当前位置:文档之家› 可控硅并联阻容吸收电路的选型与计算

可控硅并联阻容吸收电路的选型与计算

可控硅并联阻容吸收电路的选型与计算
可控硅并联阻容吸收电路的选型与计算

可控硅并联阻容吸收电路的选型与计算

为什么要在晶闸管两端并联阻容网络

一、在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。

我们知道,晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。

在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。

为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。

由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。

二、整流晶闸管(可控硅)阻容吸收元件的选择

电容的选择

C=(2.5-5)×10的负8次方×If

If=0.367Id

Id-直流电流值

如果整流侧采用500A的晶闸管(可控硅)

可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF

选用2.5mF,1kv 的电容器

电阻的选择:

R=((2-4) ×535)If=2.14-8.56

选择10欧

PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)2

Pfv=2u(1.5-2.0)

u=三相电压的有效值

阻容吸收回路在实际应用中,RC的时间常数一般情况下取1~10毫秒。

小功率负载通常取2毫秒左右,R=220欧姆1W,C=0.01微法400~630V。

大功率负载通常取10毫秒,R=10欧姆10W,C=1微法630~1000V。

R的选取:小功率选金属膜或RX21线绕或水泥电阻;大功率选RX21线绕或水泥电阻。

C的选取:CBB系列相应耐压的无极性电容器。

看保护对象来区分:接触器线圈的阻尼吸收和小于10A电流的可控硅的阻尼吸收列入小功率范畴;接触器触点和大于10A以上的可控硅的阻尼吸收列入大功率范畴。

RC吸收电路

缓冲电路(独立运行光伏发电系统功率控制研究-----内蒙古工业大学硕士论文) 开关管开通和关断理论上都是瞬间完成的,但实际情况开关管关断时刻下降的电流和上升的电压有重叠时间,所以会有较大的关断损耗。为了使IGBT 关断过程电压能够得到有效的抑制并减小关断损耗,通常都需要给IGBT 主电路设置关断缓冲电路。通常情况下,在设计关于IGBT 的缓冲电路时要综合考虑从IGBT 应用的主电路结构、器件容量以及要满足主电路各种技术指标所要求的IGBT 开通特性、关断特性等因素。 选用RCD 缓冲电路,结构如图4-5所示。 对缓冲电路的要求:尽量减小主电路的电感;电容应采用低感吸收电容;二极管应选用快开通和快速恢复二极管,以免产生开通过电压和反向恢复引起较大的振荡过电压。 (1)缓冲电容的计算 ()500.850.5184 ce s r f ce I C t t uF V =+=?=

(2)缓冲电阻的计算 0.55029.4330.283on s s t us R C uF ?===Ω? (3)缓冲二极管的选择 选用快速恢复二极管ERA34-10,参数为0.1A/1000V/0.15us 。 继电器RC 加吸收单元起到什么作用? 接触器和继电器在断电时,线圈释放瞬间会产生一个浪涌脉冲,这个浪涌电压对某些敏感电子装置会有干扰,造成电子装置误动作或故障,因此在接触器和继电器线圈并联一个阻容吸收器来吸收这个脉冲。 一般安装吸收单元的接触器或继电器都是因为在他的同一电路中存在敏感电子电路,这些电路对浪涌脉冲比较敏感,所以这类电路中的接触器或继电器才加装吸收单元,吸收继电器线圈释放产生的脉冲和浪涌,避免电子电路的故障或误动作. RC 吸收回路的作用,一是为了对感性器件在电流瞬变时的自感电动势进行钳位,二是抑制电路中因dV/dt 对器件所引起的冲击,在感性负载中,开关器件关断的瞬间,如果此时感性负载的磁通不为零,根据愣次定律便会产生一个自感电动势,对外界辞放磁场储能,为简单起见,一般都采用RC 吸收回路,将这部份能量以热能的方式消耗掉。 设计RC 吸收回路参数,需要先确定磁场储能的大小,这分几种情况: 1、电机、继电器等,它的励磁电感与主回路串联,磁场储能需要全部由RC 回路处理,开关器件关断的瞬间,RC 回路的初始电流等于关断前的工作电流;

