当前位置:文档之家› 正弦型函数的图象及应用经典教案【强烈推荐】

正弦型函数的图象及应用经典教案【强烈推荐】

正弦型函数的图象及应用经典教案【强烈推荐】
正弦型函数的图象及应用经典教案【强烈推荐】

第4讲 正弦型函数y =A sin(ωx +?)+B 的图象及应用

【考试会这样考】

1.考查正弦型函数y =A sin(ωx +?)的图象变换.

2.结合三角恒等变换考查y =A sin(ωx +?)的性质及简单应用. 3.考查y =sin x 到y =A sin(ωx +?)的图象的两种变换途径.

【复习指导】本讲复习时,重点掌握正弦型函数y =A sin(ωx +?)的图象的“五点”作图法,图象的三种变换方法,以及利用三角函数的性质解决有关问题.

基础梳理

1.用五点法画y =A sin(ωx +?)一个周期内的简图时,要找五个特征点 如下表所示

x

ω

?

-0

ω

?

π

-2

ω

?

π

- ω

?π-23

ω

?

π-2

ωx +?

0 π2

π 3π

2 2π y =A sin(ωx +?)

A

-A

2.函数y =sin x 的图象变换得到

y =A sin(ωx +?)的图象的步骤

3.当函数y =A sin(ωx +?)(A >0,ω>0,x ∈[0,+∞))表示一个振动时,A 叫做振幅,T =2π

ω叫做周

期,f =1

T

叫做频率,ωx +?叫做相位,?叫做初相.

4.图象的对称性

函数y =A sin(ωx +?)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:

(1)函数y =A sin(ωx +?)的图象关于直线x =x k (其中 ωx k +?=k π+π

2,k ∈Z )成轴对称图形.

(2)函数y =A sin(ωx +?)的图象关于点(x k,0)(其中ωx k +?=k π,k ∈Z )成中心对称图形.

一种方法

在由图象求三角函数解析式y =A sin(ωx +?) + B 时,若最大值为M ,最小值为m ,

则A =M -m 2,B =M +m 2,ω由周期T 确定,即由2πω

=T 求出,?由特殊点确定.

一个区别 由y =sin x 的图象变换到y =A sin (ωx +?)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),

平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|

ω

(ω>0)个单位.原因在于

相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.

双基自测 1.y =2sin ?

????2x -π4 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8 D .2,12π,-π

8

答案 A

2.已知简谐运动f (x )=A sin(ωx +φ)?

????|φ|<π2的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ).

A .T =6π,φ=π6

B .T =6π,φ=π3

C .T =6,φ=π6

D .T =6,φ=π

3

答案 C 解析 由题图象知T =2(4-1)=6?ω=π3,由图象过点(1,2)且A =2,可得sin ? ??

??π3×1+φ=1,又|φ|<π2,得φ=π

6

.

3.函数y =cos x (x ∈R )的图象向左平移π

2

个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).

A .-sin x

B .sin x

C .-cos x

D .cos x

答案 A 解析 由图象的平移得g (x )=cos ?

????x +π2=-sin x .

4.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.

解析 由题意设函数周期为T ,则T 4=23π-π3=π3,故T =43π.∴ω=2πT =3

2

.

5.把函数y =cos 2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位

长度,再向下平移1个单位长度,得到的图像是 ( )

答案 A

解析 y =cos 2x +1

――→横坐标伸长2倍

纵坐标不变

y =cos x +1――→

向左平移1个单位长度

y =cos(x +1)+1

――→向下平移1个单位长度

y =cos(x +1). 结合选项可知应选A.

考向一 作函数y =A sin(ωx +φ)的图象

【例1】?设函数f (x )=cos(ωx +?)? ????ω>0,-π2<φ<0的最小正周期为π,且f ? ????π4=32

. (1)求ω和?的值;

(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.

解 (1)周期T =2π

ω

=π,∴ω=2, ∵f ??

??π4=cos ????2×π4+φ=cos ???

2+φ=-sin φ=

32, ∵-π2<φ<0,∴φ=-π3

. (2)由(1)知f (x )=cos ?

???2x -π

3,列表如下:

2x -π3 -π

3

π2 π 32π 53π x 0 π

6

512π 23π 1112π π f (x ) 1

2

1 0

-1

12

图象如图:

【训练1】 已知函数f (x )=3sin ? ????12

x -π4,x ∈R .

(1)画出函数f (x )在长度为一个周期的闭区间上的简图;

(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?

解 (1)列表取值:

x

π2

32π 52

π 72π 92π 12x -π4 0 π

2

π 32π 2π f (x ) 0 3 0

-3

描出五个关键点并用光滑曲线连接,得到一个周期的简图.

(2)先把y =sin x 的图象向右平移

π

4

个单位,然后把所有的点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象. 考向二 求函数y =A sin(ωx +?)+B 的解析式

【例2】?已知函数f (x )=A sin(ωx +?)+B (A >0,ω>0)的图象如图所示,则f (x )的解析式为_______.

答案:.()2sin 36

3f x x π

π??=++ ???

【训练2】 (1)若函数f (x )=A sin(ωx +?)(A >0,|?|<π

2

,ω>0)的图象的一部分如图所示.

则f (x )的解析式为_______.

(2)已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为

A .

B .

C .

D .

解 (1) f (x )=2sin ?

???2x +π

6. (2)答案:.B

考向三 函数y =A sin(ωx +?)的图象与性质的综合应用

【例3】?已知函数的 部分图象如图所示:

(1)求f (x )的解析式;

(2)求f (x )的单调区间和对称中心坐标;

(3)将f (x )的图象向左平移

个单位,在将横坐标伸长到原来的2倍,纵坐标不变,最后将图象

向上平移1个单位,得到函数g (x )的图象,求函数y=g (x )在上的最大值和最小值.

【解答】解:(1)由图象可知,

又由于

, 所以

由图象及五点法作图可知:, 所以,

所以

(2)由(1)知,,

,得

所以f (x )的单调递增区间为,

,得

所以f (x )的对称中心的坐标为.

