计算机组成原理知识点.
- 格式:doc
- 大小:123.50 KB
- 文档页数:14
【课程信息】课程名称:计算机组成原理课程编码:任课教师:侯艳艳;单承刚【录入】侯艳艳【章节】第一章计算机系统概述【知识点】1、计算机系统简介2、计算机的基本组成3、计算机硬件的主要技术指标【单选题】1.运算器的核心部件是。
A.数据总线B.数据选择器C.累加寄存器D.算术逻辑运算部件答案:D2.存储器主要用来。
A.存放程序B.存放数据C.存放微程序D.存放程序和数据答案:D3.至今为止,计算机中所含所有信息仍以二进制方式表示,其原因是。
A.节约元件B.运算速度快C.物理器件性能决定D.信息处理方便。
答案:B4.对计算机软、硬件资源进行管理,是的功能。
A.操作系统B.数据库管理系统C.语言处理程序D.用户程序答案:C5.微型计算机的发展以技术为标志。
A.操作系统B.微处理器C.硬盘D.软件答案:B6.电子计算机的算术/逻辑单元、控制单元与主存储器合称为。
A.B.D.答案:C7.输入、输出装置以与外接的辅助存储器称为。
A.操作系统B.存储器C.主机D.外围设备答案:D8.用户与计算机通信的界面是。
A.B.外围设备C.应用程序D.文本处理答案:B9.下列属于应用软件。
A.操作系统B.编译程序C.连接程序D.文本处理答案:D10.下列不是输入设备。
B.键盘C.鼠标器D.打印机答案:D11.冯?诺伊曼机工作方式的基本特点是。
A.多指令流单数据流;B.按地址访问并顺序执行指令;C.堆栈操作;D.存储器按内容选择地址。
答案:B12.用户与计算机通信的界面是。
A.;B.外围设备;C.应用程序;D.系统程序。
答案:B13.在下列四句话中,最能准确反映计算机主要功能的是。
A.计算机可以存储大量信息B.计算机能代替人的脑力劳动C.计算机是一种信息处理机D.计算机可实现高速运算。
答案:C14.计算机硬件能直接执行的只能是。
A.符号语言B.机器语言C.汇编语言D.机器语言和汇编语言答案:B15.由0、1代码组成的语言称为。
大一计算机必备知识点计算机科学作为一门广泛应用的学科,对于大一的计算机专业学生来说,掌握一些基本的计算机知识是非常重要的。
下面我将介绍大一计算机专业学生必备的知识点,希望对你的学习有所帮助。
一、计算机组成原理1. 计算机硬件基本组成:中央处理器(CPU)、存储器、输入设备和输出设备。
2. 计算机的工作原理:指令的执行过程、数据的传输和存储方式等。
3. 计算机的性能指标:时钟频率、存储容量、带宽等。
二、计算机网络基础1. 网络的概念和分类:局域网、广域网、互联网等。
2. 网络协议:TCP/IP协议、HTTP协议、FTP协议等常用的网络协议。
3. 网络通信原理:网络拓扑结构、数据传输方式、IP地址等基本概念。
三、数据结构与算法1. 数据结构的概念和分类:线性结构(数组、链表)、非线性结构(树、图)等。
2. 常用数据结构的特点和应用:队列、栈、堆、散列表等。
3. 常见算法:排序算法(冒泡排序、快速排序)、查找算法(二分查找、哈希查找)等。
四、编程语言1. C语言基础:语法、数据类型、控制结构等。
2. 面向对象编程:类、对象、继承、多态等基本概念。
3. 程序设计方法:模块化、抽象、封装等。
五、操作系统1. 操作系统的概念和功能:进程管理、内存管理、文件管理、设备管理等。
2. 常见操作系统:Windows、Linux、Unix等。
3. 进程调度算法:先来先服务、短作业优先、时间片轮转等。
六、数据库基础1. 数据库的概念和分类:关系型数据库、非关系型数据库等。
2. SQL语言基础:数据查询、插入、更新、删除等基本操作。
3. 数据库设计原则:实体关系模型、范式等。
七、软件工程基础1. 软件开发生命周期:需求分析、设计、编码、测试、维护等阶段。
2. 软件测试方法:单元测试、集成测试、系统测试等。
3. 软件项目管理:进度控制、资源分配、风险管理等。
以上是大一计算机专业学生必备的知识点,希望能够对你的学习有所帮助。
【关键字】知识第一章1.诺依曼体制的主要思想:①采用二进制代码表示信息②采用保存程序工作方式(核心概念)③计算机硬件系统由五大部件(保存器、运算器、控制器、输入\出设备)组成2.cache:高速缓存,为解决CPU 与主存之间的速度匹配而设置的保存器。
位于CPU 和主存之间,速度可以与CPU 一样快,存放的是最近就要使用的程序和数据,容量较小。
3.总线:一组连接多个部件的公共信号线,可以分时地接收与发送各部件的信息。
4.通道:也称为通道控制器,能够执行专用的通道命令,是管理I/O 操作的控制部件。
5.从组成角度划分的层次结构模型:并不具备这种语言功能。
7.软硬件逻辑等价:在计算机中,有许多功能可直接由硬件实现,也可在硬件支持下依靠软件实现,对用户而言,在功能上是等价的。
这种情况称为软硬件在功能上的逻辑等价。
例如,乘法运算可由硬件乘法器实现,也可以在加法器与移位器的支持下,通过执行乘法子程序实现。
8.固件:微程序类似于软件,但被固化在只读保存器中,属于硬件CPU 的范畴,称为固件。
9.字长:基本字长一般是指参加一次定点运算的操作数的位数。
基本字长影响计算机精度、硬件成本,甚至指令系统的功能。
10.数据通路宽度:指数据总线一次能并行传送的数据位数,它影响计算机的有效处理速度。
11.数据传输率:是指数据总线每秒钟传送的数据量,也称为数据总线的带宽。
数据传输率=总线数据通路宽度×总线时钟频率/8(B/s )第二章1.计算机中的信息分为两大类,一类是计算机处理的对象,称为数据;另一类是控制计算机工作的信息,称为控制信息。
相应地,在计算机工作时将存在数据流、控制流两类信息流。
2.在原码表示中,真值0可以有两种不同的表示形式,分别称为+0和-0.对于整数原码,表示的数的范围是3.在补码表示中,数0只有一种表示方法00 0对于定点整数补码,表示的数的范围是4.所谓浮点数的规格化,就是通过移动尾数,使尾数M 绝对值的最高位数字为1。
大学计算机科学知识点归纳1. 计算机科学基础1.1 计算机组成原理- 计算机硬件:CPU、内存、I/O设备、存储器等- 计算机指令:机器指令、汇编指令、高级指令等- 计算机体系结构:冯诺依曼结构、哈佛结构等1.2 数据结构与算法- 线性结构:数组、链表、栈、队列、串等- 非线性结构:树、图、哈希表等- 算法:排序算法、查找算法、图算法等1.3 计算机网络- 网络结构:OSI七层模型、TCP/IP四层模型等- 网络设备:交换机、路由器、网关等1.4 操作系统- 进程管理:进程、线程、进程调度、死锁等- 内存管理:内存分配、回收、虚拟内存等- 文件系统:文件、目录、文件系统结构等- 设备管理:设备驱动、I/O调度等2. 编程语言与编译原理2.1 编程语言- 高级语言:C、C++、Java、Python等- 低级语言:汇编、机器码等2.2 编译原理- 词法分析:词法单元、词法分析器等- 语法分析:语法规则、语法分析树、分析算法等- 中间代码生成与优化:三地址码、SSA等- 目标代码生成:汇编代码、机器代码等3. 软件工程- 软件开发过程:需求分析、设计、编码、测试、维护等- 软件设计模式:面向对象设计模式、架构模式等- 软件项目管理:项目计划、进度控制、风险管理等- 软件质量保证:代码审查、测试策略等4. 数据库系统- 数据库概念:数据模型、实体-关系模型、关系模型等- 数据库设计:范式、E-R图、SQL等- 数据库查询:SQL查询、视图、索引等- 数据库事务:ACID属性、并发控制、故障恢复等5. 人工智能与机器- 人工智能基础:知识表示、推理、搜索算法等- 机器算法:线性回归、决策树、神经网络等- 自然语言处理:分词、词性标注、命名实体识别等- 计算机视觉:图像处理、目标检测、人脸识别等6. 计算机科学其他领域- 并行与分布式系统:进程并发、分布式算法、云计算等- 网络安全:加密算法、防火墙、入侵检测等- 物联网:传感器、嵌入式系统、物联网协议等- 人机交互:用户界面设计、交互技术、虚拟现实等以上是对大学计算机科学知识点的简要归纳,希望对您有所帮助。
重庆专升本计算机基础知识点归纳
(一)计算机组成原理
1、中央处理器(CPU):它是计算机的核心,负责处理数据和指令。
它由运算器、控制器、寄存器、时钟和缓存等部件组成。
2、主存储器(RAM):它是用来存放计算机运行的程序和数据,它也被称为“虚拟内存”或“主存”,是计算机执行指令的唯一工作区域。
3、输入/输出(I/O):它是指计算机向外部设备传输数据的总称,比如键盘、屏幕、打印机、磁盘等外部设备。
4、存储设备:它用来存储信息,通常有硬盘、软盘以及光盘等等,比如硬盘用于长期存储信息,软盘或光盘用于暂时存储数据内容。
5、网络设备:它是一种新型计算机系统,它可以将多台计算机连接起来,实现跨越时空的远程通信和数据交换。
(二)计算机编程
2、算法(Algorithm):它是一种计算机科学的基础,是一个把一定的数据处理后输出所需要结果过程的一系列的规则和步骤。
3、程序设计语言(Programming Language):它是人和计算机之间通信的一种语言,是按一定规则编写的一组指令,可以让计算机按照指令执行操作。
内部资料,转载请注明出处,谢谢合作;一、计算机系统概述(一)计算机发展历程了解知识点一:第一台计算机 ENIAC知识点二:冯诺依曼VanNeumann首次提出存储程序的概念,将数据和程序一起放在存储器中,使得编程更加方便;50多年来,虽然对冯诺依曼机进行了很多改革,但结构变化不大,仍然称为冯诺依曼机;知识点三:一般把计算机的发展分为四个阶段:第一代1946-50‘s后期:电子管计算机时代;第二代50‘s中期-60’s后期:晶体管计算机时代;第三代60‘s中期-70’s前期:集成电路计算机时代;第四代70‘s初-:大规模集成电路计算机时代;知识点四:冯·诺依曼计算机的特点冯·诺依曼体系计算机的核心思想是“存储程序”的概念;它的特点如下:1 计算机由运算器、存储器、控制器和输入设备、输出设备五大部件组成;2 指令和数据都用二进制代码表示;3 指令和数据都以同等地位存放于存储器内,并可按地址寻访;4 指令是由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数所在存储器中的位置;5 指令在存储器内是顺序存放的;6 机器以运算器为核心,输入输出设备与存储器的数据传送通过运算器;(二)计算机系统层次结构了解计算机系统的层次结构,通常可有五个以上的层次,在每一个层次上都能进行程序设计;由下自上可排序为:第一级微程序机器级,微指令由机器直接执行,第二级传统机器级,用微程序解释机器指令,第三级操作系统级,一般用机器语言程序解释作业控制语句,第四级汇编语言机器级,这一级由汇编程序支持和执行,第五级高级语言机器级,采用高级语言,由各种高级语言编译程序支持和执行;还可以有第六级应用语言机器级,采用各种面向问题的应用语言;1.计算机硬件的基本组成图中实线为控制线,虚线为反馈线,双线为数据线;图中各部件的功能是:1 运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内;2 存储器用来存放数据和程序;3 控制器用来控制、指挥程序和数据的输入、运行及处理运算结果;4 输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式,常见的有键盘、鼠标等;5 输出设备可将机器运算结果转换为人们熟悉的信息形式如打印机输出、显示器输出等;计算机的五大部件在控制器的统一指挥下,有条不紊地自动工作;由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,这两大部件往往制作在同一芯片上,因此,通常将他们合起来统称为中央处理器,简称CPU;把输入设备与输出设备简称为I/O 设备;因此,现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器MM;CPU与MM合起来称为主机,I/O设备叫作外设;存储器分为主存储器MM和辅助存储器;主存可直接与CPU交换信息,辅存又叫外存;2.