含容电路和电路故障分析

含容电路和电路故障分析 一、含电容电器的分析与计算方法 在直流电路中,当电容器充、放电时,电路里有充、放电电流.一旦电路达到稳定状态,电容器在电路中就相当于一个阻值无限大(只考虑电容器是理想的不漏电的情况)的元件,在电容器处电路可看作是断路,简化电路时可去掉它.简化后若要求电容器所带电量时,可接在相应的位置上.分析和计算含有电容器的直流电路时,需注意以下几点: (1)电路稳定后,由于电容器所在支路无电流通过,所以在此支路中的电阻上无电压降,因此电容器两极间的电压就等于该支路两端的电压. (2)当电容器和电阻并联后接入电路时,电容器两极间的电压与其并联电阻两端的电压相等. (3)电路的电流、电压变化时,将会引起电容器的充(放)电.如果电容器两端电压升高,电容器将充电;如果电压降低,电容器将通过与它连接的电 路放电. 【例1】如图所示,电源电动势E =12V ,内阻r =1Ω,电阻R 1=3Ω,R 2=2Ω,R 3=5Ω,电容器的电容C 1=4μF ,C 2=1μF 。求: (1)当S 闭合时间足够长时,C 1和C 2所带的电量各是多少? (2)然后把S 断开,S 断开后通过R 2的电量是多少? 解:(1)当S 闭合时间足够长时,C 1两端的电压等于R 2两端的电压;C 2两端的电压等于路端电压 回路电流12 2E I A r R R ==++ C 1两端的电压U C1=U 2=IR 2=4V C 1的带电量为:Q 1=C 1U C1=4×10-6×4C =1.6×10-5C C 2两端的电压U C2=U =I (R 1+R 2)=10V C 2的带电量为:Q 2=C 2U C2=1×10-6×10C =1.0×10-5C (2)断开S 后,电容器C 1通过电阻R 2、R 3放电;电容器C 2通过电阻R 1、R 2、R 3放电,放电电流均流过R 2,且方向相同。 因此,通过R 2的电量为:Q =Q 1+Q 2=1.6×10-5C +1.0×10-5C =2.6×10-5C 【例2】如图,已知源电动势E =12V ,内电阻 不计。电容C =1μF ,R 1∶R 2∶R 3∶R 4=1∶2∶6∶3, 则电容a 极板所带电量为:( )

6脉冲12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 2007-2-8 10:36:00文/厂商稿出处:https://www.doczj.com/doc/9b6946621.html, 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:

(1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移

相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。

含容电路分析

含电容器电路的分析 处理含电容器电路的一般规律: 1、电容器相当于断路,分析电路结构时可从电路中删去。 2、电容器两极间的电压等于与它并联的电路两端的电压。 3、与电容器串联支路中的电阻可去掉。 4、当电路发生变化时,电容器两极板间的电压发生变化,其所带电量也将发生相应的变化,即电容器会发生充、放电现象。 1、如图所示,是一个电容器、电池和电阻组成的电路,在将平行板电容器两极板距离增大的过程中 A.电阻R 中没有电流 B.电容器的电容变小 C.电阻R 中有从a 流向b 的电流 D.电阻R 中有从b 流向a 的电流 2、图中E=10伏,R1=4欧,R2=6欧,C=30微法,电池内阻可忽略. (1)闭合开关K,求稳定后通过R1的电流. (2)然后将开关K 断开,求这以后流过R1的总电量. 3、在如图所示的电路中,电容器的上极板带正电.为了使该极板仍带正电且电量增大,下列办法中可采用的是 A 、增大R1,其他电阻不变 B 、增大R2,其他电阻不变 C 、增大R3,其他电阻不变 D 、增大R4,其他电阻不变

C 1 4、如图, 问: (1)当开关K 断开时,A 、B 两点的电压U AB 是多少? (2)当K 闭合后,电容器C 1的带电量变化了多少? 5、电容器C1、C2和可变电阻器R1、R2以及电源E 连接成如图所示的电路.当R1的滑动触头在图示位置时,C1、C2的电量相等.要使C1的电量大于C2的电量,应 A 、增大R2 B 、减小R2 C 、将R1的滑动触头向A 端移动 D 、将R1的滑动触头向B 端移动 , 18,3,6,3,62121V U R R F C F C =Ω=Ω===μμ

