当前位置:文档之家› 非常好的运算放大器基础

非常好的运算放大器基础

非常好的运算放大器基础
非常好的运算放大器基础

非常好的运算放大器基础

作者:嵌入式玩耍者

1.一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢?(1) 为芯片内部的晶体管提供一个合适的静态偏置。

芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地

线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分

析。

(2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,

这也是其得名的原因。

2.同相比例运算放大器,在反馈电阻上并一个电容的作用是什么??

(1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。

(2)防止自激。

3.运算放大器同相放大电路如果不接平衡电阻有什么后果?

(1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。

4.在运算放大器输入端上拉电容,下拉电阻能起到什么作用??

(1)是为了获得正反馈和负反馈的问题,这要看具体连接。比如我把现在输入电压信号,输出电

压信号,再在输出端取出一根线连到输入段,那么由于上面的那个电阻,部分输出信号通过该电

阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。因为信

号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。

5.运算放大器接成积分器,在积分电容的两端并联电阻RF 的作用是什么?

(1) 泄放电阻,用于防止输出电压失控。

6.为什么一般都在运算放大器输入端串联电阻和电容?

(1)如果你熟悉运算放大器的内部电路的话,你会知道,不论什么运算放大器都是由几个几个晶

体管或是MOS 管组成。在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时

候,会输出近似于正电压的电平,反之也一样……但这样运放似乎没有什么太大的用处,只有在

外接电路的时候,构成反馈形式,才会使运放有放大,翻转等功能……

7.运算放大器同相放大电路如果平衡电阻不对有什么后果?

(1)同相反相端不平衡,输入为0 时也会有输出,输入信号时输出值总比理论输出值大(或小)

一个固定的数。

(2)输入偏置电流引起的误差不能被消除。

8.理想集成运算放大器的放大倍数是多少输入阻抗是多少其同相输入端和反相输入端之间

的电

压是多少?

(1) 放大倍数是无穷大,输入阻抗是无穷小,同向输入和反向输入之间电压几乎相同(不是0

哦!!!比如同向端为10V,反向端为9.999999V),刚考完电工,还记得!

9.请问,为什么理想运算放大器的开环增益为无限大?

(1)实际的运放开环增益达到10 万以上,非常非常大所以把实际运算放大器理的开环增益想化为

无穷大,并由此导出虚地。

(2)导出虚地只是针对反相放大器而言吧。

我在书上看见:运算放大器的开环增益无穷大,可以使得我们在设计电路的时候,闭环增益可以不受开环增益的限制,而仅仅取决于外部元件。就是牺牲大的开环增益换取闭环增益的稳

定性。

(3)导出虚地是针对运放在负反馈接法时不仅仅是反相放大器;正反馈时没有虚地。

(4)很好理解假设增益很小, 则,对于一个输出电压,加在运放两端的电压的差值相对较大,如果

接成负反馈状态,就会带来运放两端的电压的不一致,从而引起放大的误差。

(5)运放―虚短‖的实现有两个条件:

1 ) 运放的开环增益A 要足够大;

2 ) 要有负反馈电路。

先谈第一点,我们知道,运放的输出电压Vo 等于正相输入端电压与反相输入端电压之差Vid 乘以运放的开环增益A。即 Vo = Vid * A = (VI+ - VI-) * A ( 1 )

由于在实际中运放的输出电压不会超过电源电压,是一个有限的值。在这种情况下,如果A 很大,(VI+ - VI-)就必然很小;如果(VI+ - VI-) 小到某程度,那么我们实际上可以将其看作0,这个时候就会有VI+ = VI-,即运放的同相输入端的电压与反相输入端的电压相等,好像连

在一起一样,这我们称为―虚短路‖。注意它们并未真正连在一起,而且它们之间还有电阻,这一点一定要牢记。

在上面的讨论中,我们是怎样得到―虚短‖的结果的呢?