计算机软件的分类计算机的软件通常又分为两大类:系统软件和应用软件;系统软件又称为系统程序,主要用来管理整个计算机系统,监视服务,使系统资源得到合理调度,确保高效运行;它包括:标准程序库、语言处理程序、操作系统、服务性程序、数据库管理系统、网络软件等等;应用软件又称为应用程序,它是用户根据任务所编制的各种程序;3.计算机的工作过程1.运算器运算器包括三个寄存器和一个算逻单元ALU;其中ACC为累加器,MQ为乘商寄存器,X为操作数寄存器;这三个寄存器在完成不同运算时,所存放在操作数类别也各不相同;2.存储器主存储器包括存储体、各种逻辑部件及控制电路等;主存的工作方式就是按存储单元的地址号来实现对存储字各位的存写入、取读出;这种存取方式叫做按地址存取,也即按地址访问存储器简称访存;为了能实现按地址访问的方式,主存中还必须配置两个寄存器MAR和MDR;MAR是存储器地址寄存器,用来存放欲访问的存储单元的地址,其位数对应存储单元的个数;MDR是存储器数据寄存器,用来存放从存储体某单元取出的代码或者准备往某存储单元存入的代码,其位数与存储字长相等;要想完整地完成一个取或存操作;3.控制器控制器是计算机组成的神经中枢,由它指挥全机各部件自动、协调地工作;具体而言,它首先要命令存储器读出一条指令,这叫取指过程;接着对这条指令进行分析,指出该指令要完成什么样的操作,并按寻址特征指明操作数的地址,这叫分析指令过程;最后根据操作数所在的地址,取出操作数并完成某种操作,这叫作执行过程;以上就是通常所说的完成一条指令操作的取指、分析和执行三阶段; 控制器由程序计数器PC,指令寄存器IR以及控制单元CU几部分组成;PC 用来存放当前欲执行指令的地址, 它与主存的MAR之间有一条直接通路,且具有自动加1的功能, 即可自动形成下一条指令的地址;IR用来存放当前的指令, IR 的内容来自主存的MDR;IR中的操作码送到CU,用来分析指令;其地址码作为操作数的地址送至存储器的MAR; CU用来分析当前指令所需完成的操作,并发出各种微操作命令序列,用以控制所有被控对象;4.I/OI/O子系统包括各种外部设备及相应的接口;每一种设备都是由I/O接口与主机联系的,它接受CU发出的各种控制命令完成相应的操作;计算机的解题过程如下:首先把构成程序的有序指令和数据,通过键盘输入到主存单元中,并置PC的初值为0即令程序的首地址为0;启动机器后,计算机便自动按存储器中所存放的指令顺序,有序地逐条完成取指令、分析指令和执行指令,直至执行到程序的最后一条指令为止;(三)计算机性能指标1. 吞吐量、响应时间1 吞吐量:单位时间内的数据输出数量;2 响应时间:从事件开始到事件结束的时间,也称执行时间;2. CPU时钟周期、主频、CPI、CPU执行时间1 CPU时钟周期:机器主频的倒数,Tc2主频:CPU工作主时钟的频率,机器主频Rc3CPI:执行一条指令所需要的平均时钟周期4CPU执行时间:T CPU=In×CPI×T CIn执行程序中指令的总数CPI执行每条指令所需的平均时钟周期数T C时钟周期时间的长度3. MIPS、MFLOPS1MIPS:MIPSMillion Instructions Per SecondMIPS = In/Te×106= In/In×CPI×Tc×106= Rc/CPI×106Te:执行该程序的总时间In:执行该程序的总指令数Rc:时钟周期Tc的到数MIPS只适合评价标量机,不适合评价向量机;标量机执行一条指令,得到一个运行结果;而向量机执行一条指令,可以得到多个运算结果;2 MFLOPS:MFLOPSMillion Floating Point Operations Per SecondMFLOPS=Ifn/Te×106Ifn:程序中浮点数的运算次数MFLOPS测量单位比较适合于衡量向量机的性能;一般而言,同一程序运行在不同的计算机上时往往会执行不同数量的指令数,但所执行的浮点数个数常常是相同的;二、数据的表示和运算(一)数制与编码1.进位计数制及其相互转换2.真值和机器数3.BCD码4.字符与字符串5.校验码(二)定点数的表示和运算1.定点数的表示无符号数的表示;有符号数的表示;2.定点数的运算定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法;(三)浮点数的表示和运算1.浮点数的表示浮点数的表示范围;IEEE754标准2.浮点数的加/减运算(四)算术逻辑单元ALU1.串行加法器和并行加法器2.算术逻辑单元ALU的功能和机构三、存储器层次机构cache-主存-外存的层次结构、cache的三种不同映象方式、主存芯片的子扩展和位扩展方案设计以及续存相关地址转换的内容是重点(一)存储器的分类1.按存储介质分1半导体存储器;存储元件由半导体器件组成的叫半导体存储器;其优点是体积小、功耗低、存取时间短;其缺点是当电源消失时,所存信息也随即丢失,是一种易失性存储器;2磁表面存储器;按载磁体形状的不同,可分为磁盘、磁带和磁鼓;现代计算机已很少采用磁鼓;由于用具有矩形磁滞回线特性的材料作磁表面物质,它们按其剩磁状态的不同而区分“0”或“1”,而且剩磁状态不会轻易丢失,故这类存储器具有非易失性的特点;3 磁芯存储器不用了4光盘存储器;光盘存储器是应用激光在记录介质磁光材料上进行读写的存储器,具有非易失性的特点;光盘记录密度高、耐用性好、可靠性高和可互换性强等; 2.按存取方式分类按存取方式可把存储器分为随机存储器、只读存储器、顺序存储器和直接存取存储器四类;1随机存储器RAMRandom Access Memory;RAM是一种可读写存储器, 其特点是存储器的任何一个存储单元的内容都可以随机存取,而且存取时间与存储单元的物理位置无关;计算机系统中的主存都采用这种随机存储器;由于存储信息原理的不同, RAM又分为静态RAM 以触发器原理寄存信息和动态RAM以电容充放电原理寄存信息;2只读存储器ROMRead only Memory;只读存储器是能对其存储的内容读出,而不能对其重新写入的存储器;这种存储器一旦存入了原始信息后,在程序执行过程中,只能将内部信息读出,而不能随意重新写入新的信息去改变原始信息;因此,通常用它存放固定不变的程序、常数以及汉字字库,甚至用于操作系统的固化;它与随机存储器可共同作为主存的一部分,统一构成主存的地址域;只读存储器分为掩膜型只读存储器MROMMasked ROM、可编程只读存储器PROMProgrammable ROM、可擦除可编程只读存储器EPROMErasable Programmable ROM、用电可擦除可编程的只读存储器EEPROMElectrically Erasable Programmable ROM;以及近年来出现了的快擦型存储器Flash Memory,它具有EEPROM的特点,而速度比EEPROM快得多;3串行访问存储器;如果对存储单元进行读写操作时,需按其物理位置的先后顺序寻找地址,则这种存储器叫做串行访问存储器;显然这种存储器由于信息所在位置不同,使得读写时间均不相同;如磁带存储器,不论信息处在哪个位置,读写时必须从其介质的始端开始按顺序寻找,故这类串行访问的存储器又叫顺序存取存储器;还有一种属于部分串行访问的存储器,如磁盘;在对磁盘读写时,首先直接指出该存储器中的某个小区域磁道,然后再顺序寻访,直至找到位置;故其前段是直接访问,后段是串行访问,叫直接存取存储器;3.按在计算机中的作用分类按在计算机系统中的作用不同,存储器又可分为主存储器、辅助存储器、缓冲存储器;(二)存储器的层次化结构主要是为了解决速度匹配问题存储器有3个重要的指标:速度、容量和每位价格,一般来说,速度越快,位价越高;容量越大,位价越低,容量大,速度就越低;上述三者的关系用下图表示:寄存器缓存主存磁盘磁带存储系统层次结构主要体现在缓存-主存-辅存这两个存储层次上,如下图所示:(三)半导体随机存取存储器1.SRAM存储器的工作原理静态RAM由于静态RAM是触发器存储信息,因此即使信息读出后,它仍保持其原状态,不需要再生;但电源掉电时,原存信息丢失,故它属易失性半导体存储器2.DRAM存储器的工作原理(四)只读存储器(五)主存储器与CPU的连接(六)双口RAM和多模块存储器(七)高速缓冲存储器Cache1.程序访问的局部2.Cache的基本工作原理3.Cache和主存之间的映射方式4.Cache中主存块的替换算法5.Cache写策略(八)虚拟存储器1.虚拟存储器的基本概念2.页式虚拟存储器3.段式虚拟存储器4.段页式虚拟存储器5.TLB快表四、指令系统(一)指令格式1.指令的基本格式2.定长操作码指令格式3.扩展操作码指令格式(二)指令的寻址方式1.有效地址的概念2.数据寻址和指令寻址3.常见寻址方式(三)CISC和RISC的基本概念五、中央处理器CPU(一)CPU的功能和基本结构(二)指令执行过程(三)数据通路的功能和基本结构(四)控制器的功能和工作原理1.硬布线控制器2.微程序控制器微程序、微指令和微命令;微指令的编码方式;微地址的形式方式; (五)指令流水线1.指令流水线的基本概念2.超标量和动态流水线的基本概念(一)总线(二)总线概述(三)总线的基本概念总线是连接计算机内部多个部件之间的信息传输线,是各部件共享的传输介质;多个部件和总线相连,在某一时刻,只允许有一个部件向总线发送信号,而多个部件可以同时从总线上接收相同的信息;总线是由许多传输线或通路组成,每条线可传输一位二进制代码,如16条传输线组成的总线,可同时传输16位二进制代码;(四)总线的分类按数据传送方式:并行传输总线和串行传输总线按总线的适用范围:计算机总线,测控总线,网络通信总线按连接部件不同:重点片内总线:片内总线是指芯片内部的总线,如在CPU芯片内部, 寄存器与寄存器之间、寄存器与算术逻辑单元之间都有总线连接;系统总线:系统总线是指CPU、主存、I/O各大部件之间的信息传输线;按传输信息的不同,可分为三类:数据总线、地址总线和控制总线;数据总线用来传输各功能部件之间的数据信息,它是双向传输总线,其位数与机器字长、存储字长有关;数据总线的条数称为数据总线宽度,它是衡量系统性能的一个重要参数;例子:总线宽8位,指令字长16位,CPU需要两次访主存地址总线主要用来指出数据总线上的源数据或目的数据在主存单元的地址或在I/O设备上的地址;它是单向传输的;地址线的位数与存储单元的个数有关,如地址线为20根,则对应的存储单元个数为220;控制总线是用来发出各种控制信号的传输线;对单一控制线来说,传输单向;对控制总线,是双向的;对CPU而言,控制信号既有输入又有输出;通信总线:这类总线用于计算机系统之间或计算机系统与其他系统如控制仪表、移动通讯等之间的通信;(五)总线的组成及性能指标总线的组成:总线组成包括信号线、总线控制器、附属电路;信号线包括数据线、地址线和控制线总线性能指标:1总线宽度:它是指数据总线的根数, 用bit位表示,如8位、16位、32位、64位;2总线带宽:总线的数据传输速率即单位时间内总线上传输数据的位数,通常用每秒传输信息的字节数来衡量,单位为MBps兆每秒;例如,总线频率33MHZ,总线宽度32位4B,则总线带宽334=132MBps;3时钟同步/异步:总线上的数据与时钟同步工作的总线称同步总线,与时钟不同步工作的总线称为异步总线;4总线复用:通常地址总线与数据总线在物理上是分开的两种总线;地址总线传输地址码,数据总线传输数据信息;为了提高总线的利用率,优化设计,特将地址总线和数据总线共用一条物理线路,只是某一时刻该总线传输地址信号,另一时刻传输数据信号或命令信号;这叫总线的多路复用;5信号线数:即地址总线、数据总线和控制总线三种总线数的总和;6总线控制方式:包括并发工作、自动配置、仲裁方式、逻辑方式、计数方式等;7 其他指标:如负载能力问题等;总线结构的三种形式:以CPU为中心的双总线结构:这种结构在I/O设备与主存交换信息时仍然要占用CPU,因此会影响CPU的工作效率;单总线结构:它是将CPU、主存、I/O设备都挂在一组总线上,允许I/O之间、I/O与主存之间直接交换信息;因为只有一组总线,当某一时刻各部件都要占用时,就会出现争夺现象;双总线结构的特点是将速度较低的I/O设备从单总线上分离出来,形成主存总线与I/O总线分开的结构;三总线结构中, 主存总线用于CPU与主存之间的传输;I/O总线供CPU与各类I/O之间传递信息;DMA总线用于高速外设磁盘、磁带等与主存之间直接交换信息;在三总线结构中,任一时刻只能使用一种总线;(六)总线仲裁总线控制总线控制主要包括判优控制和通信控制;总线判优控制可分集中式和分布式两种,前者将控制逻辑集中在一处如在CPU中,后者将控制逻辑分散在与总线连接的各个部件或设备上;集中仲裁方式常见的集中控制有三种优先权仲裁方式:1.