含电容器电路的分析与计算201501

含电容器电路的分析与计算 1、关键是准确地判断并求出电容器的两端的电压,其具体方法是: (1)确定电容器和哪个电阻并联,该电阻两端电压即为电容器两端电压. (2)当电容器和某一电阻串联后接在某一电路两端时,此电路两端电压即为电容器两端电压. (3)对于较复杂电路,需要将电容器两端的电势与基准点的电势比较后才能确定电容器两端的电压. 2、分析和计算含有电容器的直流电路时,注意以下几个方面: (1)电路稳定时电容器在电路中就相当于一个阻值无限大的元件,在电容器处电路看做是断路,画等效电路时,可以先把它去掉. (2)若要求电容器所带电荷量时,可在相应的位置补上,求出电容器两端的电压,根据Q =CU计算. (3)电路稳定时电容器所在支路上电阻两端无电压,该电阻相当于导线. (4)当电容器与电阻并联后接入电路时,电容器两端的电压与并联电阻两端的电压相等. (5)电路中的电流、电压变化时,将会引起电容器的充放电,如果电容器两端的电压升高,电容器将充电,反之电容器放电.通过与电容器串联的电阻的电量等于电容器带电量的变化量. 3、含电容器电路问题的分析方法 (1)应用电路的有关规律分析出电容器两极板间的电压及其变化情况. (2)根据平行板电容器的相关知识进行分析求解. 练习 1.如图所示电路中,开关S闭合一段时间后,下列说法中正确的是 A.将滑片N向右滑动时,电容器放电 B.将滑片N向右滑动时,电容器继续充电 C.将滑片M向上滑动时,电容器放电 D.将滑片M向上滑动时,电容器继续充电 2.如图所示,M、N是平行板电容器的两个极板,R0为定值电阻,R1、 R2为可调电阻,用绝缘细线将质量为m、带正电的小球悬于电容器 内部.闭合开关S,小球静止时受到悬线的拉力为F.调节R1、R2, 关于F的大小判断正确的是

含容电路的计算

含容电路的计算专题分析 含容电路问题是高考中的一个热点问题,在高考试题中多次出现。同学们要要点提示复习。 1、求电路稳定后电容器所带的电量 求解这类问题关键要知道:电路稳定后,电容器是断路的,同它串联的电阻均可视为短路,电容器两端的电压等于同它并联电路两端的电压。 【例1】在图16所示的电路中,已知电容C=2μF,电源电动势E=12V,内电阻不计,R 1∶R 2∶R 3∶R 4=1∶2∶6∶3.则电容器极板a 所带的电量为( ) A.-8×10-6C B. 4×10-6C C. -4×10-6C D. 8×10-6C 方法点拨:电路稳定后,电容C 作为断路看待,电路等价于R 1和R 2串联,R 3和R 4串联。由串联电路的特点得: 211R R E R U AB +=, 即V R R E R U AB 42 11=+= 同理可得V R R E R U CD 84 33=+= 故电容C 两端的电压为:V U U U U U AB AD D B ab 4=-=-= 电容器极板a 所带的电量为:C CU Q ab a 6 108-?==。 即D 选项正确。 2、求通过某定值电阻的总电量 【例2】图17中,E=10V ,R 1=4Ω,R 2=6Ω,C=30μF ,电池内阻可忽略. (1)闭合电键K,求稳定后通过R 1的电流. (2)然后将电键K 断开,求这以后流过R 1的总电量. 方法点拨:(1)闭合电键K ,稳定后通过R 1的电流为: A R R E I 12 1=+= , 电容器上电压为IR 2,储存的电量为 Q 1=CIR 2=1.8C 4 10-? (2) 电键K 断开后,待稳定后,电容器上电压为E,储存的电量为:Q 2=CE=3×10-4C 流过R 1的总电量为C Q Q Q 4 12102.1-?=-=? 【练1】在如图18所示的电路中,电源的电动势E=30V,内阻r=1.0Ω,R 1=10Ω,R 2=10Ω,R 2=30Ω,R 3=35Ω,电容器的电容C=100μF ,电容器原来不带电.求接通电键K 后流过R 4的总电量. F 图16 图17 E , 3 图18

含容电路分析

含容电路的分析(高三一轮复习) 一、稳态含容直流电路 电容器处于稳定状态时,相当于一个阻值无限大的元件,可看作断路。此时:(1)电容器所在支路无电流,与电容器直接串联的电阻相当于一根阻值为零的导线。(2)电容器上的电压就是与电容器并联的那条支路两端的电压 例1: 如图所示,电容器C1=6uF ,C2=3uF. 电阻R1=6Ω,R2= 3Ω ,已知电压U=18V 。 (1)当开关S 闭合时,A 、B 两点间的电势差为多少C1两极板 的电势差 (2)当开关S 闭合,电容器处于稳定状态时C1两极板的电势 差C2两极板的电势差 ? 二、动态含容直流电路 在电路中,当电容器两端的电压稳定时,电容器处于断路状态,当电容器两端电压增大时,电容器会充电,会形成充电电流;当电容器两端电压降低时,电容器会放电,会形成放电电流。对于这类问题,只要抓住初末两稳定状态电容器极板间的电压的变化情况,根据Δ Q=C·ΔU 来分析即可 例2: 如例1图所示,电容器C1=6uF ,C2=3uF. 电阻R1=6Ω,R2=3Ω ,已知电压U=18V 。当K 闭合后,电容器C 1的带电量变化了多少 三、含容电路的力学问题: 例3如图所示,电源电动势为E ,内阻为r ,平行板电容器两金属板水平放置,开关S 是闭合的,两板间一质量为m 、电荷量为q 的油滴恰好处于静止状态.则以下说法正确的是( ) A .在将滑动变阻器滑片P 向上移动的过程中,油滴向上加速运动, B .在将滑动变阻器滑片P 向下移动的过程中,油滴向上加速运动, 、 C .在将滑动变阻器滑片P 向上移动的过程中,油滴的重力势能增大 D .在将滑动变阻器滑片P 向下移动的过程中,油滴的电势能减少 强化练习 1、如图所示电路,电源内阻不能忽略,当滑动变阻器的滑片向b 端滑动时,则( ) A.电容器两极板的电压增大 B.电容器两极板的电压减小 C .电容器的带电量增大 D.电容器的带电量减少 < 2、如图所示, 电池.3,6,4,1021F C R R V E μ=Ω= Ω==

