当前位置:文档之家› 纳米杀菌材料项目分析

纳米杀菌材料项目分析

纳米杀菌材料项目分析
纳米杀菌材料项目分析

纳米杀菌材料

1 基本介绍

纳米杀菌材料是将抗菌剂通过一定的方法和技术制成纳米级杀菌剂,再与杀菌载体通过一定的方法和技术制备而成的具有杀菌功能的材料。纳米杀菌材料的核心是纳米杀菌剂。

纳米杀菌剂大体上可以分为无机系、有机系和天然生物系三类。天然系杀菌剂目前尚不能实现大规模市场化生产;无机系杀菌剂以银系杀菌剂为主导;有机系以吡啶盐、四价铵盐和乙醇等主要成分。目前最为广泛的是耐热性好、抗菌谱广、有效期长的无机抗菌剂。

纳米杀菌材料是近年研发的一类新型保健抗菌材料。纳米杀菌材料在日常的纤维服装,家用电器,卫生陶瓷制品,食品包装以及建筑用的钢板、涂料等领域,其中26%用于家居用品,20%用于家庭纤维制品,16%用于厨具和餐具,15%用于衣物,6%用于家电用品,6%用于医疗用品,5%用于鞋和地毯等,2%用于文具,4%用于其它。

2 常用杀菌剂

2.1金属型纳米杀菌剂

以纳米银杀菌剂为代表。纳米银杀菌剂把具有杀菌作用的银离子通过溶胶-凝胶、离子交换等技术依附在纳米级的载体上,如SiO2、TiO2、磷酸复盐等,或者通过一定技术制成纳米银粉作为杀菌剂。

2.2 光催化型纳米抗菌剂

以纳米TiO2为代表,具有光催化性能的一类半导体无机材料。纳米TiO2主要基于光催化反应使有机物分解而具有抗菌、防臭效果的,在阳光尤其是在紫外线照射下能自行分解出自由移动的电子和带正电的空穴,形成空穴-电子对。

3 应用

纳米银杀菌剂是首先投入商业化使用的杀菌剂。光催化半导体纳米二氧化钛类杀菌剂是新一类杀菌剂。

应用:(1)纳米杀菌涂料(TiO2、ZnO及纳米载银杀菌材料等);

(2)纳米杀菌纤维;

(3)纳米杀菌塑料、纳米杀菌陶瓷(银系杀菌陶瓷及纳米TiO2杀菌陶瓷)、纳米杀菌玻璃、纳米杀菌金属制品等。

4 生产技术

4.1 纳米银杀菌剂

(1)纳米银制备方法

直接法(真空气体冷凝法、溅射法、激光高温燃烧法、机械研磨法)、间接法(还原法)、生物还原法(天然材料还原法、微生物体系法)。

(2)离子交换法和络合-被覆法

离子交换法用抗菌金属离子与载体中平衡电价作用的钠、钾、钙等阳离子相交换。该方法是目前最为常见的纳米抗菌材料制备方法,无机载体如架状硅酸盐、层状硅酸盐、磷酸盐等内部存在丰富空穴或孔道的矿物质均可。

(3)络合-被覆法通过抗菌金属离子与络合剂硫代硫酸钠等络合,然后用硅胶吸附带负电的络合金属离子或金属离子,最后用溶胶-凝胶法外涂覆二氧化硅获得抗菌产品。

(4)本体加入法以抗菌离子作为原料之一参与纳米级载体的纳米抗菌材料合成方法之一。该法主要应用于可溶性玻璃抗菌材料的制备,在成分设计时将抗菌金属离子的盐作为组成的一部分,按照玻璃的通常方法制备玻璃抗菌材料。

4.2纳米TiO2抗菌剂

(1)纳米TiO2制备方法

(I)气相法:气相化学反应、表面反应、均相成核、核凝结4个步骤。用于气相法制备TiO2的母体主要有TiCl4和醇钛盐两类,制备采用的途径包括TiCl4和O2氧化法、醇钛盐直接热裂解和醇钛盐气溶胶水解等。气相法制备TiO2粒径细小均匀,但产量低,成本高,常用于实验室制备,产业化较少。