链式查询菊花链图中控制总线中有三根线用于总线控制BS总线忙;BR总线请求、BG总线同意,其中总线同意信号BG是串行地从一个I/O接口送到下一个I/O接口;如果BG到达的接口有总线请求,BG信号就不再往下传;意味着该接口获得了总线使用权,并建立总线忙BS信号,表示它占用了总线;这种方式的特点是:只需很少几根线就能按一定优先次序实现总线控制,并且很容易扩充设备,但对电路故障很敏感;2.计数器定时查询计数器定时查询方式如下图所示;它与链式查询方式相比,多了一组设备地址线,少了一根总线同意线BG;总线控制部件接到由BR 送来的总线请求信号后,在总线未被使用BS=0的情况下,由计数器开始计数,向各设备发出一组地址信号;当某个有总线请求的设备地址与计数值一致时,便获得总线使用权,此时终止计数查询;这种方式的特点是:计数可以从“0”开始,此时设备的优先次序是固定的;计数也可以从终止点开始,即是一种循环方法,此外,对电路故障不如链式查询方式敏感,但增加了主控制线设备地址数,控制也较复杂;3.独立请求方式独立请求方式如下图所示;由图可见,每一设备均有一对总线请求线BRi和总线同意线BGi;当设备要求使用总线时,便发出该设备的请求信号;总线控制部件中有一排队电路,可根据优先次序确定响应哪一设备的请求;这种方式的特点是:响应速度快,优先次序控制灵活通过程序改变,但控制线数量多,总线控制更复杂;总线通信控制没要求分布仲裁方式同集中式仲裁相比,分布式仲裁不需要中央仲裁器,而是让各个主设备功能模块都有自己的仲裁号和仲裁电路;需要使用总线时,各个设备的功能模块将自己唯一的仲裁号发送到共享的总线上,各自的仲裁电路再将从仲裁总线上获得的仲裁号和自己的仲裁号相对比,获胜的仲裁号将保留在仲裁总线上,相应设备的总线请求获得响应;分布式仲裁不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁号和仲裁器;当它们有总线请求时,把它们唯一的仲裁号发送到共享的仲裁总线上,每个仲裁器将仲裁总线上得到的号与自己的号进行比较;如果仲裁总线上的号大,则它的总线请求不予响应,并撤消它的仲裁号;最后,获胜者的仲裁号保留在仲裁总线上;显然,分布式仲裁是以优先级仲裁策略为基础(七)总线操作和定时总线操作目前在总线上的操作主要有以下几种:1读和写读是将从设备如存储器中的数据读出并经总线传输到主设备如CPU;写是主设备到从设备的数据传输过程;2块传送主设备给出要传输的数据块的起始地址后,就可以利用总线对固定长度的数据一个接一个的读出或写入;3写后读或读后写主设备给出地址一次,就可以进行先写后读或者先读后写操作,先读后写往往用于校验数据的正确性,先写后读往往用于多道程序的对共享存储资源的保护;4广播和广集主设备同时向多个从设备传输数据的操作模式称为广播;广集操作和广播操作正好相反,它将从多个从设备的数据在总线上完成AND或OR操作,常用于检测多个中断源;定时:事件出现在总线上的时序关系;1、同步定时在同步定时协议中,事件出现在总线上的时刻由总线时钟信号来确定;所以包含始终信号线由于采用了公共时钟,每个功能模块什么时候发送或接收信息都由统一时钟规定,因此,同步定时具有较高的传输频率;同步定时适用于总线长度较短、各功能模块存取时间比较接近的情况;2.异步定时在异步定时协议中,后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;在这种系统中,不需要统一的共公时钟信号;总线周期的长度是可变的;(八)总线标准六、输入输出I/O系统(一)I/O系统基本概念(二)外部设备1.输入设备:键盘、鼠标2.输出设备:显示器、打印机3.外存储器:硬盘存储器、磁盘阵列、光盘存储器(三)I/O接口I/O控制器1.I/O接口的功能和基本结构2.I/O端口及其编址(四)I/O方式1.程序查询方式2.程序中断方式中断的基本概念;中断响应过程;中断处理过程;多重中断和中断屏蔽的概念;3.DMA方式DMA控制器的组成;DMA传送过程;4.通道方式七、计算机系统概述(四)计算机发展历程(五)计算机系统层次结构4.计算机硬件的基本组成5.计算机软件的分类6.计算机的工作过程(六)计算机性能指标吞吐量、响应时间;CPU时钟周期、主频、CPI、CPU执行时间;MIPS、MFLOPS;八、数据的表示和运算(五)数制与编码6.进位计数制及其相互转换7.真值和机器数8.BCD码9.字符与字符串10.校验码(六)定点数的表示和运算3.定点数的表示无符号数的表示;有符号数的表示;4.定点数的运算定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法;(七)浮点数的表示和运算3.浮点数的表示浮点数的表示范围;IEEE754标准4.浮点数的加/减运算(八)算术逻辑单元ALU3.串行加法器和并行加法器4.算术逻辑单元ALU的功能和机构九、存储器层次机构(九)存储器的分类(十)存储器的层次化结构(十一)半导体随机存取存储器3.SRAM存储器的工作原理4.DRAM存储器的工作原理(十二)只读存储器(十三)主存储器与CPU的连接(十四)双口RAM和多模块存储器(十五)高速缓冲存储器Cache6.程序访问的局部7.Cache的基本工作原理8.Cache和主存之间的映射方式9.Cache中主存块的替换算法10.Cache写策略(十六)虚拟存储器6.虚拟存储器的基本概念7.页式虚拟存储器8.段式虚拟存储器9.段页式虚拟存储器10.TLB快表十、指令系统(四)指令格式4.指令的基本格式5.定长操作码指令格式6.扩展操作码指令格式(五)指令的寻址方式4.有效地址的概念5.数据寻址和指令寻址6.常见寻址方式(六)CISC和RISC的基本概念十一、中央处理器CPU(六)CPU的功能和基本结构(七)指令执行过程(八)数据通路的功能和基本结构(九)控制器的功能和工作原理3.硬布线控制器4.微程序控制器微程序、微指令和微命令;微指令的编码方式;微地址的形式方式;(十)指令流水线3.指令流水线的基本概念4.超标量和动态流水线的基本概念十二、总线(九)总线概述1.总线的基本概念2.总线的分类3.总线的组成及性能指标(十)总线仲裁1.集中仲裁方式2.分布仲裁方式(十一)总线操作和定时1.同步定时方式。
计算机组成原理知识点总结——详细版(总30页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--计算机组成原理2009年12月期末考试复习大纲第一章1.计算机软件的分类。
P11 计算机软件一般分为两大类:一类叫系统程序,一类叫应用程序。
2.源程序转换到目标程序的方法。
P12 源程序是用算法语言编写的程序。
目标程序(目的程序)是用机器语言书写的程序。
源程序转换到目标程序的方法一种是通过编译程序把源程序翻译成目的程序,另一种是通过解释程序解释执行。
3.怎样理解软件和硬件的逻辑等价性。
P14 因为任何操作可以有软件来实现,也可以由硬件来实现;任何指令的执行可以由硬件完成,也可以由软件来完成。
对于某一机器功能采用硬件方案还是软件方案,取决于器件价格,速度,可靠性,存储容量等因素。
因此,软件和硬件之间具有逻辑等价性。
第二章1.定点数和浮点数的表示方法。
P16 定点数通常为纯小数或纯整数。
X=XnXn-1 (X1X0)Xn为符号位,0表示正数,1表示负数。
其余位数代表它的量值。
纯小数表示范围0≤|X|≤1-2-n纯整数表示范围0≤|X|≤2n -1浮点数:一个十进制浮点数N=。
一个任意进制浮点数N=其中M称为浮点数的尾数,是一个纯小数。
E称为浮点数的指数,是一个整数。
比例因子的基数R=2对二进制计数的机器是一个常数。
做题时请注意题目的要求是否是采用IEEE754标准来表示的浮点数。
32位浮点数S(31)E(30-23)M(22-0)64位浮点数S(63)E(62-52)M(51-0)S是浮点数的符号位0正1负。
E是阶码,采用移码方法来表示正负指数。
M为尾数。
P18P182.数据的原码、反码和补码之间的转换。
数据零的三种机器码的表示方法。
P21 一个正整数,当用原码、反码、补码表示时,符号位都固定为0,用二进制表示的数位值都相同,既三种表示方法完全一样。
一个负整数,当用原码、反码、补码表示时,符号位都固定为1,用二进制表示的数位值都不相同,表示方法。
第二章计算机组成原理2.1计算机的组成与分类2.1.1计算机的发展与作用作用:①速度快,通用性强②具有多种多样的信息处理能力,不仅能进行复杂的数学运算,而且能对图像,文字和声音等多种形式的信息进行获取,编辑,转换,存储,展现等处理③信息存储容量大,存取速度高④具有互联,互通和互操作的特性,计算机网络不仅能进行信息的交流与共享,还可借助网络上的其他计算机协同完成复杂的信息处理任务。
2.1.2 计算机的逻辑组成计算机系统由硬件和软件两部分组成。
硬件是计算机系统中所有实际物理装置的总称。
软件是指计算机中运行的各种程序及其处理的数据和相关的文档。