可控硅及其整流电路

上次课内容 1、集成功放及应用。(了解) 2、变压器耦合功放的分析。(理解) 3、功放管的散热。(了解) 4、功率放大器一章习题课。 本次课内容(2学时)(可视学时情况选择讲授或不讲) 第七章 直流电源 §7-1 可控硅及其伏安特性 7-1-1 可控硅的结构和符号 图1 可控硅的结构 全称是硅可控整流元件,又名晶闸管。外形有平面型、螺栓型,还有小型塑封型等几种。图1(a)是常见的螺栓型外形,有三个电极:阳极a、阴极k 和控制极g。图1(b)是可控硅的符号。图1(c)是内部结构示意图。 图1(c):可控硅由、、、四层 半导体组成。从引出的是阳极a、从引出的 是阴极k、从引出的是控制极g;内部有三个结,分别用、和表示。 7-1-2 可控硅的工作原理 1P 122N P N 1P 2N 2P PN 1J 2J 3J 图2 可控硅工作特点的实验 演示电路如图2(a),阳极a 接电源正极、阴极k 接电源负极;开关S 断开,H 不亮,可控硅不导通。S 闭合,即控制极g 加正向电压,如图2(b),灯H 亮,可控硅导通。可控硅导通后,将S 断开,灯仍亮,如 图2(c),表明可 控硅仍导通,说明 可控硅一旦导通 后,控制极就失去 了控制作用。要关 断可控硅,可去掉正向电压或减小正向电流到可控硅难以维持导通,则可控硅关断。

如可控硅加反向电压,则无论是否加控制极电压,可控硅均不会导通。若控制极加反向电压,则无论可控硅阳极与阴极之间加正向还是反向电压,可控硅均不会导通。 可控硅的工作特点: 1、可控硅导通必须具备两个条件:一是可控硅阳极与阴极间必须接正向电压,二是控制极与阴极之间也要接正向电压; 2、可控硅一旦导通后,控制极即失去控制作用; 3、导通后的可控硅要关断,必须减小其阳极电流使其小于可控硅的维持电流。 H I 图3 可控硅工作原理分析 图3为可控硅的内部结构示意图: 可控硅可以看成由一只NPN 型三极管 与一只PNP 型三极管组成。如仅在阳 极a 和阴极k 之间加上正向电压,由 于三极管发射结无正偏电压而无 法导通。若a、k 间加上正向电压,并 在管的基极g 加上正向电压,使产生基极电流,此电流经管放 大以后,在集电极上产生2T 1T 1 T G I 1T 1T G I 1β的电流,又因为的集电极电流就是的基极电流,所以经过再次放大,在管的集电极电流就达到1T 2T 2T 2T G I 21ββ,而此电流又重新反馈到管作为的基极电流又一次被放大,如此反复下去,与两管之间因为有如此强烈的正反馈,使两只三极管迅速饱和导通,即可控硅阳极a 与阴极k 之间完全导通。以后由于基极上自动维持的正反馈电流,所以即使去掉基极g 上的正向电压,和仍能继续保持饱和导通状态。可控硅导通时,、饱和导通总压降约1V 左右,如果阳、阴极之间正向电压太低,使流过阳极的电流难以维持导通,、就截止,从而可控硅关断。 1T 1T 1T 1T 2T 1T 1T 1T 2T 1T 2T 1T 2T 可控硅控制极的电压、电流比较低(电压只有几伏,电流只有几十至几百毫安),但被控制的器件可以承担很大的电压和通过很大的电流(电压可达几千伏,电流可大到几百安以上)。可控硅是一种可控的单向导电开关,常用于以弱电控制强电的各类电路中。 7-1-3可控硅的主要参数 1、额定正向平均电流 在规定的环境温度和散热条件下,允许通过阳极和阴极之