我们的出发点是公式 ( 1 ) ,它是运放的特性,是没有问题的,我们可以放心。然后,我

们作了两个重要的假设,一个是运放的输出电压大小有限,这没有问题,运放输出当然不会超过

电源,因此这个假设绝对成立,所以以后我们就不提了。第二个是说运放开环增益A 很大。普

通运放的A 通常都达10 的6、7 次方甚至更高,这个假设一般没问题,但不要忘记,运放的实际

开环增益还与其工作状态有关,离开了线性区,A 就不一定大了,所以,这第二个假设是有条件

的,我们也先记住这一点。

因此我们知道,当运放的开环增益A 很大时,运放可以有―虚短‖。但这只是可能性,不

是自动就实现的,随便拿一个运放说它的两个输入端是―虚短‖没有人会相信。―虚短‖要在特定的电路中才能实现。

请先看图1 的电路,如果我们将反相输入端IN-的电平固定,比如在0V,在同相输入端IN+ 加一个固定电压V1,并取V1 = 1mV,设运放的A = 10**6。这样,按照公式( 1 ) ,运放的输

出电压Vo 应该为 Vo = A * ( V1 – 0 ) = 1000000 * 1 /1000 = 1000 (V)

显然,Vo 到不了1000V,它上升不到VCC 运放就饱和了,A 也不再是1000000 了,上面的计

算完全不成立,输出电压停止在比VCC 略小的数值上。

这种是没有负反馈的情况,比较器就工作在这种情况,―虚短‖在这里不存在,两个输入

段之间的电压差是1mV。

如果我们加上负反馈电路,如图2 所示,即将输出电压Vo 的一部分反送到运放的反相输入端。初始时V1 = 0,Vo = 0,反相输入端的电压也是0。然后我们同样将V1 调为1mV,在V1 调

高这一瞬间,(VI+ - VI-) = 1mV,运放受到这样一个正输入电压,其输出电压马上上升。由于

有负反馈,VI- = Vo * R1 / (R1 + Rf) 也跟着上升,从而使得(VI+ - VI-)变小,这一小,Vo 上升就变慢。最后,当Vo 上升到一个值,使得VI- = VI+ = V1,即(VI+ - VI-) = 0,这时Vo

就不动了,而运放的两个输入端就处于―虚短‖状态。可以看出,―虚短‖所以得以实现是由于有负反馈使VI- 逼近VI+的缘故。

所以―虚短‖存在的条件是:

1 ) 运放的开环增益A 要足够大;

2 ) 要有负反馈电路。

明白了―虚短‖得条件后我们就很容易判断什么时候能什么时候不能用―虚短‖作电路

分析了。在实际上,条件( 1 ) 对绝大多数运放都是成立的,关键要看工作区域。如果是书上的

电路,通过计算判断;如果是实际电路,用仪器量运放输出电压是否合理即可知道。

与―虚短‖相关的还有一种情况叫―虚地‖,就是有一个输入端接地时的―虚短‖,不

是新情况。有些书上说要深度负反馈条件下才能用―虚短‖,我觉得这不准确,我认为这样说

的潜思考是,在深度负反馈的情况下运放更可能工作在线性区。但这不是绝对的,输入信号太大

时,深度负反馈的运放照样进入饱和。所以,应该以输出电压值判断最可靠。

10. 将输入信号直接加到同相输入端,反相输入端通过电阻接地,为什么U_ = U+ =Ui≠0?不是

虚地吗?

问题补充:构成虚短要满足一定的条件。那构成虚地也要满足一定的条件?是什么?为什么?