CPU,内存存储器,总线等构成计算机的“主机”输入/输出设备和外存储器称为“外设”承担系统软件和应用软件运行任务的处理器称为“中央处理器”使用多个CPU实现超高速计算的技术称为“并行处理”总线是用于在CPU,内存,外存和各种输入输出设备之间传输信息并协调它们工作的一种部件(含传输线和控制电路)计算机系统中的I/O设备一般都通过I/O接口与各自的控制器连接,然后由控制器与I/O总线相连2.1.3计算机的分类巨型机,大型机,服务器,个人计算机,嵌入式计算机微处理器(µP或MP),通常指使用单片大规模集成电路制成的,具有运算和控制功能的部件SOC:单个集成电路芯片中包含微处理器,存储器,输入/输出控制与接口电路,电子系统模拟电路,数字/模拟混合电路和无线通信使用的射频电路2.2 CPU的结构与原理2.2.1 CPU的作用与组成匈牙利数学家冯·诺依曼的“存储程序控制”原理CPU的根本任务是执行指令CPU的组成:寄存器组(用来临时存放参加运算的数据和运算得到的中间结果),运算器:也称算术逻辑部件(ALU),控制器:指令计数器(用来存放CPU正在执行的指令的地址)和指令寄存器(用来保存当前正在执行的指令)2.2.2 指令与指令系统指令是构成程序对的基本单位,采用二进制表示,指令由操作码和操作数地址组成,CPU所能执行的全部指令称为指令系统2.2.3 CPU的性能指标字长,主频,CPU总线速度,高速缓存的容量与结构,指令系统,逻辑结构,内核个数 TFLOPS(万亿条浮点指令/秒)MIPS(百万条定点指令/秒),MFLOPS(百万条浮点指令/秒)2.3 PC主机的组成2.3.1 主板,芯片组与BIOSCPU芯片和内存条分别通过主板上的CPU插座和存储器插槽安装在主板上,PC机常用外围设备通过扩充卡或I/O接口与主板相连,扩充卡借助卡上的印刷插头插在主板上的PCI总线插槽中主板上还有两块特别有用的集成电路:一块是闪烁存储我,其中存放的是BIOS,它是PC机软件中最基础的部分,没有它机器就无法启动,另一个集成电路芯片是CMOS存储器,其中存放者与计算机系统相关的一些参数(称为配置信息),包括当前的日期和时间,开机口令,已安装的光驱和硬盘的个数及类型等,CMOS 芯片是一种易失性存储器,它由主板上的电池供电,即使计算机关机后它也不会丢失所存储的信息芯片组由北桥芯片(MCH)和南桥芯片(ICH)组成,CPU时钟信号由芯片组提供芯片组还决定了主板上所能安装的内存最大容量,速度及可使用的内存条的类型每次机器加电时,CPU首先执行BIOS程序,它具有诊断计算机故障和加载操作系统并启动其运行的功能BIOS:加电自检程序,引导装入程序,CMOS设置程序,基本外围设备的驱动程序内存储器由称为存储器芯片的半导体集成电路组成,RAM目前多采用MOS型半导体集成电路芯片制成DRAM:电路简单,集成度高,功耗小,成本低SRAM:电路复杂,集成度低,功耗大,成本高每个存储单元都有一个地址,CPU按地址对存储器进行访问存储器的存取时间指的是从CPU给出存储器地址开始到存储器读出数据并送回到CPU所需要的时间解决主存速度慢的方法是:①采用cache存储器②改进存储器芯片的电路与工艺,并对DRAM的存储控制技术进行改进2.3.3 I/O总线与I/O接口CPU芯片与北桥芯片相互连接总线称为CPU总线(前端总线FSB),I/O设备控制器与CPU,存储器之间相互交换信息,传输数据的一组公用信号线称为I/O总线,总线上有三类信号:数据信号,地址信号和控制信号总线带宽(MB/S)=(数据线宽度/8)X总线工作频率(MHZ)X每个总线周期的传输次数PCI-E是PC机I/O总线的一种新标准,采用高速串行传输USB电源(5V,100mA~500Ma) USB3.0的电流是1A2.4常用输入设备扫描仪的性能指标:①扫描仪的光学分辨率:普通家用扫描仪分辨率在1600~3200dpi②色彩位数③扫描幅面④与主机的接口2.5 常用输出设备显示器的刷新频率越高,图像的稳定性越好,响应时间越小越好。
计算机组成原理常考知识点宝子们,今天咱们就来唠唠计算机组成原理那些常考的知识点呀。
咱先说说冯·诺依曼体系结构。
这可是计算机组成原理里超级重要的一个概念呢。
想象一下,这个体系结构就像是给计算机搭的一个大框架。
它规定了计算机得有运算器、控制器、存储器、输入设备和输出设备这五大部件。
就好比一个小团队,每个部件都有自己的任务,谁也离不开谁。
运算器就像是个超级数学小能手,专门负责各种算术和逻辑运算。
控制器呢,那就是小队长啦,指挥着其他部件该干啥。
存储器就像是个大仓库,把数据和程序都好好地存起来。
输入设备像个小邮差,把外面的信息送进来,输出设备则把计算机处理好的结果告诉外面的世界。
这一整套体系,奠定了现代计算机的基础哦。
再聊聊存储系统。
这里面有主存、辅存啥的。
主存就像是计算机的小脑袋里的短期记忆区,速度快,但是容量相对小一些。
就像我们的短期记忆,能快速地存取信息。
辅存呢,就像是个大仓库,容量超级大,像硬盘啦,U盘啦都是辅存。
不过它的速度就没有主存那么快啦。
这里面还有个缓存的概念,缓存就像是个小秘书,提前把可能用到的数据从主存或者辅存里拿出来放在自己这儿,等运算器或者控制器要用的时候,就能快速提供啦。
指令系统也是常考的点呢。
指令就像是计算机能听懂的小命令。
不同的计算机有不同的指令系统。
指令有操作码和地址码两部分。
操作码就告诉计算机要做什么操作,比如是加法还是减法。
地址码就告诉计算机数据在哪里。
就像你给小伙伴下命令,你得告诉他做什么,还要告诉他东西在哪里找一样。
而且指令还有不同的寻址方式呢,什么直接寻址、间接寻址之类的。
直接寻址就很直白,地址码直接就是数据的地址。
间接寻址就像绕个小弯,地址码指向的是存放真正地址的地方。
CPU那也是必须要知道的呀。
CPU是计算机的大脑核心呢。
它里面的运算器和控制器可是紧密合作的。
运算器里面有算术逻辑单元(ALU),这个单元可厉害啦,各种加减乘除、逻辑判断都是它的拿手好戏。
第二章 计算机组成原理【知识点1】USB 的通用串行接口在使用的过程中,用户无需安装驱动程序,即插即用,但是要求操作系统是windows2000及以上的版本。
【典型考题】86.在Windows 中使用优盘不需专门安装相应的驱动程序,其他外围设备也无需安装驱动程序就可以正常工作。
【知识点2】计算机系统金字塔存储体系结构在计算机中为了解决CPU 和内存之间的速度不匹配,增加了访问速度介于两者之间的cache 存储器。
【典型考题】10.计算机系统配置高速缓冲存储器(Cache )是为了解决_______A .CPU 与内存储器之间速度不匹配问题B .CPU 与辅助存储器之间速度不匹配问题C .内存与辅助存储器之间速度不匹配问题D .主机与外设之间速度不匹配问题84.高速缓存(cache)可以看作是主存的延伸,与主存统一编址,接受CPU 的访问,但其速度要比主存高得多。
( )85.RAM 按工作原理的不同可分为DRAM 和SRAM .DRAM 的工作速度比SRAM 的速度慢。
( )6.下列存储器按读写速度由高到低排列,正确的是__________。
A.RAM、cache、硬盘、光盘B.cache、RAM、硬盘、光盘C.RAM、硬盘、cache、光盘D.cache、RAM、光盘、硬盘11.能够直接与外存交换数据的是__________。
A.控制器B.运算器C.键盘D.RAM83.通常情况下,高速缓存(Cache)容量越大,级数越多,CPU的执行效率越高。
【知识点3】总线的定义:用于在CPU、内存、外存和各种输入输出设备之间传输信息的一个共享的信息传输通路及其控制部件。
系统总线:处理器总线、I/O总线和存储器总线的统称。
处理器总线(CPU总线)用于连接CPU和内存的总线称为处理器总线或者前端总线(FSB)。
I/O总线(主板总线)是各类I/O设备控制器与CPU、存储器之间相互交换信息、传输数据的一组公用信号线.这些信号线与主板上扩充插槽中的各扩充板卡(I/O控制器)直接连接。
计算机组成原理(考研期末)知识点总结(一)存储系统1.存储器的基本概念●分类●作用(层次):CACHE 主存辅存●存储介质:磁半导体光●存取方式●随机存取:RAM ROM●串行访问●顺序存取:磁带●直接存取:磁盘●信息可保存性--易失性破坏性读出非●性能指标●存储容量字●单位成本每位成本●存储速度(数据传输率主存带宽)●层次化结构●Cache-主存层次:硬件实现,解决速度不匹配问题●主存-辅存层次:硬件+操作系统实现,解决容量问题,逐渐形成虚拟存储系统2.半导体存储器●存储器芯片的基本结构●译码驱动电路(译码器:扩充容量)●存储矩阵●读写电路●地址线,数据线,片选线,读写控制线●半导体存储器RAM(易失性存储器)●SRAM:触发器存储信息,速度快成本高集成度低,用于高速缓存●DRAM:电容存储信息,需要刷新,速度慢成本低,集成度高,用于主存SDRAM●DRAM的刷新:集中刷新,分散刷新,●异步刷新●不需要CPU控制●行为单位,仅需要行地址●存储器中所有芯片同时刷新●RAM的读写周期●ROM(非易失性存储器)●特点:结构简单,位密度比RAM高,非易失性,可靠性高●类型:MROM,PROM,EPPROM,FLASH MEMORY,SSD3.存储器与CPU的协同工作(提高存储系统的工作速度)●主存与CPU的连接●字扩展●位扩展●线选法●译码片选法●译码器的使用●分析地址空间●字位同时扩展●选择存储器芯片●与CPU进行连接●双口RAM和多模块存储器●多模块存储器●单体多字●多体并行●低位交叉编址●高位交叉编址●双端口RAM●高速缓冲存储器●CACHE局部性原理和性能分析●局部性原理●空间局部性●时间局部性●性能分析●命中率和失效率●CACHE----主存体系的平均访问时间●CACHE工作原理●地址映射方式●全相联●直接相联●组相联●替换算法●RAND随机●FIFO先入先出●LRU最近最少使用●LFU最不经常使用●写策略●命中●全写法●写回法●不命中●写分配法●非写分配法●虚拟存储器(主存和辅存共同构成)(增加存储系统的容量)●基本概念:虚地址(逻辑地址)映射到实地址(物理地址)●解决问题:进程并发问题和内存不够用问题●类型●页式●段式●段页式●虚实地址转换(提高速度)●快表TLB●慢表Page(二)指令系统1.指令格式●操作码和地址码组成一条指令●操作码●定长操作码和扩展操作码●操作码类型2.指令寻址方式●指令寻址(通过PC)●顺序寻址●跳跃寻址●数据寻址●隐含寻址●立即寻址:给寄存器赋初值●直接寻址●间接寻址:扩大寻址范围,便于编制程序●寄存器寻址:指令执行速度更快●寄存器间接寻址●偏移寻址(各寄存器内容+形式地址):基址寻址,变址寻址(处理数组,编制循环程序),相对寻址●堆栈寻址3.CISC和RISC●CISC复杂指令系统计算机(用微程序控制器)●更多更复杂,一般为微程序控制,用于计算机系统●RISC精简指令系统计算机(用硬布线控制器)●指令数目少,字长固定,寻址方式少,寄存器数量多,一般为组合逻辑控制,用于手机(三)中央处理器1.CPU的功能和基本结构●CPU的功能:指令控制,操作控制,时间控制,数据加工,中断处理●运算器●功能:对数据进行加工●基本结构:●算术逻辑单元ALU●暂存寄存器●通用寄存器组●累加寄存器ACC●程序状态字寄存器PSW●移位器,计数器●控制器●功能:取指令,分析指令,执行指令●控制器的基本结构●程序计数器PC●指令寄存器IR●指令译码器,时序系统,微操作信号发生器●存储器地址寄存器MAR●存储器数据寄存器MDR●数据通路的基本结构●专用通路●内部总线2.指令执行过程●指令周期●构成:机器周期、CPU周期——CPU时钟周期、节拍●类型:取指周期,间址周期,执行周期,中短周期●标志触发器FE,IND,EX,INT:区别工作周期●数据流●取指周期:根据PC取出指令代码存放在IR●间址周期:根据IR中指令地址码取出操作数的有效地址●执行周期:根据指令字的操作码和操作数进行相应操作●中断周期:保存断点,送中断向量,处理中断请求●执行方案●单指令周期:串行,指令相同执行时间●多指令周期:串行,指令不同执行时间●流水线方案:隔一段时间启动一条指令,多条指令处于不同阶段,同事并行处理3.数据通路的功能和基本结构(连接路径)●CPU内部总线●单总线●多总线●专用数据通路:多路选择器和三态门●了解各阶段微操作序列和控制信号4.控制器的功能和工作原理●控制器的结构和功能●计算机硬件系统连接关系●控制器的功能:取指令,分析指令,执行指令●控制器的输入和输出●硬布线控制器●硬布线控制单元图:组合逻辑电路+触发器●设计步骤(了解)●分析每个阶段的微操作序列●选择CPU的控制方式●安排微操作序列●电路设计●微程序控制器●基本结构●微地址形成部件●微地址寄存器CMAR●控制存储器CM●微指令寄存器CMDR●微指令的格式●水平型:并行操作●字段直接编码方式●直接编码方式●字段间接编码方式●垂直型:类似机器指令●微指令的地址形成方式●下地址字段指出:断定方式●根据机器指令的操作码形成●基本概念●微命令和微操作●微指令和微周期●主存储器和控制存储器●程序和微程序●寄存器:MAR和CMAR,IR和CMDR●硬布线和微程序的比较(微操作控制信号的实现形式)5.