当前位置:文档之家› 高中数学-三余弦定理(最小角定理)与三正弦定理

高中数学-三余弦定理(最小角定理)与三正弦定理

高中数学-三余弦定理(最小角定理)与三正弦定理
高中数学-三余弦定理(最小角定理)与三正弦定理

三余弦定理和三正弦定理

1.三余弦定理(又叫最小角定理)

(1)设点A为平面α上一点,过A点的斜线AO在平面α上的射影为AB,AC为平面α上的任意直线,那么∠OAC,∠BAC,∠OAB三角的余弦关系为:

cos∠OAC=cos∠BAC×cos∠OAB

即斜线与平面内一条直线夹角θ的余弦值=斜线与平面所成角1θ的余弦值?射影与平面内直线夹角的余弦值。

(2)定理证明:

(3)说明:这三个角中,角θ是最大的,其余弦值最小,等于另外两个角的余弦值之积。斜线θ是斜线与平面内所有直线所成的角中最小的角。

与平面所成角

1

2.设二面角M-AB-N的度数为α,在平面M上有一条射线AC,它和棱AB所成角为β,和平面N所成的角为γ,则sinγ=sinα·sinβ(如图).

(1)定理证明:

如果将三余弦定理和三正弦定理联合起来使用,用于解答立体几何综合题,你会发现出乎意料地简单,甚至不用作任何辅助线!

例1. (1994全国)如图,已知A1B1C1-ABC是正三棱柱,D是AC中点,若AB1⊥BC1,求面DBC1与面CBC1所成的二面角度数。

例2. (1986上海)已知Rt△ABC的两直角边AC=2,BC=3.点P为斜边AB上一点,现沿CP将此

直角三角形折成直二面角A-CP-B(如下图),当AB=7时,求二面角P-AC-B的大小。

例 3.已知菱形ABCD的边长为1,∠BAD=60°,现沿对角线BD将此菱形折成直二面角A-BD-C(如下图)。( 1)求异面直线AC与BD所成的角;( 2)求二面角A-CD-B的大小。

例4.(2012四川)如图,半径为的半球的底面圆在平面内,过点作平面的垂线

交半球面于点,过圆的直径作与平面成角的平面并与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为_________________

高中数学:(一)正弦定理

课时达标训练(一) 正 弦 定 理 [即时达标对点练] 题组1 利用正弦定理解三角形 1.若△ABC 中,a =4,A =45°,B =60°,则b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 解析:选C 由正弦定理a sin A =b sin B ,得4sin 45°=b sin 60°,所以b =26,故选C. 2.在△ABC 中,A =60°,a =3,b =2,则B =( ) A .45°或135° B .60° C .45° D .135° 解析:选C 由正弦定理a sin A =b sin B , 得sin B =b sin A a =2sin 60°3=2 2. ∵a >b ,∴A >B , ∴B =45°. 3.在△ABC 中,cos A a =sin B b ,则A =( ) A .30° B .45° C .60° D .90° 解析:选B ∵sin A a =sin B b ,又cos A a =sin B b , ∴cos A a =sin A a , ∴sin A =cos A ,tan A =1. 又0°

5.已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°. ∵a sin A =b sin B =c sin C =1 sin 30°=2,∴a =2sin A ,b =2sin B ,c =2sin C . ∴ a -2 b +c sin A -2sin B +sin C =2. ★答案★:2 6.已知b =10,c =56,C =60°,解三角形. 解:∵sin B = b sin C c =10·sin 60°56 =2 2, 且b =10,c =56,b 0,∴cos A =0,即A =π 2 ,∴△ABC 为直角三角形. ★答案★:直角三角形 8.在△ABC 中,a cos ????π2-A =b cos ????π 2-B ,判断△ABC 的形状. 解:法一:∵a cos ????π2-A =b ·cos ????π2-B , ∴a sin A =b sin B .由正弦定理,得a ·a 2R =b ·b 2R , ∴a 2=b 2,∴a =b , ∴△ABC 为等腰三角形. 法二:∵a cos ????π2-A =b cos ????π 2-B , ∴a sin A =b sin B . 由正弦定理,得2R sin 2A =2R sin 2B , 即sin A =sin B ,