(3)由已知的图象变换过程可得:,

因为, 所以,

所以当

,得

时,g (x )取得最小值

当时,即x=0g (x )取得最小值

【训练3】 已知函数y =A sin(ωx +?)(A >0,ω>0)的图象过点P ? ??

??π12,0,图象上与点P 最近的一个最

高点是Q ? ??

??π3,5.

(1)求函数的解析式;

(2)求函数f (x )的递增区间.

解 (1)依题意得:A =5,周期T =4???

?π3-π

12=π,

∴ω=

π=2.故y =5sin(2x +φ),又图象过点P ????π12,0, ∴5sin ???

?π6+φ=0, 由已知可得π6+φ=0,∴φ=-π

6 ∴y =5sin ?

???2x -π6.

(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z , 得:-π6+k π≤x ≤π

3

+k π,k ∈Z ,

故函数f (x )的递增区间为:????k π-π6,k π+π

3(k ∈Z ).

A 组 专项基础训练

一、选择题

1.将函数()πsin 23f x x ?

?=+

??

?的图象向左平移π6

个单位,所得的图象对应的函数解析式是 A. sin2y x = B. cos2y x = C. 2πsin 23y x ?

?=+ ??

? D. πsin 26y x ?

?=- ??

?

【答案】C

2、将函数cos 3y x π?

?

=-

??

?

的图象向左平移

6

π

个单位,再各点横坐标伸长到原来的2倍(纵坐标不变),所得函数解析式是( )

A. )62

1cos(π

-=x y B. )1221cos(π-=x y C. )62cos(π-=x y D. )3

2cos(π

-=x y 【答案】A

3、若函数()sin 23f x x π??

=+

??

?

图象的横坐标伸长到原来的2倍, 纵坐标不变,再向左平移

6

π

得到函数()g x 的图象,则有( )

A. ()cos g x x =

B. ()sin g x x =

C. ()cos 3g x x π??

=+

??

?

D. ()sin 3g x x π??

=+

??

?

【答案】A 【解析】26sin 2sin sin cos 332y x y x y x x π

πππ??

???

?=+

=+→=+= ? ? ??

?

???

?左移

横坐标变为倍

.

4、为了得到函数1

y 3sin 2

5x π??=-

???的图象,只要把13sin 2y x =上所有点( )

A. 向右平移

5π个单位长度 B. 向左平移5π

个单位长度 C. 向右平移25π个单位长度 D. 向左平移25

π

个单位长度

【答案】C

5、若函数f (x )=2sin(ωx +φ),x ∈R (其中ω>0,|φ|<π

2

)的最小正周期是π,且f (0)=3,则( )

A .ω=12,φ=π6

B .ω=12,φ=π3

C .ω=2,φ=π6

D .ω=2,φ=π

3

答案 D 解析 ∵T =π,∴ω=2.

又2sin φ=3,|φ|<π2,∴φ=π

3

.

6、函数()sin()02

f x A wx A ??=+π

其中>,<)

的图像如图所示,为得到x x g 3sin )(=的图像,则只要将)(x f 的图象( )

A .向右平移4π个单位

B .向右平移12π个单位

C .向左平移4π个单位

D .向左平移12

π个单位 答案 B

7、将函数y =sin(x +φ)的图像F 向左平移π

6

个单位长度后得到图像F ′,若F ′的一个对称中心为????π4,0,则φ的一个可能取值是 ( ) A.π12 B.π6 C.5π6 D.7π12

答案 D 解析 图像F ′对应的函数y ′=sin ???

?x +π

6+φ, 则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z ,令k =1时,φ=7π

12

,故选D. 8、将函数y =sin x 的图像向左平移φ (0≤φ<2π)个单位后,得到函数y =sin ???

?x -π

6的图像,则φ等于

( ) A.π

6

B.5π

6

C.7π

6

D.11π6

答案 D 解析 将函数y =sin x 向左平移φ(0≤φ<2π)个单位得到函数y =sin(x +φ).只有φ=11

6

π时有y =

sin ????x +116π=sin ???

?x -π6. 二、填空题(每小题5分) 1、将函数()3sin 46f x x π?

?

=+

??

?

图象上所有点的横坐标伸长到原来的2倍,再向右平移

6

π

个单位长度,得到函数g(x)的图象,则g(x)的解析式为 。 【答案】()32.6g x sin x π??

=-

??

?

2、函数y =A sin(ωx +φ) (A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图

像如图所示,则ω=________.

答案 3解析 由图像可以看出32T =π,∴T =23π=2π

ω

,因此ω=3.

3、已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图所示,则f (π

24

)等于

(2)由图形知,T =πω=2(38π-π8)=π2,∴ω=2. 由2×38π+φ=k π,k ∈Z ,得φ=k π-3

4

π,k ∈Z .

又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π

4),

∴f (π24)=tan(2×π24+π4)=tan π

3

= 3.

4、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (6

π

x +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.

【答案】8 试题分析:由图像得,当sin(

)16

x π

+Φ=-时min 2y =,求得5k =,

当sin(

)16

x π

+Φ=时,max 3158y =?+=,故答案为8.

5、已知f (x )=A tan(ωx +φ)(ω>0,|φ|<π

2

),y =f (x )的部分图像如图所示,则f (x )的解析式为 。

三、解答题

1.已知函数f (x )=A sin ????ωx -π6+1(A >0,ω>0)的最大值为3,其图像相邻两条对称轴之间的距离为π2

.

(Ⅰ)求函数f (x )的解析式和最小正周期。

(Ⅱ)f (x )的图象向右平行移动12π

个长度单位,再向下平移1个长度单位,得到g (x )的图象,用“五点法”作出

g (x )在[]π,0内的大致图象.

解:(Ⅰ)∵函数f (x )的最大值是3,∴A +1=3,即A =2.