(II)液相法:常用方法,以金属醇盐水解法和共沉淀为典型,其中共沉淀法是目前TiO2光催化型抗菌剂最经济、成本最低的制备方法之一。

(2)纳米TiO2薄膜

溶胶-凝胶法、化学气相沉积法(CVD)、自组装成膜法、电泳法和直接用活性二氧化钛粉末的简易成膜方法等。

5 生产企业

(1)舟山明日纳米材料有限公司

开发的纳米纳米复合银系抗菌粉末MFS350.,可广泛用于化纤、塑料用品、涂料、水处理、化妆品等领域。该公司还制备了新型的STK系列抗菌材料,用于涂料、塑料与化纤。

(2)上海维来新材料科技有限公司

该公司制成了高效、持久、广谱抗菌等特点的纳米抗菌系列产品,还开发了“好维来”六合一抗菌负离子环保乳胶漆。

纳米银抗菌剂、纳米银抗菌整理剂

(3)北京赛特瑞科技发展有限公司

纳米层状银系无机抗菌防霉母粒及系列纤维制品

(4)上海润河纳米材料科技有限公司

创建纳弗(NAFUR)品牌,在纳米银系无机抗菌剂、抗菌母粒、纳米银胶等。

(5)中科院江苏泰兴纳米材料厂

研发了以磷酸复盐为载体的银系无机抗菌剂,商品名为HN-300,粒径小于0.3微米(6)成都交大晶宇科技有限公司

以四针状氧化锌晶须为基础长效杀菌剂。

(7)国外

(I)国外抗菌剂使用的代表是日本,著名品牌有Zeomic、NOVAOR、

(II)美国APACIAER(载银羟基磷灰石)、WA291,银系抗菌剂。

(III)美国陶氏化学银离子纺织抗菌剂Silvadur ET

(IV)瑞士汽巴精细化学品公司的银系无机抗菌剂Ciba Irgaguard B5000

6 市场分析

6.1 市场需求

我国抗菌材料研发单位近30家,抗菌制品生产商300多家。2002年,我国抗菌剂产量300吨,抗菌制品总产值300亿元,2005年,年产抗菌剂500吨,抗菌剂超过400亿元。【源自2002年资料】

日本无机抗菌材料市场1994年为100t,96年250~260t,97年达400t,1999年达700t 左右。日本无机抗菌剂生产厂家已达100多家,抗菌剂年销售额超过280亿日元,抗菌制品年销售额6000亿日元。在欧美等国家抗菌产品市场容量约500亿美元。【源自2007年资料】6.2 市场价格

纳米银抗菌材料价格(2006年)

厂家名称粒径(nm)价格(元/吨)分类添加量(/吨)

乐凯丰元10-50 30000 胶银水0.5%

海尔科化20-30 80000 粉体0.67%

崇高纳米10-100 90000 粉体0.5% 450

中国银网1-100 1660000 胶银油性0.3% 南京海泰10-100 103000 粉体2% 2060 韩国价1-50 4565000 胶银水性0.2%

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

纳米材料研究方法

纳米材料研究方法 ——《材料研究方法》课程论文学院:机电工程学院 :王前聪 学号:201602044

纳米材料研究方法 摘要:本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 关键词:纳米材料分析方法表征 1前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下几种方法。