晶闸管阻容吸收回路

晶闸管阻容吸收回路 一、晶闸管两端并联RC阻容吸收电路的作用 在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。 晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。 晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。 由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。 二、晶闸管阻容吸收元件的选择 . 例:晶闸管是200A/1400V(KP200A)的,阻容电路该如何选择啊? 结果:电阻:10欧姆,电容0.5微法电阻功率:P=F*C*Um*10^(-6)

(九)——电磁感应中的含容电路分析

微讲座(九)——电磁感应中的含容电路分析 一、电磁感应回路中只有电容器元件 这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流. (2013·高考新课标全国卷Ⅰ)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L .导轨上端接有一平行板电容器,电容为C .导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系. [解读] (1)设金属棒下滑的速度大小为v ,则感应电动势为E =BL v ① 平行板电容器两极板之间的电势差为U =E ② 设此时电容器极板上积累的电荷量为Q ,按定义有C =Q U ③ 联立①②③式得Q =CBL v .④ (2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i .金属棒受到的磁场的作用力方向沿导轨向上,大小为F 安=BLi ⑤ 设在时间间隔(t ,t +Δt )内流经金属棒的电荷量为ΔQ ,据定义有i =ΔQ Δt ⑥ ΔQ 也是平行板电容器两极板在时间间隔(t ,t +Δt )内增加的电荷量.由④式得:ΔQ =CBL Δv ⑦ 式中,Δv 为金属棒的速度变化量.据定义有a =Δv Δt ⑧ 金属棒所受到的摩擦力方向斜向上,大小为F f =μF N ⑨ 式中,F N 是金属棒对导轨的正压力的大小, 有F N =mg cos θ⑩ 金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a ,根据牛顿第二定律有mg sin θ-F 安-F f =ma ? 联立⑤至?式得a =m (sin θ-μcos θ)m +B 2L 2C g ? 由?式及题设可知,金属棒做初速度为零的匀加速运动.t 时刻金属棒的速度大小为v =m (sin θ-μcos θ)m +B 2L 2C gt . [答案] (1)Q =CBL v (2)v = m (sin θ-μcos θ)m +B 2L 2C gt [总结提升] (1)电容器的充电电流用I =ΔQ Δt =C ΔU Δt 表示. (2)由本例可以看出:导体棒在恒定外力作用下,产生的电动势均匀增大,电流不变,

可控硅整流器的原理、结构及用途

可控硅整流器的原理、结构及用途 发布日期:2012-06-08 浏览次数:459 核心提示:可控硅整流器,是一种以晶闸管(电力电子功率器件)为基础,以智能数字控 制电路为核心的电源功率控制电器。具有效率高、无机械 可控硅整流器,是一种以晶闸管(电力电子功率器件)为基础,以智能数字控制电路为核心的电源功率控制电器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 晶闸管(Thyristor)是晶体闸流管的简称,又称作可控硅整流器(Silicon Controll ed Rectifier——SCR),以前被简称为可控硅。由于其能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。 自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 可控硅整流器的工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic 2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G 的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 可控硅整流器的结构 ◆从外形上来看,可控硅整流器也主要有螺栓型和平板型两种封装结构。

阻容吸收回路

阻容吸收回路通常过电压均具有较高的频率,因此常用电容作为吸收元件,为防止振荡,常加阻尼电阻,构成阻容吸收回路。阻容吸收回路可接在电路的交流侧、直流侧,或并接在晶闸管的阳极与阴极之间。 压敏电阻是以氧化锌为基体的金属氧化物非线性电阻,其结构为两个电极,电极之间填充的粒径为10~50μm的不规则的ZNO微结晶,结晶粒间是厚约1μm的氧化铋粒界层。这个粒界层在正常电压下呈高阻状态,只有很小的漏电流,其值小于100μA。当加上电压时,引起了电子雪崩,粒界层迅速变成低阻抗,电流迅速增加,泄漏了能量,抑制了过电压,从而使晶闸管得到保护。浪涌过后,粒界层又恢复为高阻态。收电路最好选用无感电容,接线应尽量短 由于压敏电阻的通流容量大,残压低,抑制过电压能力强;平时漏电流小,放电后不会有续流,元件的标称电压等级多,便于用户选择;伏安特性是对称的,可用于交、直流或正负浪涌;因此用途较广。。 过电压产生的原因主要是供给的电功率或系统的储能发生了激烈的变化,使得系统来不及转换,或者系统中原来积聚的电磁能量来不及消散而造成的。主要发现为雷击等外来冲击引起的过电压和开关的开闭引起的冲击电压两种类型。 (1)交流电源接通、断开产生的过电压例如,交流开关的开闭、交流侧熔断器的熔断等引起的过电压,这些过电压由于变压器绕组的分布电容、漏抗造成的谐振回路、电容分压等使过电压数值为正常值的2至10多倍。一般地,开闭速度越快过电压越高,在空载情况下断开回路将会有更高的过电压。 (2)直流侧产生的过电压如切断回路的电感较大或者切断时的电流值较大,都会产生比较大的过电压。这种情况常出现于切除负载、正在导通的晶闸管开路或是快速熔断器熔体烧断等原因引起 浪涌电流是指电网中出现的短时间象“浪”一样的高电压引起的大电流。当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流.