三余弦公式的巧用

三余弦公式的巧用 1AO AO AO 12 αθααθθθθθ2 如图:斜线和平面所成的角为 斜线在平面上的射影A B ,A C 为平面内异于A B 的直线, A B 与A C 的夹角为,与A C 的夹角,则有:cos =cos cos 该公式本质上反映了线面角与线线角之间的数量关系,其本质特征是由两个平面互相垂直,两个平面内的三条直线所成角的定量关系。在处理异面直线所成角、线面角的问题时效果明显。下面通过近年高考试题予以说明。 例一: (2005全国卷I 第18题) 已知四棱锥P-ABCD 的底面为直角梯形,AB CD ∥, ⊥=∠PA DAB ,90 底面ABCD , 且PA=AD=DC= 2 1 AB=1,M 是PB 的中点。 (Ⅱ)求AC 与PB 所成的角; 常规解法:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由 PA ⊥面 ABCD 得∠PEB=90°在 Rt △PEB 中 BE= 2,PB=5, .510cos == ∠∴PB BE PBE .5 10 arccos 所成的角为与PB AC ∴ 析:已知条件中有PA ⊥底面ABCD 若使用三余弦公式则:PB 在平面ABCD 上的射影AB , 210 cos 22 PBA BAC AC PB ∠= ∠= = ∴与 .5 10 arccos 所成的角为与PB AC ∴ 评:只要找到三线的夹角即可,无需作图求解。 例二(2006福建卷)如图,四面体ABCD 中, A B M D E O C

高中数学教案必修四:正弦定理

课 题 1.1.1 正弦定理 授课人 雷 娜 授课时间 5月 日 年 级 高 一 班 次 1321、1322 教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索,掌握正弦定理的 内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系,引导学生通过观察,推导,比较,由特殊到 一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感、态度、价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形 函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 内容分析 重 点: 正弦定理的探索和证明及其基本应用。 难 点: 已知两边和其中一边的对角解三角形时判断解的个数。 关 键: 掌握正弦定理的内容并能够灵活应用 教学方法 探究式教学 教 学 过 程 一、课题导入: 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二、新课探究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === A B C B A C

正、余弦定理解题易错点剖析

正、余弦定理解题易错点剖析 正、余弦定理及其应用问题综合性强、解题有一定的技巧,学生在解题时,经常因为审题不仔细,忽视一些条件而导致错误.本文分类剖析了解题中常出现的错误,旨在为同学们提个醒,以达防微杜渐的目的. 一、隐含条件被忽视致错 例1 在ABC △中,若3C B =,求 c b 的取值范围. 错解:由正弦定理可知 sin3sin cos2cos sin 2sin sin c B B B B B b B B +==22cos 22cos 4cos 1B B B =+=-. 由20cos 1B ≤≤,得214cos 13B --≤≤,故13c b -≤≤. 剖析:上述解法中,忽视了B 的取值范围及a b c ,,均为正的条件而致错. 正解: 24cos 1c B b =-.(过程同错解) 又∵180A B C ++=°,2C B =, ∴045B <<°,2cos 12 B <<, ∴214cos 13B <-<∴,故13c b < <. 在解决解三角形问题时,经常因忽视三角形中的隐含条件而出现解题错误.同学们在解题时一定要“擦亮慧眼”,否则极容易产生错解. 觅错:某同学遇到这样一道问题:在ABC △中,已知222 15a b C ===,,°,则A =_________. 分析:已知两边及其夹角,先用余弦定理,算出c ,再用正弦定理算出1sin 2 A = ,便大笔一挥,写上了“30°或150°”,轻轻松松搞定,不料老师却给他判了零分.下面是这位同学的详细解题过程,同学们帮他找找错因吧! 错解:由余弦定理,得2222cos15843c a b ab =+-=-°. 又sin 1sin 2 a C A c = =,而0180A <<°°, ∴ 30A =°或150A =°. 所以空格上填“30°或150°”. 二、制约条件被忽视致错 例2 在ABC △ 中,62c =+,30C =°,求a b +的最大值. 错解:∵30C =°,∴150A B +=°,150B A =-°. 由正弦定理,得62sin sin(150)sin 30a b A A +==-°° , 2(6 2)s i n a A =+∴,