(1) 在同相放大电路中,输出通过反馈的作用,使得U(+)自动的跟踪U(-),这样U(+)-U

(-)就会接近于0。好像两端短路,所以称―虚短‖。(2)由于虚短现象和运放的输入电阻很高,因而流经运放两个输入端的电流很小,接近于0,这个现象叫―虚断‖(虚断是虚短派生

的,不要以为两者矛盾)(3)虚地是在反相运放电路中的,(+)端接地,(-)接输入和反

馈网

络。由于虚短的存在,U(-)和U(+)[电位等于0]很接近,所以称(-)端虚假接地——―虚地‖(4)关于条件:虚短是同相放大电路闭环(简单说就是有反馈)工作状态的重要特征,虚

地是反相放大电路在闭环工作状态下的重要特征。注意理解虚短的条件(如―接近相等‖),应该就ok 。

11.总觉得运算放大器这个模型有点蹊跷,首先就是―虚短‖,因为―虚短‖,当运算放大器接成同相放大器时,两输入端的电位是相同的,这时如果测量输入端的波形,将是同样的,这就

好比是共模信号,其实,在两输入端上还是有微小的差模信号,只是一般仪器测不出来,可是,

这样一来,由于―虚短‖就人为(因为虚短是深度负反馈的结果,是人为的)的增大了两输入端

的共模信号,这样就对运算放大器的性能构成挑战。为什么运算放大器要这么使用?

(1)同相放大器的共模信号比反相放大器大得多对共模抑制比要求高。

(2)我对―同、反相两种放大器的共模信号抑制能力‖的看法运放共模信号抑制比的优劣(db 值)主要取决于运放内部(仅仅是内部)差动放大器的对称程度及增益。这很明显,没有任何运

放提供其共模抑制比的同时,附加了外部电路的结构条件。

对于单端输入,无论是同相还是反相,其等效共模值均是输入值的一半。但因同相放大的输入阻抗通常大于反相放大,其抗干扰的能力当然差些。

如前述,反相输入时,反相端电压几乎为零,所以差分对管集电极电压只有一管变化。同相输入时,反相端的电压和同相端电压相等,故共模电压和输入电压等值!也就是说所以差分对管

集电极电压除了有两管有同时朝不同方向变化的部分外还有朝同方向变化的量,这就是共模输

出电压。它和其中某一管的电压是同相相加的。因此容易导致该管趋于饱和(或者截止),所幸

共模电压的放大只是差模放大倍数的数万分之一。

上面所述,并不说明该放大器的差模输入和共模输入的共模抑制抑制比不同!应该是同相输入会附加一个与输入量等值的共模信号!因此对于输入信号较大时要慎用同相放大模式。12 为什么运放一般要反比例放大?

反相输入法与同相输入法的重大区别是:

反相输入法,由于在同相端接一个平衡电阻到地,而在这个电阻上是没有电流的(因为运算放大器的输入电阻极大),所以这个同相端就近似等于地电位,称为―虚地‖,而反相端与同

相端的电位是极接近的,所以,在反相端也存在―虚地‖。有虚地的好处是,不存在共模输入信

号,即使这个运算放大器的共模抑制比不高,也保证没有共模输出。

而同相输入接法,是没有―虚地‖的,当使用单端输入信号时,就会产生共模输入信号,即

使使用高共模抑制比的运算放大器,也还是会有共模输出的。

所以,一般在使用时,都会尽量采用反相输入接法。

13.有的运放上电后即使不输入任何电压也会有输出,而且输出还不小,所以经常用

VCC/2 作为

参考电压。我这样说对不对?还有这应该是什么参数?还有选择运放应该注意哪些参数?望指

教!

(1)运放在没有任何输入的情况下有输出,是由运放本身的设计结构不对称造成的,即产生了我

们常说的输入失调电压Vos,它是运放的一个很重要的性能参数。

运放常用VCC/2 作为参考电压是因为该运放处在单电源工作状态下,在此时运放真正的参考是VCC/2,故常在运放正端提供一个VCC/2 的直流偏置,在正负双电源供电时还是常以地为参

考的。

运放的选择需注意很多事项,在不是很严格的条件下,常需考虑运放的工作电压、输出电流、功

耗、增益带宽积、价格等。当然,当运放在特殊条件下使用时,还需考虑不同的影响因子。

14.为什么由运算放大器组成的放大电路一般都采样反相输入方式?