∵函数图象的相邻两条对称轴之间的距离为, ∴最小正周期T =π,

∴ω=2.所以f (x )=2sin(2x -6π)+1 ∴ T=

π (Ⅱ)依题意得g (x )=f (x -12π)-1=2sin(2x -3π),

列表得:

描点

连线得g (x )在[0,π]内的大致图象.

2、已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π

2

)

的部分图像如图所示.

(1)求函数f (x )的解析式;

(2)求函数g (x )=f ???

?x +π

12的单调递增区间.

解 (1)由题设图像知,周期T =2????

11π12-5π12=π,

所以ω=2π

T

=2.因为点????5π12,0在函数图像上, 所以A sin ????2×5π12+φ=0,即sin ????5π

6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3. 从而5π6+φ=π,即φ=π

6

.

又点(0,1)在函数图像上,所以A sin π

6

=1,解得A =2. 故函数f (x )的解析式为f (x )=2sin ????2x +π6. (2)g (x )=2sin ????2????x +π12+π

6=2sin ????2x +π3 由2k π-π2≤2x +π3≤2k π+π

2,k ∈Z ,

3.已知函数

为偶函数,且函数

图象的两相邻对称轴间的距离为.

(1)求的值;

(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标

不变,得到函数

的图象,求

的单调递减区间.

试题解析: 解:(1)∵为偶函数,

∴对恒成立,∴

.

即:

又∵,故

.∴

由题意得,所以

,∴

(2)将的图象向右平移个单位后,得到

的图象,再将所得图象横坐标伸长到原来的4倍,纵坐

标不变,得到

的图象.

∴.

当,即

时,

单调递减,

因此

的单调递减区间为

.

B 组 专项能力提升

一、选择题

1.函数y =sin 2x 的图像向右平移φ (φ>0)个单位,得到的图像恰好关于x =π

6

对称,则φ的最小值为

( )

A.5

12π B.11

6π C.11

12

π D .以上都不对

答案 A 解析 y =sin 2x 的图像向右平移φ个单位得到y =sin 2(x -φ)的图像,又关于x =π6对称,则2()

π6-φ=k π+π

2

(k ∈Z ),2φ=-k π-π6 (k ∈Z ),取k =-1,得φ=5

12

π.

2.设ω>0,函数y =sin(ωx +π3)+2的图像向右平移4π

3

个单位后与原图像重合,则ω的最小值是

( ) A.23 B.43 C.32

D .3 答案 C 解析 由函数向右平移4π

3

个单位后与原图像重合, 得

3是此函数周期的整数倍.又ω>0, ∴2πω·k =4π3 (k ∈Z ),∴ω=32k (k ∈Z ),∴ωmin =32

. 3.要得到函数x y cos 3=的图象,只需将函数

)

62sin(3π

-

=x y 的图象上所有点的( )

A. 横坐标缩短到原来的21

(纵坐标不变),所得图象再向左平移32π个单位长度.

B. 横坐标缩短到原来的21

(纵坐标不变),所得图象再向右平移6π个单位长度.

C. 横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移32π

个单位长度.

D. 横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移6π

个单位长度.

答案.C 二、填空题

1.已知函数f (x )=sin(ωx +φ) (ω>0,-π2≤φ≤π

2

)的图像上的两个相邻的最高点和最低点的距离为22,且过

点?

???2,-1

2,则函数解析式f (x )=____________. 答案 sin ????πx 2+π6

解析 据已知两个相邻最高及最低点距离为22,可得

????T 22+(1+1)2=22,解得T =4,故ω=2πT =π2

即f (x )=sin ????πx 2+φ,又函数图像过点????2,-12,故f (2)=sin(π+φ)=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6

,故f (x )=sin ????

πx 2+π6.

2、已知函数f (x )=A cos(ωx +φ) (A >0,ω>0,-π2≤φ≤π

2)的部分图像(如图所示)与x 轴交于A 、B 两点,

与y 轴交于P 点,其一条对称轴与x 轴交于C 点,且PA=PC=32,PB=BC ,则ω=____________.

3、已知函数1)2sin(2)(3++=πx x f ,

,使

点,

为 。

答案:37π

三、解答题

1、已知点()()()()

1122,,,A x f x B x f x 是函数()()2sin f x x ω?=+ (0,0)2

π

ω?>-<<图象上的任意

两点,且角? 的终边经过点()

1,3P -,若()()124f x f x -=时,的最小值为

3

π

. (1)求函数()f x 的解析式; (2)求函数()f x 的单调递增区间; (3)当π0,

6x ??

∈???

?

时,不等式()()2mf x m f x +≥恒成立,求实数m 的取值范围.

解:(1)角

的终边经过点()

1,3P -, tan 3?=-,

02

π

?-

<<, 3

π

?∴=-

.

由()()124f x f x -=时,的最小值为

3

π

, 得23T π=

,即223ππω=

, 3ω∴= ∴()2sin 33f x x π?

?=- ??

? (2)2322

3

2

k x k π

π

π

ππ-

+≤-

+,即25218

3183

k k x π

πππ

-

+

≤≤+

∴函数()f x 的单调递增区间为252,183183k k ππππ??

-++????

k z ∈

(3)当0,

6x π??

∈????

时, ()31f x -≤≤ 于是, ()20f x +>, ()()2mf x m f x +≥ 等价于()()

()

2

122f x m f x f x ≥

=-

++

由 ()31f x -≤≤, 得

()()

2f x f x +的最大值为

13

所以,实数m 的取值范围是13

m ≥

2.将函数sin y x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得的图象向左平移6

π个单位长度后得到函数()f x 的图象. (Ⅰ)写出函数()f x 的解析式; (Ⅱ)若对任意x ∈ ,612ππ??

-????

, ()()2

10f

x mf x --≤恒成立,求实数m 的取值范围;

(Ⅲ)求实数a 和正整数n ,使得()()F x f x a =-在[]

0,n π上恰有2017个零点. 试题解析:解:(Ⅰ)

()sin 23f x x π?