戴维南定理典型例子_戴维南定理解题方法

戴维南定理典型例子_戴维南定理解题方法 什么是戴维南定理戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。戴维南定理在多电源多回路的复杂直流电路分析中有重要应用。 戴维南定理(Thevenin‘stheorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。 和戴维南定理类似,有诺顿定理或亥姆霍兹-诺顿定理。按照这一定理,任何含源线性时不变二端网络均可等效为二端电流源,它的电流J等于在网络二端短路线中流过的电流,并联内阻抗同样等于看向网络的阻抗。这样,图1中的电流I(s)一般可按下式2计算(图

人教版高中数学,正弦定理(一)

人教版高中数学同步练习 第一章 解三角形 §1.1 正弦定理和余弦定理 1.1.1 正弦定理(一) 课时目标 1.熟记正弦定理的内容; 2.能够初步运用正弦定理解斜三角形. 1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2 . 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c =sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C ,这个比值是三角形外接圆的直径2R . 一、选择题 1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2 答案 D 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =b sin B , 得4sin 45°=b sin 60° ,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A 解析 sin 2A =sin 2B +sin 2C ?(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形. 4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A > B B .A sin B ?2R sin A >2R sin B ?a >b ?A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60°

电工基础 戴维宁定理

第三章复杂直流电路 ------戴维宁定理 一.填空 1.任何具有两个引出端的电路都称为网络,其中若包含电源的,称为网络。 2.运用戴维宁定理就能将任一个线性含源的简化为电源。这个电源的电 动势E O 等于,电源的内阻R O 等于。 3.任何具有的电路都可称为二端网络。若在这部分电路中含有,就可以称为有源二端网络。 4.戴维南定理指出:任何有源二端网络都可以用一个等效电压源来代替,电源的电动势等于二端网络的,其内阻等于有源两端网络内 二.选择 1.若某电源开路电压为120V,短路电流为2A,则负载从该电源获得的最大功率是() A.240 W B.60 W C.600 W 2.一有源二端网络,测得其开路电压为100V,短路电流为10A,当外接10Ω负载时,负载电流为()A。 A.5 B.10 C.20 3.用戴维南定理分析电路“输入电阻”时,应将内部的电动势()处理。 A.作开路 B.作短路 C.不进行 D.以上答案都不正确 三.是非判断 1.利用戴维南定理解题时有源二端网络必须是线性的,待求支路可以是非线性的。 四.求下列二端网络的开路电压E O 及等效电阻R O (求出电源的E O 和R O 并画出电源) 1. 2. 3.

五.计算 1.图示电路中,已知:U S =4V,I S =3A,R 1 =R 2 =1,R 3 =3,用戴维宁定理求电流I。 2.图示电路中,已知:U S =24V,I S =4A,R 1 =6,R 2 =3,R 3 =4,R 4 =2,用戴维宁定理求电流 I 3.用戴维南定理计算图中的支路电流I 3 4.用戴维南定理求下图所示电路中的电流I 5.电路如图 2-52所示,已知电源电动势E 1 =12V,E 2 =2V,电源内阻不计,电阻R 1 =R 2 =R 6 =5Ω,R 3 =1Ω,R 4 =10Ω,R 5 =5Ω。试用戴维宁定理求通过电阻R3的电流。

巧用三余弦定理解题教程文件

巧用三余弦定理解题

A O P α l B A O 1θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设 21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结 论:21cos cos cos θθθ ?=.我们可以形象地把这个结论称为“三余弦定理”, 应用“三余弦定理”可以使我们的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三余弦定理”求解.解题过程略.

略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP, 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. 分析:直线BA 1是平面BCC 1B 1的斜线,BB 1是射影,EF 为“内线”,这样就明确是三线 , 再明确三角,然后定理计算即可. 解:由题意可知,直线BA 1是平面BCC1B1的斜线, BB1是BA 1在平面内的射影,EF 为平面内的直线, 所以BA 1与EF 所成的角为θ,111θ=∠BC A ,EF 与BB 1所成的角为2θ 图3 C 1 A B C D A 1 B 1 D 1 F E

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

余弦定理知识点总结与复习

余弦定理 教师:lihao (1)语言叙述 三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍 . (2)公式表达 2a = 2b = 2c = c2= 思路点拨:由题目可获取以下主要信息:①已知三边比例; ②求三角形的三内角. 解答本题可应用余弦定理求出三个角 [题后感悟] 此题为“已知三边,求三角形的三个角”类型问题,基本解法是先利用余弦定理的推论求一个角的余弦,再判定此角的取值,求得第一个角,再用正弦定理求出另一个角,最后用三角形内角和定理,求出第三个角(一般地,先求最小角,再求最大角) 已知△ABC 中,a ∶b ∶c =2∶6∶(3+1),求△ABC 各角的度数. [解题过程] ∵a ∶b ∶c =2∶6∶(3+1), ∴令a =2k ,b =6k ,c =(3+1)k . 由余弦定理,有 cos A =b 2+c 2-a 22bc =6+(3+1)2-426×(3+1)=22, ∴A =45°. cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1) =12, ∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.