2 X射线衍射分析(XRD) X射线粉末衍射法的基本原理是:一束单色X射线碰击到研成细粉的样品上,在理想情况下,样品中晶体按各个可能的取向随机排列。在这样的粉末样品中,各种点阵面也以每个可能的取向存在。因此,对每套点阵面,至少有一些晶体的取向与入射束成Bragg角e,于是对这些晶体和晶面发生衍射。衍射束采用与图象记录仪相连的可移动检测仪Geiger,如计数器(衍射仪)检测,在记录纸上画出一系列峰。峰度位置和强度很容易从谱图上得到,从而使它成为物相分析的极为有用和快速的方法。 3光谱分析方法 3.1激光拉曼光谱分析(LR) 拉曼散射的过程涉及光的弹性散射和非弹性散射,当一束频率为n。的单色光照射到样品上时,都会发生散射现象,产生散射光,将产生弹性散射(Ray leighscattering)和非弹性散射(Raman scattering)。散射光的大部分具有与入射光(激发光)相同的频率,即散射光的光子能量与入射光的相同,这就是弹性散射,称为瑞利散射。当散射光的光子能量发生改变与入射光不同时,其频率高于和低于入射光即非弹性散射,称为拉曼散射。频率低于激发光的拉曼散射叫斯托克斯散射,频率高于激发光的拉曼散射叫反斯托克散射。其中Stokes线(v0一△v)与Anti-stokes线(v0+△v)对称分布在激发线(n0)。由于拉曼位移△、只取决于散射分子的结构而与v0无关,所以拉曼光谱可以作为分子振动能级的指纹光谱。拉曼位移△v(散射光

纳米材料的概述

“纳米材料”—开启微观世界之门 1.纳米材料及纳米技术 纳米技术界定为:在1nm~100nm尺度空间内研究电子、原子和分子运动规律和特性,通过直接操纵原子、分子或原子团和分子团使其形成所需要的物质的新技术。 纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。2.纳米材料的发展 人类对物质的认识分为两个层次:一个是宏观,另一个是微观。人们对宏观物质的研究已经很深人,研究的历史也较悠久。对于微观物质的研究,到20世纪60年代出现了团簇科学,成为凝聚态物理研究的热点。在团簇物理研究中,人们在团簇和亚微米体系之间又发现了一个十分令人注目的新体系,即纳米体系。这个体系通常研究的范畴为1~100nm,其中典型的代表是纳米粒子。由于纳米粒子的尺寸小、比表面积大和量子尺寸效应使其具有不同于常规固体的新特性,而成为材料科学、物理学和化学等学科的前沿焦点。 1959年著名的美国物理学家理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲,预言说:“我不怀疑,如果我们对物质微小规模上的排列加以某种控制的话,我们就能使物质得到大量的可能的特性。”虽然没有使用“纳米”这个词,但他实际上介绍了纳米技术的基本概念。1974年,日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer 发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1984年Gleiter 首次采用气体冷凝的方法,成功地制备了Fe纳米粉。随后,美国、西德和日本先后研制成纳米级粉体及块体材料。 1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使

纳米粉体材料行业分析报告行业基本情况

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.doczj.com/doc/961160484.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY,英文缩写为 CSMNT)是全国范围纳米行业的自律性管理组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上,政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有: 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016年6月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

无机纳米材料简介

无机纳米材料简介 无机纳米材料是纳米材料从物质的类别来划分出的一种纳米材料。指其组成的主体是无机物质。 无机纳米材料主要包括:纳米氧化物、纳米复合氧化物、纳米金属及合金,以及其他无机纳米材料。 一、纳米氧化物: 纳米氧化物指的是粒径达到纳米级的氧化物,比如纳米二氧化钛 (T25),纳米二氧化硅(SP30),纳米氧化锌(JE01),纳米氧化铝(L30),纳米氧化锆,纳米氧化铈,纳米氧化铁等等。 纳米氧化物的基本技术指标包含:粒径,含量,比表面积,pH, 以及一些金属成分的含量。 纳米氧化物在催化领域的应用 纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2(如VK-SP30)、CaCO3、TiO2(如VK-T25)、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。国际现在企业主要有杜邦,德固赛,国内的有杭州万景等企业生产纳米氧化物系列的产品。 2.1 石油化工催化领域 由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率

