第3章 三相交流电
- 格式:ppt
- 大小:235.00 KB
- 文档页数:24
三相电路基本知识一、概括三相电路基本知识是电力系统中至关重要的部分,涉及三相交流电的产生、传输、变换和应用。
本文旨在介绍三相电路的基本概念、原理及应用领域。
三相电路具有高效、稳定的特点,广泛应用于工业、商业和家庭等各个领域。
本文将重点介绍三相电源、三相负载、三相线路的接法、三相电路的功率计算,以及三相电路中的电压电流特性等内容,为读者提供三相电路的基本知识和理解,以便更好地应用和维护电力系统。
1. 介绍三相电路的重要性和应用领域三相电路在现代电力系统中占据着举足轻重的地位,其重要性不容忽视。
三相电路是一种能够同时传输三种频率电能的电路系统,其广泛的应用领域涵盖了工业、商业和家庭等各个方面。
了解三相电路的基本知识,对于电气工程师、电力工作者以及广大民众来说都至关重要。
三相电路的重要性体现在其高效稳定的电力传输能力上。
相较于单相电路,三相电路具有更高的输电效率和更大的容量,能够满足大规模电力负载的需求。
三相电路还能提供更为平衡和稳定的电力供应,有助于保障电力系统的整体运行安全。
三相电路的应用领域极为广泛。
在工业领域,三相电路是电动机、发电机、变压器等设备的核心驱动力量,广泛应用于各类机械设备、生产线以及自动化系统中。
在商业领域,三相电路用于照明、空调、电脑等设备,为商业活动的正常进行提供了重要支持。
在家庭领域,三相电路则为家用电器如电视、冰箱、洗衣机等提供了稳定的电力供应。
三相电路还广泛应用于电网建设、能源分配以及电力系统自动化控制等方面。
三相电路在现代电力系统中具有不可或缺的地位。
掌握三相电路的基本知识,对于理解和应用电力系统具有重要意义。
在接下来的文章中,我们将详细介绍三相电路的基本概念、工作原理以及相关的技术要点。
2. 简述三相电路的发展历程及其在现代电力系统中的地位三相电路的发展历程可以追溯到电力工业的早期阶段。
自发电机的发明以来,三相电路技术得到了不断的完善和发展。
随着工业化的进程,三相电路因其高效、稳定的特性,逐渐取代了单相电路,成为电力系统的主要组成部分。
第三章 交流-交流变换器习题解答3-1. 在交流调压电路中,采用相位控制和通断控制各有什么优缺点?为什么通断控制适用于大惯性负载? 答:相位控制:优点:输出电压平滑变化。
缺点:含有较严重的谐波分量 通断控制:优点:电路简单,功率因数高。
缺点:输出电压或功率调节不平滑。
由于惯性大的负载没有必要对交流电路的每个周期进行频繁的控制,所以可以采用通断控制。
对时间常数比较小负载的工作产生影响。
3-2. 单相交流调压电路,负载阻抗角为30°,问控制角α的有效移相范围有多大?如为三相交流调压电路,则α的有效移相范围又为多大? 答:单相交流调压电路,负载阻抗角为30°,控制角α的有效移相范围是30°-180°;如为三相交流调压电路,α的有效移相范围是30°-150°。
3-3. 一电阻性负载加热炉由单相交流调压电路供电,如α=0°时为输出功率最大值,试求功率为80%,50%时的控制角α。
解:α=0时的输出电压最大,为()222max sin 21U t d t U U o ==⎰πωωπ此时负载电流最大,为R U R U I o o 2max max ==因此最大输出功率为R U I U P o o o 22maxmax max ==输出功率为最大输出功率的80%时,有:R U P P o 22max8.08.0⨯==又由παππα-+=22sin 2U U o)22sin (12παππα-+==R R U P o o化简得παα4.02sin 2=- 由图解法解得 α=60°同理,输出功率为最大输出功率的50%时,有: α=90°3-4. 单相交流调压电路,电源电压220V ,电阻负载R=9Ω,当α=30°时,求: (1)输出电压和负载电流;(2)晶闸管额定电压和额定电流; (3)输出电压波形和晶闸管电压波形。
第5章交流-直流变换器习题(3)第1部分:填空题1.实际工作中,整流电路输出的电压是周期性的非正弦函数,当 α 从0°~90°变化时,整流输出的电压u d的谐波幅值随 α 的增大而增大,当 α 从90°~180°变化时,整流输出的电压 ud 的谐波幅值随 α 的增大而减小。
2.三相桥式全控整流电路带阻感负载时,设交流侧电抗为零,直流电感L为足够大。
当 α =30°时,三相电流有效值与直流电流的关系为I=Id ,交流侧电流中所含次谐波次数为6k+1 ,其整流输出电压中所含的谐波次数为6k 。
3.对于三相半波可控整流电路,换相重迭角的影响,将使输出电压平均值降低。
4.带平衡电抗器的双反星形可控整流电路适用于低电压大电流的场合,当它带电感负载时,移相范围是0°~90°,带电阻负载时,移相范围是0°~120°;如果不接平衡电抗器,则每管最大的导通角为 60°,每管的平均电流为 1/6 I d。
