顶点编辑,如下图,左上方向拖动。我们得到一条曲线。 5下图中我们对调节线拖动,在我们没有松手的时候,存在着红色直点线,还有一条红色的曲点线。红色直点线表示这时我们松开鼠标后,调节线所要变化到的

位置,也就说是所蓝色的调节线将要被我们调节到此处,红色曲点线表示线条被我们所调节后的形状,当我们看到线条的效果满意时就可以松开鼠标。 6如下图,一样是在调节线条的左边端点,蓝色调节线向左水平拉伸,左边弧度的中心向左超越了线条的左端点,红色的调节线向右水平拉伸,红色的曲线表示了原本左边的弧度。 7换个方法来做一下,画一条直线,倾斜度跨垂直三个网格,如红色箭头所示,右键单击线条,编辑顶点,在红色圆圈内(也就是线条中心)右键添加顶点。 调节好弧度,这时应该注意到线条的两端,弧度不协调。 试着调整线条的端点,使它整体协调,尽量的把调节线缩短,并向着线条拖动。 选中线条,c t r l+d进行复制,多按几次。使用w p s 的朋友,c t r l+c复制,然后连续按c t r l+v。 我们先把白色正方形拖动到一条竖立的网格线上,松开鼠标,然后继续拖动该端点,沿着该网格线向下平滑,注意保证我们既没有向左偏离也没有向右偏移,我们看到左边弧度中心向下移动了,但是中心的水平位置

红外吸收光谱特征峰特别整理版

表15.1 典型有机化合物的重要基团频率(/cm-1) asCH asCH sCH sCH asCH CH sCH CH CH CH C=C CH CH CH C=C CH CH C≡C CH CH C=C CH OH OH

CO OH OH C=C OH CO CO C=O CH C=O OH C=O OH CO CO C=O C=O 泛频C=O C=O COC NH2NH CN CN NH NH CN CN asNH C=O CN

sNH NH NH2 NH CN+NH C=O NH+CN C=O C=O C≡N NO2NO2 CN NO2NO2 CN 吡啶类 CH C=C及C=N CH CH 嘧啶类 CH C=C及C=N CH CH *表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。

中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段。 官能团区 官能团区(或称基团频率区)波数范围为4000~1300cm -1 , 又可以分为四个波段。 ★ 4000~2500cm -1 为含氢基团x —H (x 为O 、N 、C )的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收 ● 醇、酚中O —H :3700~3200cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合的O —H 在低 一侧, 峰形宽钝, 强度为s ● 羧基中O —H : 3600~2500 cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合可延伸至2500 cm -1 ,峰非常宽钝, 强度为s ● N —H : 3500~3300 cm -1 , 伯胺有两个H ,有对称和非对称两个峰, 强度为s—m 叔胺无H ,故无吸收峰 ● C —H : <3000 cm -1 为饱和C : ~2960 cm -1 ( ),~2870 cm -1 ( ) 强度为m-s ~2925 cm -1 ( ),~2850 cm -1 ( ) 强度为m-s ~2890 cm -1 强度为w >3000 cm -1 为不饱和 C : (及苯环上C-H)3090~3030 cm -1 强度为m ~3300 cm -1 强度为m ● 醛基中C —H :~2820及~2720两个峰 强度为m-s

相关主题
文本预览
相关文档 最新文档