中国纳米材料行业发展前景与投资预测分析报告

【关键词】纳米材料行业 【报告来源】前瞻网 【报告内容】2013-2017年中国纳米材料行业发展前景与投资预测分析报告(百度报告名可查看最新资料及详细内容) 报告目录请查看《2013-2017年中国纳米材料行业发展前景与投资预测分析报告》 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构。目前,纳米材料广泛应用于化工、汽车、医药、机械、环保、纺织、航空航天等行业。随着中国对纳米材料行业发展的支持及化工、汽车、医药、机械、环保、纺织、航空航天等行业对纳米材料需求的不断增长,中国纳米材料行业前景看好。 伴随纳米材料行业规模的扩大,业内竞争日趋激烈,国内优秀的纳米材料企业愈来愈重视对行业市场的研究,特别是对产业发展环境和产品购买者的深入研究。正因为如此,一大批国内优秀的纳米材料品牌迅速崛起,逐渐成为纳米材料行业中的翘楚! 本报告利用前瞻资讯长期对纳米材料行业跟踪搜集的市场数据,全面而准确地为您从行业的整体高度来架构分析体系。本报告主要分析了纳米材料行业背景;全球纳米材料行业发展状况;中国纳米材料行业发展状况;纳米材料行业市场竞争情况;纳米材料细分产品市场发展状况;纳米材料主要应用领域分析;纳米材料行业领先企业分析;纳米材料行业投融资分析;同时,佐之以全行业近5年来全面详实的一手市场数据,让您全面、准确地把握整个纳米材料行业的市场走向和发展趋势,从而在竞争中赢得先机! 本报告最大的特点就是前瞻性和适时性。报告通过对大量一手市场调研数据的前瞻性分析,深入而客观地剖析中国当前纳米材料行业的总体市场容量、市场规模和竞争格局,并根据纳米材料行业的发展轨迹及多年的实践经验,对纳米材料行业未来的发展趋势做出审慎分析与预测。是纳米材料生产企业、研发企业、投资企业准确了解纳米材料行业当前最新发展动态,把握市场机会,做出正确经营决策和明确企业发展方向不可多得的精品。 报告目录请查看《2013-2017年中国纳米材料行业发展前景与投资预测分析报告》

纳米材料粒度分析

纳米材料粒度分析 一、实验原理 纳米颗粒材料(粒径<100nm )是纳米材料中最重要的一种,可广泛用于纳米复合材料制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。粒径(或粒度)是纳米颗粒材料的一个非常重要的指标。测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000个以上颗粒的粒径)方法来得到颗粒粒径,比较烦琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。激光光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。因此,上述两种纳米材料的测试方法各有优缺点。本实验选用激光光散射法测试纳米材料的粒径及粒径分布。所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。 图1为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802微处理器和计算机组成。 图1 N4 Plus 型激光粒度测试仪的测量单元组成图 N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光谱(Photon Correlation Spectroscopy, PCS)现象。在溶液中,粒子由热导致与溶剂分子发生随机碰撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。在恒定温度及某一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程: d 3T k D B πη= (1) 式中k B 为玻尔兹曼常数(1.38×10-16 erg/?K),T 为温度(?K),η为分散介质(或稀释剂)粘度(poise),