指令流水线●指令流水线的概念●指令执行过程划分为不同阶段,占用不同的资源,就能使多条指令同时执行●表示方法●指令流程图:分析影响流水线的因素●时空图:分析性能●性能指标●吞吐率TP●加速比S●效率E●影响流水线的因素●结构相关(资源冲突)●数据相关(数据冲突)●控制相关(控制冲突)●流水线的分类●按使用级别:部件功能级,处理机级,处理机间●按完成功能:单功能,多功能●按连接方式:动态,静态●按有无反馈信号:线性,非线性●多发技术●超标量流水线技术●超流水线技术●超长指令字技术(四)总线1.总线概念和分类●定义:一组能为多个部件分时共享的公共信息传送线路●分类●按数据传输格式●串行,并行●按功能●片内总线●系统总线●数据总线,地址总线,控制总线●通信总线●按时序控制方式●同步,异步●总线结构●单总线结构——系统总线●双总线结构(通道)●主存总线●IO总线●三总线结构●主存总线●IO总线●DMA总线2.总线的性能指标●总线传输周期(总线周期)●总线带宽●总线宽度(位宽)●总线复用:一种信号线传输不同信息3.总线仲裁●集中仲裁方式●链式查询方式●计数器定时查询方式●独立请求方式●分布仲裁方式4.总线操作和定时●总线传输的四个阶段●申请分配阶段●传输请求●总线仲裁●寻址阶段●传输阶段●结束阶段●定时●同步定时方式(同步通信)●异步定时方式(异步通信)●不互锁●半互锁●全互锁●半同步通信●分离式通信5.总线标准(五)IO系统1.IO系统基本概念●演变过程●早期:分散连接,CUP与IO串行,程序查询方式●接口模块和DMA阶段:总线连接,cpu与io并行,中断方式及DMA方式●具有IO通信结构的阶段●具有IO处理机的阶段●IO系统的基本组成●IO软件——IO指令和通道指令●IO硬件——外设,设备控制器和接口,IO总线等●IO方式简介●程序查询方式:IO与CPU串行,CPU有“踏步等待”现象(由程序控制)●程序中断方式:IO准备数据时CPU继续工作,在指令执行结束时响应中断(由程序控制)●DMA方式:主存与IO交换信息时由DMA控制器控制,在存取周期结束时响应DMA请求(由硬件控制)●通道方式:通过IO指令启动通道,通道程序放在主存中(由硬件控制)2.外部设备●输入设备——键盘,鼠标●输出设备●显示器●分类●阴极射线管(CRT)●液晶(LCD)●发光二极管(LED)●参数●屏幕大小,分辨率,灰度级,刷新频率●显示存储器(VRAM)●容量=分辨率*灰度级位数●带宽=容量*帧频●打印机●外存储器●磁盘存储器●组成●存储区域:磁头,柱面,扇区●硬盘存储器:磁盘驱动器,磁盘控制器,盘片●工作过程:寻址,读盘,写盘对应的控制字,串行读写●性能指标●容量●记录密度●平均存取时间●数据传输率●磁盘阵列RAID——利用磁盘廉价的特点提高存储性能,可靠性和安全性●光盘存储器●固态硬盘SSD——采用FLASH Memory记录数据3.IO接口●主要功能●设备选址功能:地址译码和设备选择●传送命令●传送数据:实现数据缓冲和格式转换●反应IO设备的工作状态●基本结构●设备选择电路,命令寄存器和命令译码器,数据缓冲寄存器DBR,设备状态标记,控制逻辑电路●内部接口和外部接口●编址●统一编址——与存储器共用地址,用访存命令访问IO设备●独立编址:单独使用一套地址,有专门的IO指令●分类●数据传送方式:并行接口,串行接口●主机访问IO设备的控制方式●程序查询接口●中断接口●DMA接口●功能选择的灵活性●可编程接口●不可编程接口4.IO方式●程序查询方式:CPU与IO串行工作,鼠标,键盘●程序中断方式●中断系统●中断的基本概念●工作流程●中断请求●分类●中断请求标记触发器INTR●中断响应●中断响应的条件●中断判优●软件:查询程序●硬件:排队器●优先级的设置●中断处理●中断隐指令●关中断●保存断点PC●引出中断服务程序●中断服务程序●单重中断与多重中断●中断服务程序的具体步骤●中断屏蔽技术●屏蔽字●程序执行轨迹●程序中断方式●工作流程●CPU占用情况●中断响应(隐指令)●中断服务程序●DMA方式●DMA控制器●组成●主存地址计数器:存放要交换数据的主存地址●传送长度计数器:记录传送数据的长度●数据缓冲寄存器:暂存每次传送的数据●DMA请求触发器:设备准备好数据后将其置位●控制/状态逻辑:由控制和时序电路及状态标志组成●中断机构:数据传送完毕后触发中断机构,提出中断请求●主要功能●传送前:接受外设的DMA请求,向CPU发出总线请求,接管总线控制权●传送时:管理总线,控制数据传送,确定主存单元地址及长度,能自动修改对应参数●传送后: 向CPU报告DMA操作的结束●传送过程●预处理:CPU完成寄存器初值设置等准备工作●数据传送:CPU继续执行主程序,DMA控制器完成数据传送●后处理:CPU执行中断服务程序做DMA结束处理。
P7计算机的多级层次P8冯诺依曼计算机的特点、五大部件P10计算机的工作步骤P13主存储器、运算器、控制器、I/OP17计算机的硬件技术指标(机器字长、存储容量、运算速度)第二章计算机的发展及应用——见课本目录第三章系统总线P43总线的分类(片内总线、系统总线(三总线结构——数据地址控制)、通信总线)P45总线特性(机械特性、电气特性、功能特性、时间特性)P46总线性能指标(总线宽度、总线带宽、时钟同步/异步、总线复用、信号线数、总线控制方式等其他指标)P47总线标准(ISA、EISA、VESA(VL-BUS)、PCI、AGP、RS-232C、USB)P52总线结构(单总线结构、多总线结构---示意图,如单总线、双总线、三总线结构)P57总线判优控制(集中式(链式查询、计数器定时查询、独立请求方式)+ 分布式)P59总线通信控制(总线周期四个阶段;四种方式:同步、异步、半同步、分离式通信)第四章存储器P68存储器分类(按存储介质、存取方式、在计算机中的作用分类,以及RAM、ROM)P70存储器的层次结构(缓存-主存层次、主存-辅存层次,以及P71虚拟存储系统)P72主存储器P73主存中存储单元地址的分配P73主存的技术指标(存储容量、存储速度、存储器带宽)P74半导体存储芯片(基本结构、译码驱动方式(线选法和重合法))P76随机存取存储器P76静态RAM(基本单元电路、芯片举例、读写时序)P80动态RAM(基本单元电路、芯片举例、读写时序)P86动态RAM的刷新(集中刷新、分散刷新、异步刷新)P87动态RAM和静态RAM的比较P88 只读存储器(MOS、TTL——掩模ROM、PROM、EPROM)P91 存储器与CPU的连接P91存储容量的扩展(位、字扩展)P93存储器与CPU的连接(P95例4.2、P97例4.3)P100汉明码(偶校验、奇校验)P103提高访存速度的措施(单体多字系统、多体并行系统)P107高性能存储芯片(SDRAM、RDRAM、带Cache的DRAM(CDRAM))P109高速缓冲存储器(问题的提出、Cache工作原理)P111 Cache命中率、效率、平均访问时间计算(例4.7)P112 Cache的基本结构(Cache存储体、地址映射变换机构、Cache替换机构)P114 Cache的改进(单一缓存和二级缓存、统一缓存和分立缓存)P117 Cache——主存地址映射(直接映射、全相联映射、组相联映射+ 例题)P123替换策略(先进先出(FIFO)算法、近期最少使用(LRU)算法、随机法)P123辅助存储器(硬磁盘、软磁盘、磁带、光盘存储器——见课本目录)P124硬盘容量计算(格式化、非格式化)P144循环冗余校验码(CRC码)P156概述(发展概况、组成、I/O设备与主机联系方式、与主机信息传送的控制方式)组成(I/O软件(I/O指令、通道指令)、I/O硬件)I/O设备与主机联系方式(I/O设备编址方式、设备寻址、传送方式、联络方式)与主机信息传送的控制方式(程序查询方式、程序中断方式、DMA方式)P166 I/O设备(输入设备、输出设备)输入设备(P168-171键盘、鼠标、触摸屏、光笔、画笔与图形板、图像输入设备)输出设备(P171显示设备、P177打印设备)P182其他I/O设备(终端设备、A/D与D/A转换器、汉字处理设备)P184多媒体技术P190程序查询方式、P194程序中断方式、P202 DMA方式——见课本目录第六章计算机的运算方法P220原码表示法、P221补码表示法、P224反码表示法、P225移码表示法P228数的定点表示(格式、范围)、P229浮点表示(形式、范围、规格化)、比较P234定点运算(移位、加、减、乘、除)P234移位运算、P237加减法、P243乘法(Booth)、P258除法(加减交替法)P269浮点四则运算(P269浮点加减运算、P274浮点乘除法运算、P280硬件配置)P280算术逻辑单元(ALU电路、快速进位链)第七章指令系统P300机器指令(指令格式、指令字长)、P304操作数类型及操作类型(数据存放方式)P310寻址方式P320指令格式举例、P326 RISC技术(P330主要特点、P333与CISC比较)第八章CPU的结构和功能P337 CPU的功能(取指令、分析指令、执行指令等)、CPU结构框图、CPU的寄存器P342指令周期(取指周期、间址周期、执行周期、中断周期;P344数据流)P345指令流水(概念、原理、P348影响流水线性能的因素)P353流水线性能(计算吞吐率、加速比、效率)P355多发技术(超标量、超流水线、超长指令字)、流水线结构P358中断系统(概述、P360中断请求标(INTR)记和中断判优逻辑(硬件排队、软件排队)P361中断服务程序入口地址的寻找(硬件向量法、软件查询法)P362中断响应(响应中断的条件、时间,中断隐指令)P364保护现场和恢复现场、P365中断屏蔽技术)第九章控制单元的功能P375微操作命令的分析(取指周期、间址周期、执行周期(非访存、访存、转移类指令)、中断周期)P379控制单元的功能P379控制单元的外特性(输入信号、输出信号)P380控制信号举例(不采用、采用CPU内部总线的方式)P386多级时序系统(机器周期、时钟周期(节拍、状态) 、多级时序系统)P387控制方式(同步控制方式、异步控制方式、联合控制方式、人工控制方式)第十章控制单元的设计P396微操作的节拍安排、P407微指令的编码方式、P409微指令序列地址的形成、P411微指令格式(水平型、垂直型)、P413静态微程序设计和动态微程序设计、毫微程序设计。