5.多重化整流电路可以提高功率因数,其中移相多重联结有并联多重联接和串联多重联接两大类。
6.PWM整流电路可分为电压型和电流型两大类,目前研究和应用较多的是PWM整流电路。
7.PWM整流电路的控制方法有间接电流控制和直接电流控制,基于系统的静态模型设计、动态性能较差的是间接电流控制,电流响应速度快、系统鲁棒性好的是间接电流控制。
第2部分:简答题1.无功功率和谐波对公用电网分别有那些危害?答:无功功率,对公用电网带来不利影响有:1)无功功率会导致电流增大和视在功率增加,导致设备容量增加。
2)无功功率增加,会使总电流增加,从而使设备和线路的损耗增加。
3)使线路压降增大,冲击性无功负载还会使电压剧烈波动。
谐波,对公用电网危害包括:1)谐波使电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率,大量的3次谐波流过中性线会使线路过热甚至发生火灾。
高等职业技术教育非电专业《电工电子技术》课程教学大纲基本要求编写《电工电子技术》课程教学大纲一、课程的地位、作用和任务《电工电子技术》课程是高职高专院校非电类各专业教学中必不可少的一门重要的知识拓宽技术基础课程,属于一门具有较强实践性的技术基础课程。
随着科学技术的飞速发展,各专业间的知识渗透越来越深入,许多知识还未走出校门就已经失去了应用的价值。
原来为某些专业所特有的技术和理论已经上升为各专业的共有技术和共有理论。
《电工电子技术》就是作为传授发展最快的电知识的一门共有技术和共有理论的课程,学生通过本大纲所规定的全部教学内容的学习,可了解电工、电子技术的发展情况,获得一定的电工、电子基础知识,熟悉在工程应用中涉及到的一些问题,对建立一个实际电系统所涉及的技术要点和技术难点有所理解和掌握,从而满足高新科技飞速发展社会的需要。
通过本课程设置的实验、实训教学环节,使学生养成索取知识、处理事情和适应环境的良好习惯,建立一定的工程意识,进而强化学习自信心和培养自己的动手能力,初步掌握工程技术人员必须具备的基本技能,为学习后续课程和专业课打好基础,也为今后从事工程技术工作和科技工作打下一定的基础。
《电工电子技术》课程的任务在于培养学生的科学思维能力、创新能力,树立理论联系实际的工程观点和提高学生分析问题和解决问题的能力,提高综合素质。
二、教学内容和教学要求第一篇电工技术基础第1章电工技术基础1. 知识点和教学要求(1)从工程应用的角度上重新理解电路中电流、电压、电位、电能和电功率等,理解理想电路元件和电路模型的概念。
(2)了解电气设备的额定值以及电气设备正常工作的条件;理解三种电路状态下电路中的电压、电流情况。
(3)了解线性电路的概念,理解线性元件的特性曲线,掌握电路三大基本元件以及电压源、电流源的特性。
(4)进一步熟悉欧姆定律及其应用;理解结点电流定律和回路电压定律的内容以及对电路的约束关系,掌握基氏定律的应用,掌握电路等效等。
三相电中一相线发热原因1.引言1.1 概述在三相电系统中,三相电线是将电力传输到各个负载设备的重要组成部分。
然而,在某些情况下,我们可能会遇到一相线发热的问题。
一相线发热指的是三相电系统中的一条相线出现异常发热的现象。
这种发热可能导致电线短路、烧损,甚至引发火灾等严重后果。
本文将深入探讨一相线发热的原因,以帮助读者更好地理解和解决这一问题。
首先,我们将介绍三相电的概念和组成,为后续内容打下基础。
接着,我们将详细讨论一相线发热的可能原因,并探讨各种可能的解决方案。
了解一相线发热的原因对于确保三相电系统的安全和稳定运行至关重要。
通过本文的阐述,读者将能够更好地认识并识别导致一相线发热的潜在问题,以便采取适当的措施来避免不必要的损失和危险。
请继续阅读下文,深入了解三相电中一相线发热的原因,以及如何预防和解决这一问题。
2. 正文2.1 三相电的概念2.2 三相电的组成3. 结论3.1 一相线发热的原因13.2 一相线发热的原因2【1.2 文章结构】本文将以以下结构展开对三相电中一相线发热原因的探讨。
首先,在引言部分将概述本文的内容,并给出文章的目的。
接着,在正文部分,将介绍三相电的概念和组成,为后续分析奠定理论基础。
最后,在结论部分将分述一相线发热的原因1和原因2,从而全面解析三相电中一相线发热的背后原因。
通过深入的研究,希望能够更好地理解和解决一相线发热问题,为电力行业的安全与稳定运行提供有效的参考。
1.3 目的本文的目的是探讨三相电中一相线发热的原因。
通过对三相电的概念和组成进行介绍,我们将深入研究导致一相线发热的具体原因,并从中寻找可能的解决方案。
首先,我们会对三相电进行概念性的阐述,包括其在电力系统中的应用和作用。
通过理解三相电的基本概念,我们可以为进一步研究一相线发热的问题提供必要的背景知识。
接下来,我们将探讨三相电的组成,包括A相、B相和C相的介绍,以及它们之间的关系与相互作用。
通过深入了解三相电的组成结构,我们可以更好地理解一相线发热的原因。