1.在△ABC 中,已知a =26,b =6+23,c =43,求角A ,B ,C . 解析: 在△ABC 中,由余弦定理得, cos C =a 2+b 2-c 22ab =(26)2-(6+23)2-(43)2 2×26×(6+23) =24(3+1)242(3+1) =22. ∴C =45°,sin C =22. 由正弦定理得:sin A =a sin C c =26×2243 =12. ∵a

巧用三余弦定理解题

A O P α l B A O 1 θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结论: 21cos cos cos θθθ?=.我们可以形象地把这个结 论称为“三余弦定理”,应用“三余弦定理”可以使我们 的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例 1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三 余弦定理”求解.解题过程略. 略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP , 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成 为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. C 1 A B C D A 1 B 1 D 1 F E

1.《戴维宁定理》教学设计

《戴维宁定理》 一、教材分析 “戴维宁定理”是《电工基础》中“直流电路分析”一章的重点内容之一,它是简化复杂电路的重要方法,特别适用于求解复杂网络内部某一支路中电流或电压,而且也是直流电路分析中的一个普遍实用的重要定理和方法。对学生来讲,它是本章的重点之一,也是难点之一。因此,本节课的内容是至关重要的,它对直流电路分析起到了变难为易的作用。 二、教学目标 1.知识目标: 理解戴维宁定理的内容;掌握用戴维宁定理求解某一条支路的步骤,并能熟练应用到实际电路中。 2.能力目标: 通过戴维宁定理的教学,培养学生观察、猜想、归纳问题的能力,分析电路的能力,调动学生探求新知的积极性。 3.情感目标: 通过戴维宁定理的学习,使学生学会处理复杂问题时所采用的一种化繁为简(变难为易)的思想.培养学生从实践、实验出发勇于探索的科学精神。 三、教学重点和难点 教学重点: 1、戴维宁定理的内容及应用。 2、应用戴维宁定理如何将复杂的含源二端网络等效化简为一个电压源和一个电阻相串联。 教学难点: 应用戴维宁定理解题时如何具体计算含源二端网络的开路电压。 四、教学方法 为了实现本节课的教学目标,在教法上我采取: 1、启发式教学、形象直观式教学 为了充分调动学生学习此内容的积极性,使学生变被动为主动的愉快的学习,我正确处理好主导与主体的关系,启发式教学始终贯穿于始终,通过师生间的一系列互动活动,如提问与回答,讲授与思考,口述与板书等,从复习旧课,到提出问题,由旧到新,由浅入深,循序渐进,将学生的学习积极性充分调动起来,充分发挥学生的主体作用,让他们在愉快的氛围中接受知识和技能。 2、采用演示实验,提高教学效率和教学质量。 五、学习方法 1、让学生利用图形直观启迪思维,并通过典型例题的演示分析指导,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。 六、教学程序 (一)创设情景,揭示课题 问;复杂直流电路的分析方法有哪些各自的适用范围 答:支路电流法:适用于线性和非线性电路中求解各支路电流; 电压源与电流源的等效变换:适用于求解某一条支路的电流; 叠加定理:适用于线性电路中计算各支路电流和电压,不能用于计算功率。

高中数学正弦定理

正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等 式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则sin sin sin a b c c A B C === b c 从而在直角三角形ABC 中,sin sin sin a b c A B C == C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的 定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B (图1.1-3)

戴维宁定理七种例题

戴维宁定理例题 例1 运用戴维宁定理求下图所示电路中的电压U0 图1 剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。 (1)求开路电压U oc,电路如下图所示 由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V (2)求等效电阻R eq。上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。 法一:加压求流,电路如下图所示, 依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0′6/(6+3)=(2/3)I0(并联分流),所以U=9′(2/3)I0=6I0,R eq=U/I0=6Ω 法二:开路电压、短路电流。开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。在求解短路电流的进程中,独立源要保存。电路如下图所示。