含容电路的分析与计算

含容电路的分析与计算 含容电路是常见的电路分析题,且有一定难度。下面对常见的题型进行分析。 电路分析一般规律: 1、部分电路、全电路欧姆定律;串、并联电路的一般关系;电动势与内外电压的关系 2、路端电压与外阻的关系 3、电源输出功率与内外电阻的关系 4、关于对称电路的基本关系 处理含容电路的一般规律: 1、电容器在直流电路中是断路,对电路没有作用,分析时可以等效于拆去电容器,从而简化电路。 2、电容器两极的电压等于与它并联电路的电压。 3、当电容器与电阻串联时,电阻两端不分电压。 例题分析: 例1、如图所示,C1=6μF C2=3μF R1=6ΩR2=3Ω总电压U=18V求:电键K断开时电键两端的电压及电键闭合时电容器电量的变化 解析:当电键断开时,由于电容器的存在,整个电路断路,两电 阻两端没有电压,所以电键上端的电势和D相同,下端和C相同,因 此,电键两端的电压等于C、D两端的电压,等于18v 此时C1两端的电压是18v,所带电量为Q1=6μF×18v=108μC 当电键闭合时,两电阻串联,C1 C2两端的电压分别等于R1 R2两端的电压C1两端的电压U1=2/3U=12V所带电量变为Q2=3μF×12v=36μC 所以,在电键闭合前后,C1所带电量变化为减少了108—36=72ΜC 例2、电容器C极板水平放置,它和三个可变电阻及电源如图连接。今有一质量为m 的油滴悬浮在两极之间静止不动,要使油滴上升可采取的办法是

解析:由油滴在两极间静止可知,油滴所受电场力方向向上,大小等于其重力。要使其向上运动,必须增大电场力。所以要增大两极间电压。 由图可知两极间电压等于R3两端的电压,所以增大R3 或减小R2都能达到目的例3、如图所示的电路中,电键均闭 合,C是极板水平放置的平行板电容器,极板间悬浮着一个油 滴,问断开那一个电键后油滴会向下运动。 解析:要使油滴向下运动,应使电场力减小,则使电容 器极板间场强减小。因为极板间距和正对面积都不变,所以 需要减小电容器两极板间的电压。 电容器两极板间电压等于R3两端的电压,且与它串联 的电阻不分电压,所以打开S1不会影响电容器的电压;打开S4电容器与电源断开,电压保持恒定;打开S2电容器两端电压变成电源电动势,比原来增大;只有打开S3时电容器放电,最终电压变为零,所以油滴就会向下运动。 例4. 如图所示电路中,电源电动势为,内电阻不计,R1、R2、R3、的阻值都是R,滑动变阻器R4的阻值可在0~2R间调节。当滑动变阻器的滑片P由其右端开始向左端滑动时,(1)分析和判断电容器C的充、放电情况;(2)分别计算P在右端点和左端点时,电容器C的带电情况。 解析:电容器C的带电量由图中M、N两点的电势差与电容的乘积决定。如果M点的电势高于N点电势,则C的上板带正电,下板带负电;如果M点电势低于N,则上板带负电,下板带正电;如果M、N两点电势相等,则C不带电。若电容器两板有电势差,