(1)反相输入法与同相输入法的重大区别是:

反相输入法,由于在同相端接一个平衡电阻到地,而在这个电阻上是没有电流的(因为运算放大器的输入电阻极大),所以这个同相端就近似等于地电位,称为―虚地‖,而反相端与同

相端的电位是极接近的,所以,在反相端也存在―虚地‖。有虚地的好处是,不存在共模输入信

号,即使这个运算放大器的共模抑制比不高,也保证没有共模输出。

而同相输入接法,是没有―虚地‖的,当使用单端输入信号时,就会产生共模输入信号,即使使用高共模抑制比的运算放大器,也还是会有共模输出的。

所以,一般在使用时,都会尽量采用反相输入接法。

(2)正相是振荡器,反相才能稳定放大器,接入负反馈

(3)从原理上看,接成同相比例放大电路是可以的。

但实际应用时被放大的信号(也就是差模信号)往往很小,此时就要注意抑制噪声(通常表现为共模信号)。而同相比例放大电路对共模信号的抑制能力很差,需要放大的信号会被淹没

在噪声中,不利于后期处理。所以一般选择抑制能力较好的反相比例放大电路。

15. 运放的重要特性?

(1)如果运放两个输入端上的电压均为0V,则输出端电压也应该等于0V。但事实上,输出端总有

一些电压,该电压称为失调电压VOS。如果将输出端的失调电压除以电路的噪声增益,得到结果

称为输入失调电压或输入参考失调电压。这个特性在数据表中通常以VOS 给出。VOS 被等效成

一个与运放反相输入端串联的电压源。必须对放大器的两个输入端施加差分电压,以产生0V

输出。

(2)理想运放的输入阻抗无穷大,因此不会有电流流入输入端。但是,在输入级中使用双极结晶

体管(BJT)的真实运放需要一些工作电流,该电流称为偏置电流(IB)。通常有两个偏置电流:

IB+

和IB-,它们分别流入两个输入端。IB 值的范围很大,特殊类型运放的偏置电流低至 60fA(大约

每3μs通过一个电子),而一些高速运放的偏置电流可高达几十mA。

(3)第一款单片运放正常工作所需的电源电压范围为±15V。如今,由于电路速度的提高和采用

低功率电源(如电池)供电,运放的电源正在向低电压方向发展。

尽管运放的电压规格通常被指定为对称的两极电压 (如±15 V),但是这些电压却不一定要求是对称电压或两极电压。对运放而言,只要输入端被偏置在有源区域内(即在共模电压范围内),

那么±15V 的电源就相当于+30V/0V 电源,或者+20V/–10V 电源。运放没有接地引脚,除非在

单电源供电应用中把负电压轨接地。运放电路的任何器件都不需要接地。

高速电路的输入电压摆幅小于低速器件。器件的速度越高,其几何形状就越小,这意味着击穿电压就越低。由于击穿电压较低,器件就必须工作在较低电源电压下。

如今,运放的击穿电压一般为±7V 左右,因此高速运放的电源电压一般为±5V,它们也能工作在+5V 的单电源电压下。

对通用运放来说,电源电压可以低至+1.8V。这类运放由单电源供电,但这不一定意味必须采用低电源电压。单电源电压和低电压这两个术语是两个相关而独立的概念。

16.运算放大器的放大原理是什么?