?=+ ??

?;

(Ⅱ)设sin 2,3t

x π?

?=+ ??

? x ∈

,612ππ??

-????

则[]0,1t ∈, ()()210f x mf x --≤可化为210t mt --≤,

设()21g

t t mt =--, []0,1t ∈,则()g t 的图象是开口向上的抛物线一段,

()0g t ≤当且仅当()()00

{

10

g g ≤≤,即10

{ 110m -≤--≤,

所以m 的取值范围是0m ≥. 注:该小题也可采用分离参数求解. (Ⅲ)问题可转化为研究直线

y a =与曲线()y f x =的交点情况.

()sin 23f x x π?

?=+ ??

?在[]0,π上的草图为:

当1a >或1a <-时,直线y a =与曲线()y f x =没有交点; 当1a =或1a =-时,直线

y a =与曲线()y f x = []0,π上有

1个交点,由函数

()y f x =的周期性可知,此时

2017n =;

331,122

a a <<-<<时,直线y a =与曲线()y f x = []0,π上有2个交点,由函数

()y f x =的周期性可

知,直线直线

y a =与曲线()y f x = []0,n π上总有偶数个交点;

当3

2

a =

时,直线y a =与曲线()y f x = []0,π上有3个交点,由函数

()y f x =的周期性及图象可知,此时

1008n =.

综上所述,当1a =, 2017n =或1a =-, 2017n =,

或3

,10082

a n ==时,

()()F x f x a =-在[]

0,n π上恰有2017个零点.

3.已知函数

(其中

),

(1)若直线是函数图象的一条对称轴,先列表再作出函数在区间上的图象.

(2)求函数

的值域.

试题解析:(1)直线

为对称轴, ,

函数f(x)在的图象如图所示。

(2)当即时,由图1可知:即当即时,由图2可知:

当即时,由图3可知:

综上所述:当时,值域为;

当时,值域为;

当时,值域为

图一:

图二:图三:

正弦函数的图像教学设计

正弦函数的图像教学设计 同济二附中 钱嵘 一、教材分析 《正弦函数的图象》是高中《数学》第四章第八节的内容,其主要内容是正弦函数、余弦函数的图象与性质。过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学习过三角函数线,在此基础上学习过正弦函数、余弦函数的图象与性质,为今后对正切函数的图象、sin()y A x ω?=+函数图象的研究打好基础。因此,本节的学习有着极其重要的地位。 二、教学目标 (1)利用正弦线探究正弦函数的图象; (2)学习使用“五点作图法”画正弦函数、余弦函数的简图; (3)在教师引导下,学生在探究活动中培养观察能力、分析能力、归纳能力、表达能力;培养数形结合和化归转化的数学思想方法; 三、教学重点难点 教学重点:画正弦函数、余弦函数的图象 教学难点: (1)、利用单位圆画正弦函数图象; (2)、利用正弦函数图象和诱导公式画出余弦函数图象。 四、教学方法 1.教学方法 教学形式是为教学内容服务的,不同的教学形式会产生不同的效果.以“开放、多样、互动”为主旨的教学形式必然使教学过程丰富多彩.以学生为中心,在整个教学过程中由教师起组织者,指导者的作用,在教师的引导下,创设情景,通过开放性问题的启发学生思考,在思考中发挥学生的主动性、创造性,最终达到使学生有效的对所学知识自主建构.本节采用建构主义学习环境下的启发式教学模式. 2.学习方法 建构主义认为,学习并非学生对于教师所授予知识的被动接受,而是以其自身己有的知识和经验为基础的主动建构.教学过程的实质是学生主动探索、主动建构的过程.本节课引导学生采用以下两种学习方式: (1).交流合作的学习方式: 学生与学生之间交流、合作、探究,实践学习任务. (2).归纳总结的学习方式: 学生由具体的演示过程,分析归纳,并从中抽象出数学方法与结论. 3.教学过程: 1. 课堂教学中,积极运用现代化教学手段,充分地发挥多媒体的形象性,直观性,同时也充分利用传统教学手段,在教学中体现教学手段的多样式,为学生的发展提供科学地、有效地保障.图文并茂的表现形式使学生更易理解.本节课利用多媒体演示“正弦函数的几何作图法”以及图象变换. 设计意图: 通过课件演示突破利用单位圆画正弦函数图象这一难点.培养学生观察能力、分析能力. 2. 五点法作正弦函数的图像,提问学生怎么作正弦函数的图像,取几个点描点,为什么取5个点,取那5个点等等。 设计意图: 注意渗透由抽象到具体的思想,促进学生数学思想方法的形成,引导学生确

15.3正弦型函数第一课时详细教案

课题15.3 正弦型函数 一、正弦型函数的概念 教材分析 《正弦型函数的概念》是学生在学习了三角函数线及诱导公式后,为学习函数图像的周期、相位变换提供了依据;在正弦函数的图像和性质的基础上,进一步地加深对三角函数的认识,为刻画物理学中简谐振动和电工学中交流电的电压、电流变化提供数学模型,它是三角函数知识从理论到生活实践中的连接桥梁。 学情分析 1、知识方面:学生已经掌握了三角函数线及诱导公式,以及正弦函数的图像和性质。对具体形象的实例比较感兴趣,具有一定的数学基础及分析解决问题能力。 2、能力方面:职业学校学生普遍学习缺乏自觉,学习主动性不强,但是爱动手,对于通过自己的探索得出的结论格外感兴趣。 教学目标一、知识与技能 1、认识正弦型函数图像及其表达式的特征, 2、理解正弦型函数的概念, 3、会根据正弦型函数的图像或表达式求参数A,ω,?的值。 二、过程与方法 1、通过学生动手实践,分组讨论,培养学生分析问题解决问题的能力; 2、通过多媒体辅助教学,使学生学会将复杂问题进行分解的能力 三、情感、态度与价值观 1、通过主动探索,感受探索的乐趣和成功的体验,培养学生合作