计算机组成原理白中英复习第一章计算机系统概论电子数字计算机的分类P1通用计算机超级计算机、大型机、服务器、工作站、微型机和单片机和专用计算机;计算机的性能指标P5数字计算机的五大部件及各自主要功能P6五大部件:存储器、运算器、控制器、输入设备、输出设备;存储器主要功能:保存原始数据和解题步骤;运算器主要功能:进行算术、逻辑运算;控制器主要功能:从内存中取出解题步骤程序分析,执行操作;输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式;输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式;计算机软件P11系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类P65按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关随机访问:随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关串行访问:顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROMFlash Memory高速缓冲存储器Cache辅助存储器——磁盘、磁带、光盘存储器的分级P66存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器cache、主存储器、外存储器;主存储器的技术指标P67存储容量:存储单元个数M×每单元位数N存取时间:从启动读写操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间 ,时间单位为ns;存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标;SRAM存储器P67基本存储元:用一个锁存器触发器作为存储元;基本的静态存储元阵列P68双译码方式P68读周期、写周期、存取周期P70DRAM存储器P70基本存储元:由一个MOS晶体管和电容器组成的记忆电路;存储原理:所存储的信息1或0由电容器上的电荷量来体现充满电荷:1;没有电荷:0;一个DRAM存储元的写、读、刷新操作P71DRAM的刷新:集中式刷新和分散式刷新P73存储器容量的扩充P73位扩展——增加存储字长P73字扩展——增加存储字的数量P73字、位扩展P74例题P73只读存储器ROM P80掩模ROM、PROM、EPROM、EEPROM、Flash 存储器P80-86并行存储器P86双端口存储器:指同一个存储器具有两组相互独立的读写控制线路;多模块交叉存储器:连续地址分布在相邻的不同模块内,同一个模块内的地址都是不连续的;对连续字的成块传送可实现多模块流水式并行存取,大大提高存储器的带宽; cache基本原理P92避免 CPU“空等”现象CPU 和主存DRAM的速度差异程序访问的局部性原理cache由高速的SRAM组成cache的基本原理P93命中、未命中、命中率P93例题P94cache与主存的地址映射P94全相联映像:主存中的任一块可以映象到缓存中的任一块;直接映像:每个缓存块可以和若干个主存块对应;每个主存块只能和一个缓存块对应;组相联映像:某一主存块 j 按模 u 映射到缓存的第i 组中的任一块;替换算法P98先进先出算法FIFO:把一组中最先调入cache的块替换出去,不需要随时记录各个块的使用情况,所以实现容易,开销小;近期最少使用算法LRU:将近期内长久未被访问过的行块换出;每行设置一个计数器,cache每命中一次,命中行计数器清零,其它各行计数器增1;当需要替换时,比较各特定行的计数值,将计数值最大的行换出;最不经常使用LFU:被访问的行计数器增加1,换值小的行,不能反映近期cache的访问情况;随机替换:从特定的行位置中随机地选取一行换出; cache的写操作策略P99写回法、全写法、写一次法P99-100第四章指令系统指令系统P103程序、高级语言、机器语言、指令、指令系统、复杂指令系统计算机CISC、精简指令系统计算机RISCP103指令格式P105操作码:指令操作性质的二进制数代码地址码:指令中的地址码用来指出该指令的源操作数地址一个或两个、结果地址及下一条指令的地址;三地址指令、二地址指令、一地址指令、零地址指令;三种二地址指令SS、RR、RSP106指令字长度、机器字长P107例题P110操作数类型P110地址数据、数值数据、字符数据、逻辑数据寻址方式P112确定本条指令的操作数地址,下一条欲执行指令的指令地址指令寻址顺序寻址——PC+1跳跃寻址——转移类指令数据寻址P112-116立即寻址——形式地址就是操作数直接寻址——有效地址由形式地址直接给出隐含寻址——操作数地址隐含在操作码中间接寻址——有效地址由形式地址间接提供寄存器寻址——有效地址即为寄存器编号寄存器间接寻址——有效地址在寄存器中基址寻址——有效地址=形式地址+基地址变址寻址——有效地址=形式地址+变址寄存器的内容相对寻址——有效地址=PC的内容+形式地址堆栈寻址——栈顶指针段寻址例题P118指令的分类119数据处理、数据存储、数据传送、程序控制RISC技术P121RISC——精简指令系统计算机CISC——复杂指令系统计算机RISC指令系统的特点P121第五章中央处理器CPU的功能P127指令控制、操作控制、时间控制、数据加工CPU的基本组成P127控制器、运算器、cacheCPU中的主要寄存器P128数据缓冲寄存器DR、指令寄存器IR、程序计数器PC、数据地址寄存器AR、通用寄存器、状态字寄存器PSW操作控制器的分类P130时序逻辑型:硬布线控制器存储逻辑型:微程序控制器指令周期P131取出并执行一条指令所需的全部时间;指令周期、机器周期、时钟周期P131一个指令周期含若干个机器周期一个机器周期包含若干个时钟周期取指周期数据流P132执行周期数据流P133—138时序信号的作用和体制P141时序信号的基本体制是电位—脉冲制;数据加在触发器的电位输入端D ,打入数据的控制信号加在触发器的时钟脉冲输入端 CP;电位高低表示数据是1还是0,要求打入数据的控制信号来之前电位信号必须已稳定;节拍电位、节拍脉冲P142控制器的控制方式P144同步控制方式:即固定时序控制方式,各项操作都由统一的时序信号控制,在每个机器周期中产生统一数目的节拍电位和工作脉冲;异步控制方式:不受统一的时钟周期节拍的约束;各操作之间的衔接与各部件之间的信息交换采取应答方式;联合控制方式:同步控制和异步控制相结合的方式,大部分指令在固定的周期内完成,少数难以确定的操作采用异步方式;微程序控制原理P145微程序控制是指运行一个微程序来实现一条机器指令的功能;微程序控制的基本思想:仿照计算机的解题程序,把微操作控制信号编制成通常所说的“微指令”,再把这些微指令按时序先后排列成微程序,将其存放在一个只读存储器里,当计算机执行指令时,一条条地读出这些微指令,从而产生相应的操作控制信号,控制相应的部件执行规定的操作;微程序、微指令、微命令、微操作P145机器指令与微指令的关系P150微命令的编码方法P151直接表示法:微指令的每一位代表一个微命令,不需要译码;编码表示法:把一组相斥性的微命令信号组成一个小组即一个字段,然后通过小组字段译码器对每一个微命令信号进行译码,译码输出作为操作控制信号;混合表示法:把直接表示法与字段编码表示法混合使用,以便能综合考虑微指令字长、灵活性、速度等方面的要求;微指令格式P153水平型微指令:是指一次能定义并能并行执行多个微命令的微指令;垂直型微指令:微指令中设置微操作码字段,采用微操作码编译法,由微操作码规定微指令的功能,称为垂直型微指令;垂直型微指令的结构类似于机器指令的结构;硬连线控制器P155基本思想:通过逻辑电路直接连线而产生的,又称为组合逻辑控制方式;这种逻辑电路是一种由门电路和触发器构成的复杂树形逻辑网络;三个输入:来自指令操作码译码器的输出;来自执行部件的反馈信息;来自时序产生器的时序信号,包括节拍电位信号M和节拍脉冲信号T;一个输出:微操作控制信号硬布线控制器的基本原理:某一微操作控制信号C用一个逻辑函数来表达;并行处理技术P161并行性的概念:问题中具有可以同时进行运算或操作的特性;时间并行:让多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部件,以加快硬件周转而赢得速度,实现方式就是采用流水处理部件;空间并行:以数量取胜;它能真正的体现同时性时间+空间并行:综合应用;Pentium中采用了超标量流水线技术;流水线的分类P163指令流水线:指指令步骤的并行;将指令流的处理过程划分为取指令、译码、取操作数、执行、写回等几个并行处理的过程段;算术流水线:指运算操作步骤的并行;如流水加法器、流水乘法器、流水除法器等;处理机流水线:是指程序步骤的并行;由一串级联的处理机构成流水线的各个过程段,每台处理机负责某一特定的任务;流水线中的主要问题P164资源相关:指多条指令进入流水线后在同一机器时钟周期内争用一个功能部件所发生的冲突;数据相关:在一个程序中,如果必须等前一条指令执行完毕后,才能执行后一条指令;解决数据相关冲突的办法:为了解决数据相关冲突,流水CPU的运算器中特意设置若干运算结果缓冲寄存器,暂时保留运算结果,以便于后继指令直接使用,称为“向前”或定向传送技术;控制相关:由转移指令引起的;解决控制相关冲突的办法:延迟转移法、转移预测法;例题P165第六章总线系统总线的概念P184总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路;总线的分类P184内部总线——CPU内部连接各寄存器及运算部件之间的总线;系统总线——CPU和计算机系统中其他高速功能部件相互连接的总线;按系统传输信息的不同,又可分为三类:数据总线,地址总线和控制总线;I/O总线——中、低速I/O设备之间互相连接的总线;总线性能指标P185总线宽度:指数据总线的根数;寻址能力:取决于地址总线的根数;PCI总线的地址总线为32位,寻址能力达4GB;传输率:也称为总线带宽,是衡量总线性能的重要指标;例题P193总线上信息传送方式P190串行传送:使用一条传输线,采用脉冲传送有脉冲为1,无脉冲为0;连续几个无脉冲的处理方法:位时间;并行传送:每一数据位需要一条传输线,一般采用电位传送电位高为1,电位低为0;分时传送:总线复用、共享总线的部件分时使用总线;总线接口P192I/O接口,也叫适配器,和CPU数据的交换一定是并行的方式,和外设数据的交换可以是并行的,也可以是串行的;总线的仲裁P193集中式仲裁:有统一的总线仲裁器;链式查询方式、计数器定时查询方式、独立请求方式P193—195分布式仲裁:不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁器和仲裁号;P195总线的定时P196同步定时:事件出现在总线上的时刻由总线时钟信号来确定;异步定时:后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;PCI总线P200PCI:外围设备互连,PCI总线:连接各种高速的PCI设备;PCI是一个与处理器无关的高速外围总线,又是至关重要的层间总线;它采用同步时序协议和集中式仲裁策略,并具有自动配置能力;PCI总线支持无限的猝发式传送;即插即用;第七章外围设备外围设备的定义和分类P209除了CPU和主存外,计算机系统的每一部分都可作为一个外围设备来看待;外围设备可分为输入设备、输出设备、外存设备、数据通信设备和过程控制设备几大类;磁记录原理P210计算机的外存储器又称磁表面存储设备;所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息;磁盘存储器、磁带存储器均属于磁表面存储器;磁性材料上呈现剩磁状态的地方形成了一个磁化元或存储元,是记录一个二进制信息位的最小单位;磁表面存储器的读写原理P211在磁表面存储器中,利用一种称为磁头的装置来形成和判别磁层中的不同磁化状态;通过电-磁变换,利用磁头写线圈中的脉冲电流,可把一位二进制代码转换成载磁体存储元的不同剩磁状态;通过磁-电变换,利用磁头读出线圈,可将由存储元的不同剩磁状态表示的二进制代码转换成电信号输出;磁盘的组成和分类P213硬磁盘是指记录介质为硬质圆形盘片的磁表面存储设备; 它主要由磁记录介质、磁盘控制器、磁盘驱动器三大部分组成;温彻斯特磁盘简称温盘,是一种采用先进技术研制的可移动磁头固定盘片的磁盘机;它是一种密封组合式的硬磁盘,即磁头、盘片、电机等驱动部件乃至读写电路等组装成一个不可随意拆卸的整体;磁盘上信息的分布P215记录面、磁道、扇区P215磁道编号P215磁盘地址由记录面号也称磁头号、磁道号和扇区号三部分组成;磁盘存储器的技术指标P216存储密度:存储密度分道密度、位密度和面密度;道密度:沿磁盘半径方向单位长度上的磁道数,单位道/英寸;位密度:磁道单位长度上能记录的二进制代码位数,单位为位/英寸;面密度:位密度和道密度的乘积,单位为位/平方英寸;平均存储时间=寻道时间+等待时间+数据传送时间P216数据传输率P217例题P217磁盘cacheP218磁盘cache是为了弥补慢速磁盘和主存之间速度上的差异;磁盘阵列RAIDP218RAID:独立磁盘冗余阵列廉价冗余磁盘阵列,或简称磁盘阵列;简单的说, RAID 