依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω 终究,等效电路如下图所示 依据电路联接,得到 留心: 核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。戴维南定理典型例子 戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。

《电路分析》戴维南定理的解析与练习

《戴维南定理》习题练习 一、知识点 1、二端(一端口) 网络的概念: 二端网络:具有向外引出一对端子的电路或网络。 无源二端网络:二端网络中没有独立电源。 有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理 任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。如图所示: 等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后 a 、b两端之间的电压。 等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。

二、例题:应用戴维南定理解题 戴维南定理的解题步骤: 1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。 2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。 3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。 4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。 5.将待求支路接到等效电压源上,利用欧姆定律求电流。 【例1】电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。 解:(1) 断开待求支路求开路电压 U OC U OC = U 2 + I R 2 = 20 +2.5 ? 4 = 30V 或: U OC = U 1 – I R 1 = 40 –2.5 ? 4 = 30V U OC 也可用叠加原理等其它方法求。 (2) 求等效电阻R 0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) (3) 画出等效电路求电流I 3 A 5.24420402121 =+-=+-=R R U U I Ω=+?=22 1210R R R R R A 213 23030OC 3=+=+=R R U I

高考数学正弦定理知识点总结

高考数学正弦定理知识点总结 高中数学正弦定理知识点总结一 正弦定理的应用领域 在解三角形中,有以下的应用领域: 1已知三角形的两角与一边,解三角形 2已知三角形的两边和其中一边所对的角,解三角形 3运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R 其中R为三角形外接圆的半径 正弦定理的变形公式 1 a=2RsinA, b=2RsinB, c=2RsinC; 2 sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 3相关结论:a/sinA=b/sinB=c/sinC=a+b/sinA+sinB=a+b+c/sinA+sinB+sinC c/sinC=c/sinD=BD=2RR为外接圆半径 4设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA 5a=bsinA/sinB sinB=bsinA/a 高中数学正弦定理知识点总结二 一、正弦定理变形的应用 1.2021山东威海高二期中,4已知△ABC的三个内角之比为AB∶C=3∶2∶1,那么对应的三边之比ab∶c等于

余弦定理教学案例分析

高中数学教学中的“情境.问题.反思.应用”----“余弦定理”教学案例分析 作者:王兵发布日期:2007-11-1 [摘要]:辩证唯物主义认识论、现代数学观和建构主义教学观与学习观指导下的“情境.问题.反思.应用”教学实验,旨在培养学生的数学问题意识,养成从数学的角度发现和提出问题、形成独立思考的习惯,提高学生解决数学问题的能力,增强学生的创新意识和实践能力。创设数学情境是前提,提出问题是重点,解决问题是核心,应用数学知识是目的,因此所设情境要符合学生的“最近发展区”。“余弦定理”具有一定广泛的应用价值,教学中我们从实际需要出发创设情境。 [关键词]:余弦定理;解三角形;数学情境 一、教学设计 1、教学背景 在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题。这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在2003级进行了“创设数学情境与提出数学问题”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。 2、教材分析 “余弦定理”是全日制普通高级中学教科书(试验修订本?必修)数学第一册(下)的第五章第九节的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。 3、设计思路 建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生

戴维南定理的解析与练习

戴维宁定理 一、知识点: 1、二端(一端口) 网络的概念: 二端网络:具有向外引出一对端子的电路或网络。 无源二端网络:二端网络中没有独立电源。 有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理 任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。如图所示:

等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。 等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。 2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。 3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。 4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。 5.将待求支路接到等效电压源上,利用欧姆定律求电流。 例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。 解:(1) 断开待求支路求开路电压U OC U OC = U 2 + I R 2 = 20 +2.5 ? 4 = 30V 或: U OC = U 1 – I R 1 = 40 –2.5 ? 4 = 30V U OC 也可用叠加原理等其它方法求。 (2) 求等效电阻R 0 将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替) (3) 画出等效电路求电流I 3 A 5.24420 402121 =+-=+-=R R U U I Ω=+?=22 1210R R R R R A 213 2303 0OC 3=+= += R R U I

正余弦定理的应用举例教案

1.2正弦定理余弦定理的应用举例 教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤

(二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维 品质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

相关主题
文本预览
相关文档 最新文档