交流的意识,体会数学的理性和严谨; 2、让学生感受“从特殊到一般、从具体到抽象、数形结合”的数学思想方法。 重难点1、教学重点: 正弦型函数的概念,根据已知条件求参数A,ω,?和最大最小值。 2、教学难点: 实际问题中的正弦型函数的理解。 教法与学法一、教法分析 教法上主要体现启发、探究、分组讨论等形式,同时利用学案导学优化课堂教学。 1、充分利用学生的好奇心与创造性,加强师生互动,生生互动,提高学生课堂参与程度。 2、通过采用设疑的形式启发、引导学生参与 二、学法分析 在学生已有的认知基础上,通过教师的引领,学生在已有认知结构的基础上自主探究,合作交流。 教学资源1、江苏省职业学校文化课教材《数学》第四册 2、教师编写的学案 3、多媒体课件(PPT),几何画板 教学 准备 1、制作多媒体课件,编写本节课学案,从而优化课堂教学;

正弦函数的图像和性质教案

第11课时 【教学题目】§5.6.1正弦函数的图像和性质2——正弦函数的性质 【教学目标】 1.掌握正弦函数的性质; 2.会利用正弦函数的性质解答相关问题. 【教学内容】 1.正弦函数的性质; 2.利用正弦函数的性质解答相关问题. 【教学重点】 正弦函数的性质. 【教学难点】 利用正弦函数的性质解答相关问题. 【教学过程】 一、导课 回顾利用“五点法”作正弦函数的图像: 要求学生用“五点法”作函数x x f sin )(=在[0,2]π上的简图. 二、新授 正弦函数的性质 根据函数x x f sin )(=的图像,总结它的性质 ()0,0,,12π?? ???,(),0π,3,12π??- ??? ,()2,0π

三、例题讲解 例1、已知sin 4x a =-求a 的取值范围. 解:因为sin 1x ≤ 所以41a -≤ 即:141a -≤-≤ 解得:35a ≤≤ 故:a 的取值范围是[]3,5. 例2、求使得函数()sin 2f x x =取得最大值x 的集合,并指出最大值是多少? 解:设2u x =,则使函数sin y u =取得最大值1的集合是 2,2u u k k Z ππ??=+∈???? , 由 222x u k ππ== +, 得 4x k ππ= +. 故所求集合为,4x x k k Z ππ? ?=+∈???? ,函数()sin 2f x x =的最大值是1. 四、课堂练习 已知sin 3x a =-,求a 的取值范围. 五、课堂小结 (一)正弦函数的性质; (二)利用正弦函数的性质解答相关问题. 六、布置作业 (一)课本P128练习5.6.1第3题、第4题 ; (二)课本P130习题5.6 A 组第2题(1)、第4题(1). 七、教学反思 本节课从知识上讲授了正弦函数的性质,即正弦函数的有界性、周期性、奇偶性、单调性.难点在于使学生学会应用正弦函数的性质解答相关问题.从上课和作业反映的情况来看,学生对正弦函数的有界性掌握较好,但对于奇偶性、单调性、周期性掌握的情况不太好,需要在以后的教学中继续加强指导和训练.

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦型函数的性质和图象教案

重庆市渝中区职业教育中心 数学课程教案 教师 周名昆 第 1 页 第 1 页 共 2 页 [课 题] 5.8函数)sin(?ω+=x A y 的性质和图象 [课 时] 第一课时 [课 型] 新授课 [目 标] 1. 了解正弦型函数的解析表达式中各个符号的实际背景意义; 2. 理解正弦型函数的图象与正弦函数的图象之间的关系; 3. 能够根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [重 点]根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [难 点] 理解正弦型函数的图象与正弦函数的图象之间的关系 [教 法] 讲授法、启发式教学法 [教 具] 教材、实物展示台、多媒体投影 [教学过程] 一、复习引入 1正弦函数在区间[-π,π]上的图象(五点法作出) 2正弦型函数引出:见教材实例 二、新课讲授 1正弦型函数)sin(?ω+=x A y 中各个字母的意义 1)A ——振幅 2)ω——频率(弧度/秒) 3)?——初相 4)??+t ——t 时刻的相位 2正弦型函数的性质:A 、T A ——最值 T ——最小正周期(? π2=T ) 例1已知函数求A (最大值、最小值)、T (ω) x y 5sin 3= )115sin(3π-=x y )875sin(3π+=x y )11 5sin(π+=x y 练习已知函数求A (最大值、最小值)、T (ω) )351sin(6π+=x y )11100sin(24ππ+=x y )4 21sin(2π+=x y x y 5.0sin 13= 3正弦型函数与正弦函数图象之间的关系(利用课件演示) ⑴x A y sin =与x y sin = 振幅变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(00且ω≠1)的图象,可看作把正弦曲线上

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

15.3(1)正弦型函数教案

邳州市中等专业学校理论课程教师教案本(2015—2016学年第1学期) 班级名称 课程名称数学 授课教师 教学部

课题15.3 正弦型函数 一、正弦型函数的概念 教材分析 《正弦型函数的概念》是学生在学习了三角函数线及诱导公式后,为学习函数图像的周期、相位变换提供了依据;在正弦函数的图像和性质的基础上,进一步地加深对三角函数的认识,为刻画物理学中简谐振动和电工学中交流电的电压、电流变化提供数学模型,它是三角函数知识从理论到生活实践中的连接桥梁。 学情分析 1、知识方面:学生已经掌握了三角函数线及诱导公式,以及正弦函数的图像和性质。对具体形象的实例比较感兴趣,具有一定的数学基础及分析解决问题能力。 2、能力方面:职业学校学生普遍学习缺乏自觉,学习主动性不强,但是爱动手,对于通过自己的探索得出的结论格外感兴趣。 教学目标一、知识与技能 1、认识正弦型函数图像及其表达式的特征, 2、理解正弦型函数的概念, 3、会根据正弦型函数的图像或表达式求参数A,ω,?的值。 二、过程与方法 1、通过学生动手实践,分组讨论,培养学生分析问题解决问题的能力; 2、通过多媒体辅助教学,使学生学会将复杂问题进行分解的能力 三、情感、态度与价值观 1、通过主动探索,感受探索的乐趣和成功的体验,培养学生合作交流的意识,体会数学的理性和严谨; 2、让学生感受“从特殊到一般、从具体到抽象、数形结合”的数