纳米材料行业发展现状及前景趋势分析

纳米材料行业发展现状及前景趋势分析 资料来源:前瞻网:2013-2017年中国纳米材料行业发展前景与投资预测分析报告,百度报告名称可查看报告详细内容。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,大约相当于10-100个原子紧密排列在一起的尺度。 纳米材料行业发展现状: 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术、新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料自问世以来,受到科学界追捧,成为材料科学现今最为活跃的研究领域。纳米材料根据不同尺寸和性质,在电子行业、生物医药、环保、光学等领域都有着开发的巨大潜能。在将纳米材料应用到各行各业的同时,对纳米材料本身的制备方法和性质的研究也是目前国际上非常重视和争相探索的方向。 中国在纳米科技领域的研究起步较早,基本上与国际发展同步。中国已经初步具备开展纳米科技的研究条件,国家重点研究机构及相关高科技技术企业对纳米材料的研究步伐不断加快;在纳米科技领域,我国“十五”、“十一五”期间取得了一批重要的研究成果,在部分领域已达到国际先进水平。这些都为实现跨越式发展提供了可能。 中国在经济高速发展、在节省能源和资源方面,纳米材料和纳米技术将发挥重要作用。结合国家战略需求,纳米材料和纳米技术在能源、环境、资源和水处理产业应用近年来出现了良好的开端。纳米净化剂、纳米助燃剂、纳米固硫剂、用于水处理的纳米絮凝剂等新型产品相继开发成功,在这些产品基础上,发展了一些新型纳米产业,前景看好。 纳米材料行业前景趋势分析: 市场成长迅速、国家对高科技新材料产业的重视、中国的纳米材料技术水平的进一步突破、纳米材料与日常起居结合紧密、纳米材料应用领域不断开拓等等这些因素必将使中国的纳米产业未来更加光明。 前瞻网:2013-2017年中国纳米材料行业发展前景与投资预测分析报告,共十二章。首先介绍了纳米材料的定义、分类和特性等,接着全面分析了新材料产业的发展,然后对国际国内纳米材料产业发展状况做出了细致透析,并具体介绍了纳米复合材料、纳米塑料、纳米涂料、纳米金属、纳米陶瓷等的发展。随后,报告对纳米材料行业做了区域发展分析,还详细剖析了纳米材料科研技术发展、应用领域以及重点企业的经营状况。最后,报告重点分析了纳米材料行业的投资状况,并对纳米材料行业前景趋势做出了科学的预测。 (复制转载请注明出处,否则后果自负!)

纳米材料研究及检测.

纳米材料研究及检测 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地 概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 【关键词】纳米技术;纳米材料;结构;性能;分析方法;表征 前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义 和作用。 分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应[、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下

几种方法。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新

纳米材料论文:纳米材料的应用分析

纳米材料论文: 纳米材料的应用分析 摘要: 充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。主要介绍纳米材料在化工领域中的几种应用。 关键词: 纳米材料;化工领域;应用 纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 1 纳米材料的特殊性质 力学性质。高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳 迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。 磁学性质。当代计算机硬盘系统的磁记录密度超过cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。 电学性质。由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 热学性质。纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 2 纳米材料在工程上的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如Si C,BC等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低 烧结温度,缩短烧结时间。由于纳米粒子的尺寸效应和表面效应,使得纳米复相材料的熔点和相转变温度下降,在较低的温度下即可得到烧结性能良好的复相材料。由纳米颗粒构成的纳米陶瓷在低温下出现良好的延展性。纳米Ti O2陶瓷在室温下具有良好的韧性,在180°C下经受弯曲而不产生裂纹。纳米复合陶瓷具有良好的室温和高温力学性能,在切削刀具、轴承、汽车发动机部件等方面具有广泛的应用,在许多超高温、强腐蚀等许多苛刻的环境下起着其它材料无法取代的作用。随着陶瓷多层结构在微电子器件的包封、电容器、传感器等方面的应用,利用纳米材料的优异性能来制作高性能电子陶瓷材料也成为一大热点。有人预计纳米陶瓷很可能发展成为跨世纪新材料,使陶瓷材料的研究出现一个新的飞跃。纳米颗粒添加到玻璃中,可以明显改善玻璃的脆性。无机纳米颗粒具有很好的流动性,可以用来制备在某些特殊场合下使用的固体润滑剂。 3 纳米材料在在催化方面的应用 催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

碳纳米材料简介

碳纳米材料简介

第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。 碳元素是元素周期表中ⅣA族中最轻的元素。它存在三种同位素:12C、13C、14C。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, 。这一Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子——C 60 发现使得他们赢得了1996年的诺贝尔化学奖。C 由60个原子组成,包含20个 60 六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,出来。C 60 对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1) 表1-1 C 的一些基本物理和化学性质 60