运算放大器核心是一个差动放大器。

就是两个三极管背靠背连着。共同分担一个横流源的电流。三极管一个是运放的正向输入,一个是反向输入。正向输入的三极管放大后送到一个功率放大电路放大输出。

这样,如果正向输入端的电压升高,那么输出自然也变大了。如果反相输入端电压升高,因为反相三级管和正向三级管共同分担了一个恒流源。反向三级管电流大了,那正向的就要小,

所以输出就会降低。因此叫反向输入。

当然,电路内部还有很多其它的功能部件,但核心就是这样的

17:在组成运算放大器时,为什么两个输入端的外电路直流电阻必须相等

使两路输入阻抗相等,因为三极管是电流驱动,防止在相等的共模输入电压下由于电阻不同产生的输入电流不同被当成差模信号被放大。

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

差分运算放大器基本知识

一.差分信号的特点: 图1 差分信号 1.差分信号是一对幅度相同,相位相反的信号。差分信号会以一个共模信号 V ocm 为中心,如图1所示。差分信号包含差模信号和公模信号两个部分, 差模与公模的定义分别为:Vdiff=(V out+-V out- )/2,Vocm=(V out+ +V out- )/2。 2.差分信号的摆幅是单端信号的两倍。如图1,绿色表示的是单端信号的摆 幅,而蓝色表示的是差分信号的摆幅。所以在同样电源电压供电条件下,使用差分信号增大了系统的动态范围。 3.差分信号可以抑制共模噪声,提高系统的信噪比。In a differential system, keeping the transport wires as close as possible to one another makes the noise coupled into the conductors appear as a common-mode voltage. Noise that is common to the power supplies will also appear as a common-mode voltage. Since the differential amplifier rejects common-mode voltages, the system is more immune to external noise. 4.差分信号可以抑制偶次谐波,提高系统的总谐波失真性能。 Differential systems provide increased immunity to external noise, reduced even-order harmonics, and twice the dynamic range when compared to signal-ended system. 二.分析差分放大器电路 图2.差分放大器电路分析图

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

运算放大器基础

运算放大器核心是一个差动放大器。 就是两个三极管背靠背连着。共同分担一个横流源的电流。三极管一个是运放的 正向输入,一个是反向输入。正向输入的三极管放大后送到一个功率放大电路放 大输出。 这样,如果正向输入端的电压升高,那么输出自然也变大了。如果反相输入端电 压升高,因为反相三级管和正向三级管共同分担了一个恒流源。反向三级管电流 大了,那正向的就要小,所以输出就会降低。因此叫反向输入。 当然,电路内部还有很多其它的功能部件,但核心就是这样的。 数字电路即为TTL或C-MOS逻辑电路,而谈到模拟电路,首先就应想到运算放大器。但是,这里讲的运算放大器是怎样一个器件呢? 简而言之,运算放大器是具有两个输入端,一个输出端,以极大的放大率将两输入端之间的电压放大之后,传递到输出端的一种放大器。 如果以电路符号来表示运算放大器,则如 右图,可表示为三角形。它的两个输入部分分 别叫做非倒相输入(1N+)和倒相输入(IN-)。 它以极大的放大率将倒相输入端与非倒相输 人端之间的电压放大,然后从输出端(OUT)输 出。 模拟/zh2002202 发表于2007-04-09, 14:09 1.“虚断”和“虚短”概念 如果为了简化包含有运算放大器的电子电路,总是假设运算放大器是理想的,这样就有“虚短”和“虚断”概念。 “虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。虚短的必要条件是运放引入深度负反馈。 “虚断”是指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开 路,称为“虚断”。 2.集成运算放大器线性应用电路 集成运算放大器实际上是高增益直耦多级放大电路,它实现线性应用的必要条件是引入深度负反馈。此时,运放本身工作在线性区,两输入端的电压与输出电压成线 性关系,各种基本运算电路就是由集成运放加上不同的输入回路和反馈回路构成。 在分析由运放构成的各种基本运算电路时,一定要抓住不同的输入方式(同相或反相)和负反馈这两个基本点。 3.有源滤波电路