学思想方法。 重难点1、教学重点: 正弦型函数的概念,根据已知条件求参数A,ω,?和最大最小值。 2、教学难点: 实际问题中的正弦型函数的理解。 教法与学法一、教法分析 教法上主要体现启发、探究、分组讨论等形式,同时利用学案导学优化课堂教学。 1、充分利用学生的好奇心与创造性,加强师生互动,生生互动,提高学生课堂参与程度。 2、通过采用设疑的形式启发、引导学生参与 二、学法分析 在学生已有的认知基础上,通过教师的引领,学生在已有认知结构的基础上自主探究,合作交流。 教学资源1、江苏省职业学校文化课教材《数学》第四册 2、教师编写的学案 3、多媒体课件(PPT),几何画板 教学 准备 1、制作多媒体课件,编写本节课学案,从而优化课堂教学; 2、布置学生复习正弦函数的图像和性质。

正弦函数与余弦函数的图像教案

1.4.1正弦函数与余弦函数的图像 一、教学目标 (1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状; (2)根据关系)2 sin(cos π+=x x ,作出R x x y ∈=,cos 的图象; (3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 二、课时 1课时 三、教学重点 正弦函数和余弦函数的图象; 四、教学难点 将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 五、教具 多媒体、实物投影仪 六、教学过程 思路1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx 与y=cosx 的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x ∈[0,2π]时,y=sinx 的图象. 思路2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况. 有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题 问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x 角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x ∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x ∈R 时的图象? 活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x 轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=sinx,x ∈[0,2π]的图象,就很容易得到y=sinx,x ∈R 时的图象了. 对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x 轴上从0到2π这一段分

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

正弦函数的图像与性质教案

《正弦函数的图像与性质》(第一课时)(教案) 神木职教中心 数学组 刘伟 教学目标:1、理解正弦函数的周期性; 2、掌握用“五点法”作正弦函数的简图; 3、掌握利用正弦函数的图像观察其性质; 4、掌握求简单正弦函数的定义域、值域和单调区间; 5、初步理解“数形结合”的思想; 6、培养学生的观察能力、分析能力、归纳能力和表达能力等 教学重点:1、用“五点法”画正弦函数在一个周期上的图像; 2、利用函数图像观察正弦函数的性质; 3、给学生逐渐渗透“数形结合”的思想 教学难点:正弦函数性质的理解和应用 教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学 教学过程: Ⅰ 知识回顾 终边相同角的诱导公式: )(sin )2sin(Z ∈=+k k απα 所以正弦函数是周期函数,即 ,6-,4-,2-,6,4,2ππππππ及都是它的周期,其中π2是它的最小正周期,也直接叫周期,故正弦函数的周期为π2 Ⅱ 新知识 1、用描点法作出正弦函数在最小正周期上的图象 x y sin =,[]π2,0∈x (1)、列表

(2)、描点 (3)、连线 因为终边相同的角的三角函数值相同,所以x y sin =的图像在…, [][][][]ππππππ4,2,2,0,0,2,2,4--- ,…与x y sin =,[]π2,0∈x 的图像相 同 2、正弦函数的奇偶性 由诱导公式x x sin )sin(-=-,R x ∈得: ①定义域关于原点对称 ②满足)()(x f x f -=- 所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性 、值域 由图像观察可得: 正弦函数在??????++- ππ ππ k k 22, 22 是增函数,在?? ? ???++ππππk k 223,22是减函数 得到最大值为1,最小值为-1,所以值域为[]1,1-

正弦型函数教案

正弦型函数y=Asin(ψx+φ)的图象变换教学设计 一、教学目标: 1、知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2、过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 3、情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 二、教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这 种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 学情分析: 本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。 教学内容分析:

正弦函数余弦函数图像教案及反思

1.4.1 正弦函数、余弦函数的图象 教材分析 三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。 由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图. 教学目标 1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力. 2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象. 3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观. 重点难点 教学重点:正弦函数、余弦函数的图象. 教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 教学用具:多媒体教学、几何画板软件、ppt控件 教学过程 导入新课 1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)? 2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题 问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x∈R时的图象? 对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分

1.2.1-正弦型函数的周期教案(高教版拓展模块)

1.2.1 正弦型函数的周期 一、教学目标 1.使学生理解函数周期性的概念。 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力。 二、教学重、难点 1. 教学重点:(1)周期函数的定义; (2)正弦、余弦函数、正切函数的周期性; 2. 教学难点:周期函数与最小正周期的意义。 三、教学设想: (一)情境导入: T:今天是星期一,7天之后星期几? S:星期一 T:14天之后呢? S:还是星期一 T:自然界还有许多类似的现象,比如每个星期都是从星期一到星期天。你能找到类似的实例吗? S:每年都有春、夏、秋、冬,地理课上的地球的自转,公转。。。 T:这些现象有什么共同特点呢? S:都给我们重复、循环的感觉 T:同学总结的很好,它们都可以用“周而复始”来描述,我们把这些现象叫做周期现象。