碳纳米管 碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。其直径从几百皮米到几十纳米,而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引起了科学界的广泛兴趣。1991年日本的Iijima在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图1-1)。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管被称为锯齿形(zigzag)单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形(armchair)单壁碳纳米管;其他的均被称为手性(chiral)碳纳米管。单壁碳纳米管的直径可以通过两个指数算出来。 图1-1 单壁碳纳米管结构示意图 由于其特殊的结构,碳纳米管具有许多优良的性质。从电学性质来看,碳纳米管可分为金属型(metallic,带隙为零)和半导体型(semiconducting,带隙可达2eV)。单壁碳纳米管的一些重要性质如表1-2。

2021纳米材料行业现状及前景趋势

2021年纳米材料行业现状及发前景趋势

目录 1.纳米材料行业现状 (4) 1.1纳米材料行业定义及产业链分析 (4) 1.2纳米材料市场规模分析 (5) 1.3纳米材料市场运营情况分析 (6) 2.纳米材料行业存在的问题 (9) 2.1纳米产业化的道路还十分漫长 (9) 2.2缺乏持续的创新和应用开发能力 (9) 2.3行业服务无序化 (10) 2.4供应链整合度低 (10) 2.5基础工作薄弱 (10) 2.6产业结构调整进展缓慢 (10) 2.7供给不足,产业化程度较低 (11) 3.纳米材料行业前景趋势 (12) 3.1纳米材料行业应用广泛 (12) 3.2纳米材料不同领域前景不一 (12) 3.3纳米材料在环境领域的应用广泛 (12) 3.4延伸产业链 (13) 3.5行业协同整合成为趋势 (13) 3.6生态化建设进一步开放 (13) 3.7呈现集群化分布 (14)

3.8需求开拓 (15) 3.9行业发展需突破创新瓶颈 (15) 4.纳米材料行业政策环境分析 (17) 4.1纳米材料行业政策环境分析 (17) 4.2纳米材料行业经济环境分析 (17) 4.3纳米材料行业社会环境分析 (17) 4.4纳米材料行业技术环境分析 (18) 5.纳米材料行业竞争分析 (19) 5.1纳米材料行业竞争分析 (19) 5.1.1对上游议价能力分析 (19) 5.1.2对下游议价能力分析 (19) 5.1.3潜在进入者分析 (20) 5.1.4替代品或替代服务分析 (20) 5.2中国纳米材料行业品牌竞争格局分析 (21) 5.3中国纳米材料行业竞争强度分析 (21) 6.纳米材料产业投资分析 (22) 6.1中国纳米材料技术投资趋势分析 (22) 6.2中国纳米材料行业投资风险 (22) 6.3中国纳米材料行业投资收益 (23)