是一种把多块独立的硬盘物理硬盘按不同方式组合起来形成一个硬盘组逻辑硬盘,从而提供比单个硬盘更高的存储性能和提供数据冗余的技术;组成磁盘阵列的不同方式成为 RAID 级别;RAID 0 提高存储性能的原理是把连续的数据分散到多个磁盘上存取, 这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求;这种数据上的并行操作可以充分利用总线的带宽,显着提高磁盘整体存取性能;第八章输入输出系统外围设备的速度分级P236在CPU和外设之间数据传送时加以定时:速度极慢或简单的外设:CPU只需要接受或者发送数据即可;慢速或者中速的设备:可以采用异步定时的方式;高速外设:采用同步定时方式;I/O和主机信息交换方式P237程序查询方式、程序中断方式、直接内存访问DMA方式、通道方式程序查询方式P239数据在CPU和外围设备之间的传送完全靠计算机程序控制;当需要输入/输出时,CPU暂停执行主程序,转去执行设备输入/输出的服务程序,根据服务程序中的I/O指令进行数据传送;这是一种最简单、最经济的输入/输出方式,只需要很少的硬件;但由于外围设备动作很慢,程序进入查询循环时将浪费CPU时间;中断的概念P242中断是指CPU暂时中止现行程序,转去处理随机发生的紧急事件,处理完后自动返回原程序的功能和技术;程序中断方式的原理P242在程序中断方式中,某一外设的数据准备就绪后,它“主动”向CPU发出请求中断的信号,请求CPU暂时中断目前正在执行的程序而进行数据交换;当CPU响应这个中断时,便暂停运行主程序,并自动转移到该设备的中断服务程序;当中断服务程序结束以后,CPU又回到原来的主程序;中断处理过程中的几个问题P243CPU只有在当前一条指令执行完毕后,即转入公操作时才受理设备的中断请求;保存现场P243中断屏蔽P243中断处理过程P243单级中断和多级中断P245单级中断系统中,所有的中断源都属于同一级,所有中断源触发器排成一行,其优先次序是离CPU近的优先权高; 当响应某一中断请求时,执行该中断源的中断服务程序;在此过程中,不允许其他中断源再打断中断服务程序,既使优先权比它高的中断源也不能再打断;多级中断系统是指计算机系统中有相当多的中断源,根据各中断事件的轻重缓急程度不同而分成若干级别,每一中断级分配给一个优先权;优先权高的中断级可以打断优先权低的中断服务程序,以程序嵌套方式工作;一维多级中断是指每一级中断里只有一个中断源,二维多级中断是指每一级中断里又有多个中断源;DMA的基本概念P253直接内存访问DMA是一种完全由硬件执行I/O交换的工作方式;在这种方式中,DMA控制器从CPU完全接管对总线的控制,数据交换不经过CPU,而直接在内存和I/O设备之间进行;DMA方式一般用于高速传送成组数据;DMA方式的优点P253DMA能执行的一些操作P254从外围设备发出DMA请求;CPU响应请求,把CPU工作改成DMA操作方式,DMA控制器从CPU接管总线的控制;由DMA 控制器对内存寻址,即决定数据传送的内存单元地址及数据传送个数的计数,并执行数据传送的操作;发中断,向CPU报告DMA操作的结束;DMA传送方式P254停止CPU访问内存、周期挪用、DMA与CPU交替访内P254 DMA数据传送过程P257传送前预处理;正式传送;传送后处理;P257通道的基本概念P261通道是一个特殊功能的处理器,它有自己的指令和程序专门负责数据输入输出的传输控制,而CPU将“传输控制”的功能下放给通道后只负责“数据处理”功能;这样,通道与CPU 分时使用内存,实现了CPU内部运算与I/O设备的平行工作;通道的功能P253通道具有两种类型的总线:存储总线:承担通道与内存、CPU与内存之间的数据传输任务;通道总线即I/O总线,承担外围设备与通道间的数据传送任务;从逻辑结构上讲,I/O系统一般具有四级连接:CPU与内存通道设备控制器外围设备优先级别:由于大多数I/O设备的读写信号具有实时性,不及时处理会丢失数据;所以通道与CPU同时要求访内时,通道优先权高于CPU;CPU对通道的管理P262CPU是通过执行I/O指令以及处理来自通道的中断,实现对通道的管理;来自通道的中断有两种,一种是数据传送结束中断,另一种是故障中断;通道对I/O模块的管理P262通道通过使用通道指令控制I/O模块进行数据传送操作,并以通道状态字接收I/O模块反映的外围设备的状态;通道的类型P262选择通道、数组多路通道、字节多路通道P263第九章操作系统支持虚拟存储器的概念P282虚拟存储器是借助于磁盘等辅助存储器来扩大主存容量,使之为更大或更多的程序所使用;是一个容量非常大的存储器的逻辑模型,不是任何实际的物理存储器;它指的是主存-外存层次;以透明的方式给用户提供了一个比实际主存空间大得多的程序地址空间;实地址:或物理地址,计算机物理内存的访问地址,由CPU引脚送出,是用于访问主存的地址,对应的存储空间——物理存储空间或主存空间;虚地址:或逻辑地址,在编制程序时独立编址,使用的地址,对应的存储空间——虚存空间或逻辑地址空间;虚地址到实地址的转换过程——程序的再定位;虚存的访问过程P283虚拟存储器的用户程序以虚拟地址编址并存放在辅存中;程序运行时CPU以虚地址访问主存,由辅助硬件找出虚地址和物理地址的对应关系,判断这个虚地址指示的存储单元是否已装入主存:如果在主存,CPU就直接执行已在主存的程序;如果不在,要进行辅存向主存的调度;虚存与cache的异同P283几种虚拟存储器P284段式、页式、段页式页式虚拟存储器P284页、页表:页式虚拟存储系统中,虚地址空间被分成等长大小的页,称为逻辑页;主存空间也被分成同样大小的页,称为物理页;相应地,虚地址分为两个字段:高字段为逻辑页号,低字段为页内地址偏移量;实存地址也分两个字段:高字段为物理页号,低字段为页内地址;通过页表可以把虚地址逻辑地址转换成物理地址;页式虚存地址映射:地址变换时,用逻辑页号作为页表内的偏移地址索引页表,并找到相应物理页号,用物理页号作为实存地址的高字段,再与虚地址的页内偏移量拼接,就构成完整的物理地址;虚页内容若没有调入主存,则计算机启动输入输出系统,把虚地址指示的一页内容从辅存调入主存,再提供CPU访问;转换后援缓冲器P285段式虚拟存储器P286段式虚拟存储器,是以程序的逻辑结构所形成的段如主程序、子程序、过程、表格等作为主存分配单位的虚拟存储器管理方式的存储器;每个段的大小可以不相等;每个程序都有一个段表映象表,用于存放该道程序各程序段从辅存装入主存的状况信息;段表一般驻留在主存中;段式虚存地址映射P287段页式虚拟存储器P287把程序按逻辑单位分段以后,再把每段分成固定大小的页;程序对主存的调入调出是按页面进行的,但它又可以按段实现共享和保护,兼备页式和段式的优点;虚存的替换算法P289虚拟存储器中的替换策略一般采用LRU Least Recent1y Used算法、LFU算法、FIFO算法,或将两种算法结合起来使用;例题P289。
02318计算机组成原理1.指令:用0、1表示的一连串的0/1序列,是cpu完成一个特定的基本操作。
2.I/O数据传送主要有三种不同的控制方式:程序直接控制、中断控制和DMA控制3.CPI:表示执行一条指令所需的时钟周期数。
4.总线:是传输信息的通路,用于在部件之间传输信息。
cpu、主存和I/O模块通过总线互连。
5.(计算机性指标)MIPS:平均每秒钟执行多少百万(10的6次方)条指令,反映的时机器执行定点指令的速度。
6.大端方式:将数据的MSB存放在最小地址单元中,将LSB存放在最大地址单元中,此时数据的地址是MSB所在的地址。
如(IBM360/370、HP PA)7.小端方式:将MSB存放在高地址中,将LSB存放在低地址中,此时数据的地址就是LSB所在的地址。
如(intel80*86)8.程序状态寄存器(PSW):通常每个正在运行程序的状态信息存放在一个专门的寄存器中,这个专门寄存器统称为程序状态寄存器9.中断服务程序10.I/O端口:实际上就是I/O接口中的寄存器,如数据缓冲寄存器就是数据端口,控制/状态寄存器就是控制/状态端口。
11.顺序存取存储器:是信息按顺序存放和读取,存取时间取决于信息存放位置,以记录块为单位编址(磁盘存储器)12.标志寄存器:用来存放ALU运算得到的一些标志信息。
(用于存放程序运行的一些状态和控制运行的信息的寄存器。
)13.程序计数器PC:用来存放将要执行的下一条指令的地址。
14.指令寄存器IR:用于存放从主存中读出的指令。
15.主存储器:用来存储指令和操作数。
16.存储器地址寄存器(MAR):用于存放将要送到主存储器的主存地址17.存储器数据寄存器(MDR):用来存放CPU与主存储器交换的数据18.算术逻辑部件:用于进行算术运算和逻辑运算19.总线宽度:总线中数据线的条数称为总线宽度。
20.微地址:微指令所在的存储单元的地址称为微地址21.机器数:将数值数据在计算机内部编码表示的数。
大一计算机基础必背知识点计算机科学与技术是一门火热的专业,每年吸引着大量学子进入学习。
而作为计算机专业的学生,在大一学习计算机基础课程时,还需要背诵一些重要的知识点。
这些知识点不仅是日后学习的基石,也能够帮助我们在后续课程中更好地理解和应用所学知识。
下面将介绍一些大一计算机基础必背的重要知识点。
1. 计算机组成原理计算机组成原理是计算机专业的基础课程之一,它主要研究计算机硬件和软件之间的关系。
在学习这门课程时,我们需要掌握计算机的基本组成部分,如中央处理器(CPU)、存储器、输入输出设备等,以及它们之间的连接方式和协作原理。
2. 数据结构与算法数据结构与算法是计算机专业中非常重要的一门课程,它主要研究如何将数据组织和存储以便有效地解决问题。
在学习这门课程时,我们需要掌握各种常见的数据结构,如数组、链表、栈、队列、树、图等,以及它们的基本操作和应用场景。
同时,我们还需要学习一些常用的算法,如排序算法、查找算法和图算法等,以解决实际问题。
3. 编程语言编程语言是计算机专业学习中不可或缺的一部分,它是实现计算机程序的工具。
在大一阶段,我们需要学习一门编程语言,如C语言、Java或Python等。
我们需要掌握该编程语言的基本语法、数据类型、控制结构和函数等,以便能够编写简单的程序解决问题。
4. 操作系统操作系统是计算机专业中的一门重要课程,它主要研究计算机系统的管理和控制。
在学习这门课程时,我们需要了解操作系统的基本概念和功能,如进程管理、内存管理、文件系统等。
同时,我们还需要学习一些常见的操作系统,如Windows、Linux等,以及它们的基本操作和管理技巧。
5. 计算机网络计算机网络是计算机专业中的一门重要课程,它主要研究计算机之间的通信和数据交换。
在学习这门课程时,我们需要了解计算机网络的基本概念和体系结构,如物理层、数据链路层、网络层、传输层和应用层等。
同时,我们还需要了解一些常见的网络协议和技术,如TCP/IP协议、HTTP协议和路由器等。
第一课时 1、指令分为操作码和地址码,操作码指明了操作类型,地址码指明了对哪两个数进行操作。
2、CPU的时钟频率也即是CPU的主频。 3计算机系统结构:概念性结构和功能特性。是指硬件子系统的概念性结构和功能特性。由指令系统所规定的所有属性,所以也称指令集体系结构。
主要研究计算机系统软件和硬件的功能分配,以及如何最佳地实现分配给硬件的功能。
例如:指令系统中是否包括乘法指令? 4、计算机组织: 也称计算机组成:计算机主要部件的类型、数量、组成方式、控制方式和信息流动方式以及相互连接而构成的而系统。
主要研究数据和指令的组织,数据的存取、传送和加工处理。数据流和指令流的控制方式基本运算的算法例如:如何实现乘法指令?