[设计思路:通过生活实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,激发学生的求知欲] 我们已经学习了正弦函数和余弦函数,在物理、电工和工程技术中,经常会遇到形如()sin y A x ω?=+的函数,这类函数叫做正弦型函数,它与正弦函数有着密切的联系。正弦函数的周期是2π,那么()sin y A x ω?=+的周期又是多少呢? (二)探讨过程: 1、我们先看函数周期性的定义. 定义 对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期. 需要注意的几点: ①T 是非零常数。 ②任意x D ∈,都有x T D +∈,0T ≠,可见函数的定义域无界是成为周期函数的必要条件。 ③任取x D ∈,就是取遍D 中的每一个x ,可见周期性是函数在定义域上的整体性质。 理解定义时,要抓住每一个x 都满足),()(x f T x f =+成立才行; ④周期也可推进,若T 是)(x f y =的周期,那么2T 也是)(x f y =的周期. ⑤对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期. 2、函数()sin y A x ω?=+的周期 ()()sin f x A x ω?=+(0)ω> ()()()sin sin 2f x A x A x ω?ω?π=+=++

《正弦函数的图像》教学案

《正弦函数的图像》教学案 一、教学目标: 1、知识与技能 (1)进一步熟悉单位圆中的正弦线; (2)理解正弦诱导公式的推导过程; (3)掌握正弦诱导公式的运用; (4)能了解诱导公式之间的关系,能相互推导; (5)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性; (6)能熟练运用正弦函数的性质解题。 2、过程与方法 通过正弦线表示α,-α,π-α,π+α,2π-α,从而体会各正弦线之间的关系;或从正弦函数的图像中找出α,-α,π-α,π+α,2π-α,让学生从中发现正弦函数的诱导公式;通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。 3、情感态度与价值观 通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。 二、教学重、难点 重点: 正弦函数的诱导公式,正弦函数的性质。 难点: 诱导公式的灵活运用,正弦函数的性质应用。 三、学法与教学用具 在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。 教学用具:投影机、三角板 第一课时正弦函数诱导公式

一、教学思路 【创设情境,揭示课题】 在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2kπ+α)=sinα (k ∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。这就是我们这一节课要解决的问题。 【探究新知】 1. 复习:(公式1)sin(360?k +α) = sin α 2. 对于任一0?到360?的角,有四种可能(其中α为不大于90?的非负角) (以下设α为任意角) 3.公式2: 设α的终边与单位圆交于点P(x ,y ),则180?+α终边 与单位圆交于点P’(-x ,-y ),由正弦线可知: sin(180?+α) = -sin α 4.公式3: 如图:在单位圆中作出α与-α角的终边, 同样可得: sin(-α) = -sin α, 5. 公式4:由公式2和公式3可得: sin(180?-α) = sin[180? +(-α)] = -sin(-α) = sin α, 同理可得: sin(180?-α) = sin α, 6.公式5:sin(360?-α) = -sin α 【巩固深化,发展思维】 x y o P’(x ,-y ) P M x y o P (x ,y ) P (--y ) [ [[[ ??? ????β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角 ),当为第三象限角), 当为第二象限角), 当为第一象限角,当 36027036027018018018090180) 900

教学设计――正弦型函数概念及性质

案例名称 科目 课时正弦型函数的概念及性质(职业模块工科类) xx数学 一课时教学对象xx (2)提供者xx 一、教材内容分析 1、主要内容: 函数y Asin(x)(A0,0)的概念及性质处于中等职业教育课程改革国家规划新教材《数学》(职业模块工科类)第一章第2节,主要利用正弦函数的性质和图像研究y Asin(x)(A0,0)的性质和图像。 2、地位与作用: 这节知识是学生在学习了正弦、余弦和正切三个基本三角函数的性质与图像的基础上,进一步加深对三角函数图像的认识,其地位与作用从以下两点可以体现: Ⅰ、它在三角函数知识从理论到生活实践中扮演了连接桥梁的角色。 Ⅱ、学好它可以进一步领会函数图像的研究方法,以及实际生活中的应用。 3、教学建议: 结合具体的实例,了解y Asin(x)(A0,0)的实际意义。 了解正弦函数在电工学和物理学中的应用,培养学生解决问题的能力。 二、教学目标(知识与技能,过程与方法,情感态度与价值观)及重点、难点

1、教学目标: 知识与能力: 掌握正弦型函数的性质. 过程与方法: 通过“变量替换”、概括、归纳的方法,让学生理解并掌握三角函数的周期和最值;通过分析例题和练习,巩固知识。 情感态度与价值观: 通过学生参与教学活动提高认真、积极、自信态度;遇到困难时,通过自己的努力加以克服。养成乐于学习的好习惯。 2、重点及难点 重点: 利用正弦型函数的性质,求三角函数的周期和最值. 难点: 正弦型函数的转化过程。 三、学习者特征分析 1、通过在基础模块上册中三角函数——正弦函数的学习,已经掌握了三角函数的概念、性质及图像,具备了一定的分析、理解能力,对于正弦型函数只需要“变量替换”而形成。 2、学生认为函数很难理解,但是在已有的知识结构基础上,通过“变量替换”总结知识点。加强了学生的运算能力及推导能力。 四、教学策略选择与设计 1、问题激发策略:

正弦型函数地图像及指导应用教案设计

龙文教育数学学科导学案(第 15 次课) 教师:俊朝学生: 年级:高一日期: 12月16日星期: 时段: 课题正弦函数的图像及应用 学情分析学生已经学习了三角函数的图像和性质,三角函数图象的平移变换是一个难点,学生刚刚学习,需要及时加强巩固。 教学目标与 考点分析 1.掌握正弦型函数y=A sin(ωx+φ)的图象变换; 2.结合平移变换理解y=A sin(ωx+φ)的性质及简单应用; 3.掌握y=sin x到y=A sin(ωx+φ)的图象的两种变换途径. 教学重点图象的三种变换方法是本节课的重点 教学方法导入法、讲授法、归纳总结法 学习容与过程 基础梳理 1.用五点法画y=A sin(ωx+φ)一个周期的简图时,要找五个特征点 如下表所示 x 0-φ ω π 2 -φ ω π-φ ω 3π 2 -φ ω 2π-φ ωωx+φ0 π 2 π 3π 2 2πy=A sin(ωx+ φ) 0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤