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

集成运放大器的基础知识

课题集成运放大器的基础知识所属章节第三章:集成运算放大器 教学目的1、了解集成运放的组成的符号 2、掌握理想运放的两个重要结论 教学重点1、运算放大器的组成 2、运算放大器的电路符号 3、运算放大器的主要参数 4、理想运算放大器 教学方法讲授法、多媒体课件教学 课题引入 集成运算放大器最早应用于模拟计算机中,如完成加法、减法等数学运算。而今主要有来完成信号的产生、转换、处理等,集成运算放大器已得到广泛应用。 授课内容 一、集成运算放大器的组成及符号 集成运算放大器实质上是一种双端输入、单端输出,具有高增益,高输入阻抗、低输出阻抗的多极直接耦合放大电路。 1、电路组成 集成运放内部组成框图如图所示。 ①输入级 输入级又称前置级,它往往是一个双端输入的高性能差分放大电路。一般要求其输入电阻高,差模放大倍数大,抑制共模信号的能力强,静态电流小。 ②中间级 中间级是整个放大电路的主要放大电路。其作用是使集成运放具有较强的放大能力,多采用共射(或共源)放大电路。而且为了提高电压放大倍数,经常采用复合管做放大管,以恒流源作集电极负载。其电压放大倍数可达千倍以上。 ③输出级 输出级具有输出电压线性范围宽,输出电阻小(即带负载能力强),非线性失真小等优点。多采用互补对称发射极输出电路。 ④偏置电路 偏置电路用于设置集成运放各级放大电路的静态工作点。与分 授课内容立元件不同,集成运放多采用电流源电路为各级提供合适的集电

极(或发射极、漏极)静态工作电流,从而确定了合适的静态工作点。 2、电路符号 旧标准新标准 二、集成运放的主要参数 1、开环差模电压放大倍数Avd 在集成运放无外加反馈时的直流差模放大倍数称为开环差模电压放大倍数。 2、共模抑制比K CMR 共模抑制比等于差模放大倍数与共模放大倍数之比的绝对值, 3、差模输入电阻R id 集成运放在输入差模信号时的输入电阻。 4、输出电阻Ro 集成运放开环状态下的输出电阻。 5、输入失调电压v IO 理想集成运放,当输入为零时,输出也为零。但实际集成运放的差分输入级不易做到完全对称,在输入为零时,输出电压可能不为零。为使其输出为零,人为的在输入端加一补偿电压,称此补偿电压为输入失调电压,用v IO表示。 6、输入失调电流I IO 集成运放在常温下,当输出电压为零时,两输入端的静态电流之差,称为输入失调电流,用I IO表示, 三、理想集成运算放大器 理想运算放大器的条件: 1、开环差模增益(放大倍数)A vd=∞; 2、差模输入电阻R id =∞; 3、输出电阻Ro=0; 4、共模抑制比K CMR=∞; 两条重要结论: ①理想集成运放两输入端的净输入电压等于零。即 v i =v N -v P =0 v N =v P, 通常称为“虚短”。 ②理想集成运放的两输入端电流均为零。即 i N -i P =0,通常称为“虚断” 。 课堂练习1、集成运放电路是一种高增益的放大器,它的内部电

运算放大器技术合集:运放工作原理、基础及经典电路分析

运算放大器技术合集:运放工作原理、基础及经典电路分析 一、入门篇:运算放大器的工作原理、基础 *运算放大器的工作原理 运算放大器具有两个输入端和一个输出端,如图1-1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输人端的信号同相,而与反相输入端的信号反相。 运算放大器所接的电源可以是单电源的,也可以是双电源的,如图1-2所示。运算放大器有一些非常有意思的特性,灵活应用这些特性可以获得很多独特的用途,总的来说,这些特性可以综合为两条: 1、运算放大器的放大倍数为无穷大。 2、运算放大器的输入电阻为无穷大,输出电阻为零。 现在我们来简单地看看由于上面的两个特性可以得到一些什么样的结论。 首先,运算放大器的放大倍数为无穷大,所以只要它的输入端的输入电压不为零,输出端就会有与正的或负的电源一样高的输出电压本来应该是无穷高的输出电压,但受到电源电压的限制。准确地说,如果同相输入端输入的电压比反相输入端输入的电压高,哪怕只高极小的一点,运算放大器的输出端就会输出一个与正电源电压相同的电压;反之,如果反相输入端输入的电压比同相输人端输入的电压高,运算放大器的输出端就会输出一个与负电源电压相同的电压(如果运算放大器用的是单电源,则输出电压为零)。 其次,由于放大倍数为无穷大,所以不能将运算放大器直接用来做放大器用,必须要将输出的信号反馈到反相输入端(称为负反馈)来降低它的放大倍数。如图1-3中左图所示,R1的