5计算机实现: 计算机功能的物理实现。 6、加法指令执行速度 因为加法指令能反映乘除等运算,而其他指令的执行时间也大体与加法指令相当。
7、CP I, 执行一条指令所需时钟周期数,是主频的倒数。 8、等效指令速度法 9存储器不仅能存放数据,而且也能存放指令,两者在形式上没有区别,但计算机应能区分数据还是指令。
10 有时我们说某个特定的功能是由硬件实现的,但并不是说不要编写程序,如乘法功能可由乘法器这个硬件实现,但要启动这个硬件(乘法器工作,必须先执行程序中的乘法指令。
11 指令译码器是译指令的操作码。 而是在读出之前就知道将要读的信息是数据还是指令了 12 在计算机领域中,站在某一类用户的角度,如果感觉不到某个事物或属性的存在,即“看”不到某个事物或属性,则称为“对xxxx用户而言,某个事物或属性是透明的”。
13程序控制器:(PC是执行指令的机器。 14 机器字长 定义为CPU中在同一时间内一次能够处理的二进制数的位数,实际上就是CPU中数据通路的位数
15 浮点运算器的数据通路要宽得多。 16所以一般把定点运算器的数据通路宽度定为机器字长。因为机器字长与内存单元的地址位数有关,而地址计算是在定点运算器中进行的。
17、一个字的宽度并不等于机器字长。在80x86系列中,一个字的宽度为16位。
18、“存储单元” 指存储器中具有相同地址的若干个存储元件(或称存储元、存储基元、记忆单元构成的一个存储单元中的二进制代码,其宽度等于一个编址单位的长度,可以是8位、16位、32位等。现在,大多数计算机是按字节编址的,即:每一个字节(8位有一个地址,编址单位就是一个字节,所以一个存储单元的宽度(位数是8位。由此可见,一个数据(如:32位整数、32位浮点数或64位浮点数等可能占多个存储单元。一次从存储器读出或写入的信息也可能有多个存储单元。
19 “指令字长”: 指指令的位数。有定长指令字机器和不定长指令字机器。定长指令字机器中所有指令的位数是相同的,目前定长指令字大多是32位指令字。不定长指令字机器的指令有长有短,但每条指令的长度一般都是8的倍数。所以,一个指令字在存储器中存放时,可能占用多个存储单元;从存储器读出并通过总线传输时,可能分多次进行,也可能一次读多条指令。 20 MAR 为存储器地址寄存器:是主存和CPU 之间的接口
21 按字节编址的,也即:每一个字节(8位有一个地址。编址单位就是一个字节 所以一个存储单元的宽度(位数是8位
22 存储元件 又叫存储元,或存储基元,记忆单元。 23二进制并不符合人们的习惯,但是计算机内部仍采用二进制来表示信息的原因:是因为二进制有如下的优点:0/1两个状态易物理实现,运算规则简单。工作可靠
也即:1+1=0,0+0=0;1+0=1,0+1=1 非常像C 语言中的异或运算符!!! 计算机由逻辑电路组成的,逻辑电路通常只有两个状态,例如开关的接通与断开,晶体管的饱和与截止。电压电平的高与低。
简化运算:二进制运算法则简单:求积运算法则只有三个。 也即1*1=1 1*0=0 0*0=0 二进制数的运算: 0-0=0;1-1=0 0-1=1 1-0=1 逻辑运算
0|0=0 0|1=1 1|0=1 1|1=1 算术运算会发生进位和借位,而逻辑运算则按位独立进行! 除2取余,直到商为0,然后倒排!!! 十进制小数化为二进制小数。
规则:乘2取整,直到小数部分为0,然后顺排! 为什么需要八进制?因为使用2进制太长了,而使用八进制保持了二进制数的表达特点。
原码、反码和补码:
矢量图只记录线段的两端,所用的字节就少多了,但是格式不同,需要转换!位图。
声音是一种连续变化的模拟量。对声音信号按固定的时间进行采样。从而把它变成数字量。
第三章:系统总线 CPU能像访问主存一样访问输入输出模块!给出输入输出模块地址和控制信息。
在某些情况下
DMA 给出所访问的 I/O模块(如:DMA控制器要能对主存给出读/写控制信息 DMA控制器:直接存储器访问。 输入输出模块:有两种数据,一种是内部数据(CPU送来的,另一种是外部数据。(键盘、鼠标送来的
CPU只能取指令,而不能送出指令! I/O模块将中断请求信号送CPU 部件与部件之间的信息交换。 我们把连接各部件的通路的集合称为互连结构,互连结构有分散结构和总线结构
地址总线 地址线给出源数据或目的数据所在的主存单元或I/O端口的地址。地址线的宽度反映最大的寻址空间。但是也有些总线没有单独的地址线,地址信息通过数据线来传送,这种情况称为数据/地址复用一条总线。
时钟:用于总线同步。 复位:初始化所有设备。 总线请求:表明发出该请求信号的设备要使用总线。 总线允许:表明接收到该允许信号的设备可以使用总线。 中断回答:表明某个中断请求已被接受。 存储器读:从指定的主存单元中读数据到数据总线上。 存储器写:将数据总线上的数据写到指定的主存单元中。 I/O读:从指定的I/O端口中读数据到数据总线上。 I/O写:将数据总线上的数据写到指定的I/O端口中。 传输确认:表示数据已被接收或已被送到总线上。 串行总线: 1 定义:在数据线上按位串行进行传输,因此只需一根数据线, 2 优点:线路成本低,适合于远距离数据传输。 3 用途:主要用于连接慢速设备,但近年也出现了中高速串行总线。如:P1394,可传输多媒体信息
波特率:每秒钟通过信道传输的码元数.也称码元传输速率,单位为位/秒(b/s。 衡量并行总线速度的指标是最大数据传输率或称带宽(MB/s。 突发式数据传送模式: 字和字之间是串行的,但是每个字的各个位之间又是并行的。 总线的特性: 一、物理机械特性1连线类型:电缆式、主板式、底板式 2 连线数量:串行和并行。 二、电气特性:总线的每一条信号线的信号传递方向、信号的有效电平范围。 信号方向:数据为双向、地址为单(同向、控制为单(异向 三、功能特性:总线中每根传输线的功能。 四、时间特性:总线中任一根传输线在什么时间内有效,以及每根线产生的信号之间的时序关系。
1 总线宽度:数据线的宽度(8位/16位/32位… 2 信号线类型:专用信号线/复用信号线 3 仲裁方法:集中式裁决/分布式裁决 4 定时方式:同步通信/异步通信(一个设备在使用总线同另一个设备通信的过程中,是采用同步传输的方式,还是异步传输的方式。
5事务类型:总线所支持的各种数据传输类型和其他总线操作类型。 6总线带宽(总线宽度/最大数据传输率:每秒钟在总线上能传输的最大字节数。 例:总线工作频率为33MHz,总线宽度为32位,则总线带宽为132MB/s.
一、ISA总线,又叫AT总线(工业标准结构 (1支持64KI/O地址空间、16M主存地址空间的寻址,支持15级硬中断、7级DMA通道。
(3支持8种总线事务类型:存储器读、存储器写、I/O读、I/O写、中断响应、DMA响应、存储器刷新、总线仲裁。
(3是一种简单的多主控总线 (4数据线与地址线是分离的 (5时钟频率为8MHz,数据线宽度为16位。最大数据传输率为16MB/s
1、地址线的宽度为32位,所以寻址能力达2。即:CPU或DMA控制器等这些主存控制设备(简称主控设备能够对4G范围的主存地址空间进行访问。数据线与地址线也是分离的。2
1、总线频率33MHz,数据线宽度也为32位,但是可以扩充到64位。 2、支持并发工作(PCI桥提供数据缓冲,并使总线独立于CPU系统中的高速设备挂接在PCI 总线上,而低速设备仍然通过ISA、EISA等这些低速I/O总线支持
分为两种:1 PCI配置的单处理器系统 总线结构 1单总线结构: 早期计算机采用的。CPU、主存与I/O模块之间的传送都通过一组总线进行。PDP-11和国产DJS183机采用该结构。
所有传送都共享一组总线,总线成为整个系统的瓶颈 性能下降的原因: 1 总线上连接的设备越多,传输延迟就会越大。 2 总线上挂接大量高速设备后,单一总线无法满足系统要求。 2 双总线结构 (a 不分层次,多加一条 CPU 与主存之间的总线,形成以主存储器为中心的双总线结构 也即:系统总线、 也即:系统总线、主存总线 (b 将 I/O 从单总线上分离出来,集中由 IOP 管理。将原先的单总线分成主存总线和 I/O 总 主存总线和 线,形成两级双总线结构。IOP:输入输出处理器 也即:主存总线、 也即:主存总线、I/O 总线 3 三总线