A .T =6π,φ=π6 B .T =6π,φ=π3 C .T =6,φ= π6 D .T =6,φ= π3 3.函数y =cos x (R x ∈)的图象向左平移π 2 个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ). A .-sin x B .sin x C .-cos x D .cos x 4.设ω>0,函数y =sin )3 (π ω+x +2的图象向右平移4π 3个单位后与原图象重合,则ω的最小值 是( ). A .23 B .43 C .3 2 D .3 5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________. 考向一 作函数)sin(φω+=x A y 的图象 【例1】?设函数f (x )=cos(ωx +φ))02 ,0(<<->?π ω的最小正周期为π,且23 )4(= πf . (1)求ω和φ的值; (2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 【训练1】 已知函数f (x )=3sin )4 21(π -x ,x ∈R . (1)画出函数f (x )在长度为一个周期的闭区间上的简图;

正弦、余弦函数的图象

1.3.2 三角函数的图象与性质 第1课时 正弦、余弦函数的图象 正弦曲线、余弦曲线 (1)正弦曲线、余弦曲线 正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )的图象分别叫正弦曲线和余弦曲线(如图). (2)“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),? ???? π2,1,(π, 0),? ?? ?? 3π2,-1,(2π,0). 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),? ???? π2,0,(π, -1),? ?? ?? 3π2,0,(2π,1).

(3)正弦、余弦曲线的联系 依据诱导公式cos x =sin ? ???? x +π2,要得到y =cos x 的图象,只需把y =sin x 的 图象向左平移π 2个单位长度即可. 思考:作正、余弦函数的图象时,函数自变量能用角度 制吗? [提示] 作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用. 1.思考辨析 (1)正弦曲线的图象向左右无限延展.( ) (2)y =sin x 与y =cos x 的图象形状相同,只是位置不同.( ) (3)函数y =cos x 的图象与y 轴只有一个交点.( ) [答案] (1)√ (2)√ (3)√ 2.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是________. [答案] 0,π4,π2,3π 4,π 3.不等式cos x <0,x ∈[0,2π]的解集为________. [答案] ? ?? ?? π2,3π2 利用“五点法”作简图 【例1】 用“五点法”作出下列函数的图象. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π]; (3)y =-1-cos x ,x ∈[0,2π]. 思路点拨:先分别取出相应函数在[0,2π]上的五个关键点,再描点连线.

(公开课导学案)正弦函数余弦函数的图象学教案

§1.4.1 正弦函数、余弦函数的图象 时间_________ 班级__________组别__________姓名___________ 【预习案】 【学习目标及学法指导】 1.知识目标:(1)理解并掌握用正弦线作正弦函数图象的方法; (2)理解并熟练掌握用五点法作正弦函数简图的方法。 2.能力目标:培养观察能力、分析能力、归纳能力和表达能力; 培养数形结合和化归转化的数学思想方法。 3.情感目标:发展学生的数形结合思想,使学生感受动与静的辩证关系; 培养学生合作学习和数学交流的能力;勇于探索、勤于思考的科学素养。4.教学方法:借助较先进的教学手段引导学生理解利用单位圆中的有向线段表示三角函数值的办法,画出正弦曲线,学生合作探究五点法,以学生自主学习合作探究为主。【学习重难点】 重点:用单位圆中的正弦线作正弦函数的图象以及五点法画正弦函数的图象。 难点:用单位圆中的正弦线作正弦函数的图象; 【复习与预习】 1.正、余弦函数定义:_____________________________ 2.作出图中 的正弦线、余弦线,分别是:__________________ 3. 正弦函数y = sin x,x∈[0, 2π]的图象中,五个关键点是: 、、、、。 【我的困惑】___________________________________________教师备课栏或学生笔记 栏 【自学案】 【课前自学】 1.创设情境: 问题1:遇到一个新函数,我们自然要研究其性质,如:值域、单调性、奇偶性、最值等,而最直观的方法是什么? 问题2:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中有什么困难? 2.大胆尝试:利用正弦线作出比较精确的正弦函数图象(其中x∈[0, 2π])教师点拨或学生学习体 会

正弦型函数图像高考题

正弦型函数历年高考题 1 一、选择题 1、(2005)函数y=sinx 的图象向左平移 6 π 后得到的图像的解析式是( ) A 、y=sinx+6π B 、y=sinx-6π C 、y=sin(x+6π) D 、y=sin(x-6 π ) 2、(2007)函数y=sin2x 的图象向左平移6 π 后得到的图像的解析式是( ) A 、y=sin(2x+6π) B 、y=sin(2x-6π) C 、y=sin(2x-3π) D 、y=sin(2x+3 π ) 3、 (2009)如图是函数y=2sin(x ω?+) (其中ω>0,?< 2 π ),则ω、?正确的是( A ω=2,?=6π B ω=2,?=3 π C ω=1,?=6π D ω=1,?=3 π 5、(2011)把y=sinx 的图像向左或向右平移π/2个单位,得到的函数是( ) A y=sinx B y=-cosx C cos y x = D y=sinx 或 y=-cosx 6、(2012)函数)4 2sin(2π + =x y 的图像,可由函数x y 2sin 2=的图像( )而得到。 A. 向左平移 4π个单位 B. 向右平移4π 个单位 C. 向左平移8π个单位 D.向右平移8π 个单位 二、填空题 7、(2003)函数sin 24y x π? ? =+ ?? ? 的图象向右平移 8 π 单位,所得图象的函数解析式是 。 2、(2004)函数sin 22 x x y =的最小正周期为 ,值域为 。 3、(2007)函数y=sinxcosx 的最小正周期是 ,最小值是 。 8、(2012)正弦型函数)sin(?ω+=x A y )0,0(>>?A 在一个最小正周期内的图像中,最高点为 )2,9(π,最低点是)2,9 4(-π ,则ω=___________. 9、(2014)把正弦函数sin 2y x =的图像向_________________个单位,可以得到正弦函数 sin 24y x π? ?=+ ?? ?的图像

相关主题
文本预览
相关文档 最新文档