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

几种常用集成运算放大器的性能参数

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运算放大器基本应用

东南大学电工电子实验中心 实验报告 课程名称:电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化 姓名:周晓慧学号:61010212 实验室: 105实验组别: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:

实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念; 5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。

2、 设计一个反相比例放大器,要求:|A V |=10,Ri>10K Ω,将设计过程记录在预习报告上; (1) 仿真原理图 (2) 参数选择计算 因为要求|A v |=10,即|V 0/V i |= |-R f /R 1|=10,故取R f =10R 1,.又电阻应尽量大些,故取:R 1=10k Ω,Rk=100 k Ω, R L =10 k Ω (3) 仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知|V 0/V i |=9.77≈10,仿真正确。 3、 设计一个电路满足运算关系U O = -2U i1 + 3U i2

实验 集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

运算放大器基本电路——11个经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB 以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

集成运算放大器的基本应用

江西省电子信息技师学院 实验一:集成运算放大器的基本应用 一、实验目的 1、学习软件ISIS的使用方法。 2、学习集成运算放大器的基本应用设计。 二、软件使用有关说明 1、运行ISIS软件 2、界面熟悉 3、软件操作: (1)原理图放大和缩小:使用工具栏中的放大、缩小按钮;或采用鼠标滚轮来操作。

(2)删除一个元件或者连线:鼠标右键连续点两次目标。 (3)添加一个元件到原理图:选择DEVICE栏上的“P”按钮,找到元件作在的库,双击目标(object)内的元件名字,则可加入到待选栏里面。以后选择元件就在待选栏中鼠标左键单击一个元件名,在原理图区中鼠标左键单击则可加一个元件到原理图上。 (4)连线:如果要将两个元件连接起来,按如下操作 (5)添加节点: (6)修改元件参数:右键单击一个元件,变成红色后,左键单击即可出现属性框以修改相应属性。 三、实验原理 集成运算放大器可以作为一个器件构成各种基本功能的电路。这些基本电路又可以作为单元电路组成电子应用电路。 1.反相放大器 反相放大器是最基本的电路,如下图所示。

其闭环电压增益为: 输入电阻R i= R1 输出电阻R o≈ 0 平衡电阻R p = R1∥R F 反馈电阻R F值不能太大,否则会产生较大的噪声及漂移。取值应远大于信号源V i的内阻。若R F= R1则为反相器,可作为信号的极性转换电路。 2、同相放大器 同相放大器也是最基本的电路.如下图所示。 其闭环电压增益为: 输入电阻R i=R IC 式中,R IC——运放本身同相端对地的共模输入电阻.一般为108Ω。 输出电阻R o≈ 0 平衡电阻R p = R1∥R F 同相放大器具有输入阻抗非常高,输出阻抗很低的特点.广泛用于前置放大级。 若R F= 0,R1≈∞ (开路),则为电压跟随器。与晶体管电压跟随器(射极输出器)相比.集成运放的电压跟随器的输入阻抗更高.几乎不从信号源吸取电流;输出阻抗更小,可视作电压源,是较理想的阻抗变换器(跟随器)。 3.加法器 基本的加法器电路如下图所示。

相关主题
文本预览
相关文档 最新文档