纳米材料的粒度分析

纳米材料的粒度分析 1.1前言 1.粒度分析的概念 大部分固体材料均是由各种形状不同的颗粒构造而成,因此,细微颗粒材料的形状和大小对材料结构和性能具有重要的影响。尤其对于纳米材料,其颗粒大小和形状对材料的性能起着决定性的作用。因此,对纳米材料的颗粒大小、形状的表征和控制具有重要的意义。一般固体材料颗粒大小可以用颗粒粒度概念来描述。但由于颗粒形状的复杂性,一般很难直接用一个尺度来描述一个颗粒大小,因此,在粒度大小的描述过程中广泛采用等效粒度的概念。 对于不同原理的粒度分析仪器,所依据的测量原理不同,其颗粒特性也不相同,只能进行等效对比,不能进行横向直接对比。如沉降式粒度仪是依据颗粒的沉降速度进行等效对比,所测的立径为等效沉速径,即用与被测颗粒具有相同沉降速度的同质球形颗粒的直径来代表实际颗粒的大小。激光粒度仪则是利用颗粒对激光的衍射和散射特性作等效对比,所测出的等效粒径为等效散射粒径,即用与实际被测颗粒具有相同散射效果的球形颗粒的直径来代表这个颗粒的实际大小。当被测颗粒为球形时,其等效粒径就是它的实际直径。但由于粉体材料颗粒的形状不可能都是均匀球形的,有各种各样的结构,因此,在大多数情况下粒度分析仪所测的粒径是一种等效意义上的粒径,和实际的颗粒大小分布会有一定的差异,因此只具有相对比较的意义。等效粒径(D)和颗粒体积(V)的关系可以用表达式D=1.24V1/3表示。此外,各种不同粒度分析方法获得的粒径大小和分布数据也可能不能相互印证,不能进行绝对的横向比较。 由于粉体材料的颗粒大小分布较广,可以从纳米级到毫米级,因此在描述材料粒度大小时,可以把颗粒按大小分为纳米颗粒、超微颗粒、微粒、细粒、粗粒等种类。依据这些颗粒的种类可以采用相应的粒度分析方法和仪器。近年来,随着纳米科学和技术的迅速发展,纳米材料的颗粒分布以及颗粒大小已经成为纳米材料表征的重要指标之一,在普通的材料粒度分析中,其研究的颗粒大小一般在100nm~1um尺寸范围。面对纳米材料研究,其最关注的尺度范围。 在纳米材料分析和研究中,经常遇到的纳米颗粒通常是指颗粒尺寸为纳米量级(1~100nm)的超细微粒。由于该类材料的颗粒尺寸为纳米量级,本身具有小尺寸效应、量子尺寸效应、表面效应和宏观量子隧道效应,因此具有许多常规材料所不具备的特性,在催化、非线性光学、磁性材料、医药及新材料等方面具有广阔的应用前景。因此纳米材料的粒度大小、分布、在介质中的分散性能以及二次粒子的聚集形态等纳米材料的性能具有重要影响,所以,纳米材料的粒度分析是纳米材料研究的一个重要方面。同样由于纳米材料的特性和重要性,促进了粒度分析和表征的方法和技术的发展,纳米材料的粒度分析已经发展成为现代粒度分析的一个重要领域。 目前,对纳米材料进行粒度分析的方法和仪器种类很多,但由于各种分析方法和仪器的设计对被分析体系有一定的针对性,采用的分析原理和方法各异,因此,选择合适的分析方法和分析仪器十分重要。又因为各种粒度分析方法的物理基础不同,同一样品用不同的测量方法得到的粒径的物理意义甚至粒径大小也不同。此外,不同的粒度分析方法的使用范围也不同。若对分析仪器及被测体系没有准确的了解与把握,分子所得到的结果往往于实际结果有较大差异,不具有科学性和代表性。因此,根据被测对象、测量准确度和测量精度等选择的测量方法是十分重要和必要的。

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

纳米材料发展趋势分析

纳米材料发展趋势分析 纳米材料广义上是三维空间中至少有一维处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的材料的总称。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能。 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。 2010年,全球纳米材料区域分布中,北美和欧洲市场占据前两位。欧洲市场上纳米材料多用于医药领域,众多医药公司分布其中。在亚洲市场,由于政府的大力支持、逐渐增强的环保意识和对特殊材料的强烈需求,使得近五年来,亚洲纳米材料发展迅猛。 2010年全球纳米材料市场分布 亚洲及其他 25% 欧洲 37% 北美 38% 资料来源:中科战略 受国际金融危机影响,目前纳米材料技术开发和产品销售速度有所减缓。同时由于可能对人类健康和环境存在潜在的负面影响,这一产业或许将放慢发展速度。然而,由于纳米材料独特的性能,在建筑、交通、电子电气设备、能源、环境、健康等领域强大需求的驱动下,

相关主题
文本预览
相关文档 最新文档