含容电路题型练习

含容电路题型 1、求电路稳定后电容器所带的电量 【例1】在图16所示的电路中,已知电容C=2μF,电源电动势E=12V,内电阻不计,R1∶R2∶R3∶R4=1∶2∶6∶3.则电容器极板a所带的电量为() A.-8×10-6C B. 4×10-6C C. -4×10-6C D. 8×10-6C 2、求通过某定值电阻的总电量 【例2】图17中,E=10V,R1=4Ω,R2=6Ω,C=30μF,电池内阻可忽略. (1)闭合电键K,求稳定后通过R1的电流和此时电容器所带的电量. (2)然后将电键K断开,求这以后流过R1的总电量. 【练1】在如图18所示的电路中,电源的电动势E=30V,内阻 r=1.0Ω,R1=10Ω,R2=10Ω,R2=30Ω,R3=35Ω,电容器的电容C=100μF,电容器原 来不带电.求接通电键K后流过R4的总电量. 【练2】图19中电源电动势E=10V,C1=C2=30μF,R1=4.0Ω, R2=6.0Ω,电源内阻 可忽略。先闭合电键K,待电路稳定后,再将K断开,则断开K后流过电阻R1的 电量为______. 3、讨论平行板电容器内部场强的变化,从而判定带电粒子的运动情况。 【例3】一平行板电容器C,极板是水平放置的,它和三个可变电阻及电源联接成如图20所示的电路.今有一质量为m的带电油滴悬浮在两极板之间静止不动.要使油滴上升,可采用的办法是: A.增大R1 B.增大R2 C.增大R3 D.减小R2 【练3】一平行板电容器充电后与电源断开,负极板接地.在两极板间有一正电荷(电量很小)固定在P点,如图21所示.以E表示两极板间的场强,U表示电容器的电压,W表示正电荷在P点的电势能.若保持负极板不动,将正极板移到图中虚线所示的位置,则( ) A.U变小,E不变. B.E变大,W变大. C.U变小,W不变. D.U不变,W不变 . F 图17 E, 3 图18 图20 P 图21 -

十二篇可控硅交流调压电路解析

第一篇: 可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 1:电路原理:电路图如下 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

2:元器件选择 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。 第二篇: 本例介绍的温度控制器,具有SB260取材方便、性能可靠等特点,可用于种子催芽、食用菌培养、幼畜饲养及禽蛋卵化等方面的温度控制,也可用于控制电热毯、小功率电暖器等家用电器。 1.电路图温度控制器电路如图7.116所示。 2.工作原理220V交流电压经Cl降压、VD,和VD。整流、C2滤波及VS稳压后,一路作为IC(TL431型三端稳压集成电路)的输入直流电压;另一路经RT、R3和RP分压后,为IC提供控制电压。在被测温度低于RP的设定温度时,NTC502型负温度系数热敏电阻器Rr的电阻值较大,IC的控制电压高于其开启电压,IC导通,使LED点亮,VS受触发而导通,电热器EH通电开始加热。随着温度的不断上升,Rr的电阻值逐渐减小,同时IC的控制电压也随之下降。当被测温度高于设定温度时,IC截止,使LED熄灭,VS关断,EH断电而停止加热。随后温度又

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

电容器典型习题及含容电路计算

电容器动态问题与电势及电势能相结合 电容器动态问题与粒子受力相结合 一、 电容器、电容 1、 电容器:两个彼此绝缘又互相靠近的导体可构成一个电容器。 2、电容:1)物理意义:表示电容器容纳电荷的本领。 2)定义:电容器所带的电荷量Q(一个极板所带电量的绝对值)与两个极板间的电势差U 的比值叫做电容器的电容。 3)定义式:U Q U Q C ??= =,对任何电容器都适用,对一个确定的电容 器,电容是一个确定的值,不会随电容器所带电量的变化而改变。 4)单位: 5)可类比于水桶的横截面积。 3、电容器的充放电: 充电:极板带电量Q 增加,极板间场强E 增大; 放电:极板带电量Q 减小,极板间场强E 减小; 4、常见电容器有:纸质电容器,电解电容器,可变电容器,平行板电容器。电解电容器连接时应注意其“+”、“-”极。 二、平行板电容器 平行板电容器的电容kd s C r πε4=(平行板电容器的电容与两板正对面积成正比,与两板间距 离成反比,与介质的介电常数成正比)。是决定式,只对平行板电容器适应。 带电平行板电容器两极板间的电场可认为是匀强电场,d U E =。 三、平行板电容器动态分析 一般分两种基本情况: 1、电容器两极板电势差U保持不变。即平行板电容器充电后,继续保持电容器两极板与电池两极相连接,电容器的d、s、ε变化时,将引起电容器的C、Q、U、E的变化。 2、电容器的带电量Q保持不变。即平行板电容器充电后,切断与电源的连接,使电容器的d、s、ε变化时,将引起电容器的C、Q、U、E的变化。 进行讨论的物理依据主要是三个: (1)平行板电容器的电容与极板距离d、正对面积S、电介质的介电常数ε间的关系:kd S C r πε4= (2)平行板电容器内部是匀强电场,d U E = S kQ r επ4= 。 (3)电容器每个极板所带电量Q=CU。 平行板电容器的电容为C ,带电量为Q ,极板间的距离为d . 在两极板间的中点放一电量很小的点电荷q .它所受的电场力的大小等于 () A .8kQq/d 2 B .4kQq/d 2 C .Qq/Cd D .2Qq/Cd

西门康可控硅介绍

SEMIPACK? Thyristor/Diode Modules Features ?Modules with isolated baseplate and thyristor and/or diode chips for currents up to 1200A and reverse voltages up to 2200 V ?Available as single component elements or as double packs with internal, functional interconnection ?Case with copper baseplate in 7 sizes SEMIPACK? 0: 61 x 21 mm, module height 23.2 mm SEMIPACK? 1: 93 x 20 mm, module height 30 mm SEMIPACK? 2: 94 x 29 mm, module height 30 mm SEMIPACK? 3: 115 x 51 mm, module height 52 mm SEMIPACK? 4: 101 x 50 mm, module height 52 mm SEMIPACK? 5: 150 x 60 mm, module height 52 mm SEMIPACK? 6: 104 x 70 mm, module height 90 mm SEMITRANS? 4: 107 x 62 mm, module height 37 mm (fast, high-current modules SKKE 330F, SKKE 600F with CAL diodes) ?Screw connections for power interconnect (SEMI-PACK? 0: Fast-on tabs) ?Semiconductor chips soldered onto ceramic isolated metal baseplate (SEMIPACK? 0...2 and some SEMI-PACK? 3, SEMITRANS? 4 modules) or pressure con-tact modules (SEMIPACK? 3, 4, 5, 6) with very high load cycle capability ?Optimum heat transfer to heat sink thanks to ceramic isolated metal baseplate with Al2O3 (SEMIPACK? 0, 1, 2) or AlN (SEMIPACK? 3, 4, 5, 6) insulating substrate and copper baseplate ?No hard mould (Exceptions: SEMIPACK? 0 and some SEMIPACK? 1 modules ?Thyristor chips in SEMIPACK? 3...6 with amplifying gate to reduce the gate current ?Fast diode modules with diodes in diffusion, Epitaxial and CAL (Controlled Axial Lifetime) technology up to 600 A and 1700 V ?Insulation voltage up to 4 kVrms for 1 min., 4.8kV rms for 1 s ?UL approval in accordance with UL1557, Reference no. E63532 Technical Explanations The terms in [ ] apply to thyristors only Insulation voltage V isol The insulation voltage of SEMIPACK? modules is a gua-ranteed value for the insulation between the terminals and the baseplate. The limiting value 3.6kV rms specified for 1s is subject to 100 % production testing. All terminals - including the gate connections - must be interconnected during dielectric testing. All specifications for the final product's dielectric test voltage are described in the IEC publications IEC60146-1-1:1991 and EN60146-1-1:1994 Section 4.2.1 (=VDE0558 T1-1: 1993), EN 50178:11.1997 (= DIN EN50178 (VDE 0160): 1998, as well as in UL1557: 1997. For railway applications, for instance, please refer to the specificati-ons of the IEC61287-1 standard. Non-repetitive peak reverse voltage V RSM; [Non-repeti-tive peak off-state voltage V DSM] Maximum permissible value for non-repetitive, occasio-nally transient peak voltages. Repetitive peak reverse voltage V RRM [and off-state voltage V DRM] Maximum permissible value for repetitive transient off-state and reverse voltages. Direct blocking voltages V R, [V D] for continuous duty Maximum permissible direct reverse voltage for stationary operation for diodes (V R) [or thyristors (V D, V R)]. This value is 0.7 V RRM [0.7 V DRM]. Mean forward [on-state] current I FAV, [I TAV] The symbols I FAV, [I TAV] are used to refer to both the mean current values in general and the current limits. The limi-ting values are absolute maximum continuous values for the on-state current load of a diode [thyristor] for a given current waveform and given cooling conditions (e.g. case temperature T c). At this current value, the maximum per-missible junction temperature is reached, with no margins for overload or worst-case reserves. The recommended maximum continuous current is therefore approximately 0.8 I TAV . For operation frequencies of between 40 Hz and 200 Hz the maximum mean on-state current can be taken from Fig. 1 of the datasheet. If standard diodes and thyri-stors (diodes/thyristors for line application) are operated at frequencies of between 200 Hz and 500 Hz, further cur-rent reductions should be carried out to compensate for the switching losses that are no longer negligible. RMS forward [on-state] current I FRMS, [I TRMS] The symbols I FRMS, [I TRMS] are used to refer to both the mean current values and the current limits. The limiting values are absolute maximum values for the continuous on-state current for any chosen current waveform and cooling conditions. Surge forward [on-state] current I FSM [I TSM] Crest value for a surge current in the form of a single sinu-soidal half wave which lasts for 10 ms. After occasional current surges with current values up to the given surge forward current, the diode [thyristor] can withstand the

相关主题
文本预览
相关文档 最新文档