当前位置:文档之家› 大一经典高数复习资料经典经典全面复习

大一经典高数复习资料经典经典全面复习

大一经典高数复习资料经典经典全面复习
大一经典高数复习资料经典经典全面复习

高等数学(本科少学时类型)

第一章 函数与极限

第一节 函数

○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)

(){}

,|U a x x a δδ=-<

(){},|0U a x x a δδ=<-

第二节 数列的极限

○数列极限的证明(★)

【题型示例】已知数列{}n x ,证明{}lim n x x a →∞

= 【证明示例】N -ε语言

1.由n x a ε-<化简得()εg n >, ∴()N g ε=????

2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞

→lim

第三节 函数的极限

○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0

lim

【证明示例】δε-语言

1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =

2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0

lim

○∞→x 时函数极限的证明(★)

【题型示例】已知函数()x f ,证明()A x f x =∞

→lim

【证明示例】X -ε语言

1.由()f x A ε-<化简得()x g ε>, ∴()εg X =

2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞

→lim

第四节 无穷小与无穷大

○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim

○无穷小与无穷大的相关定理与推论(★★)

(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f

1

-为无穷大

【题型示例】计算:()()0

lim x x f x g x →????

?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο

内是有界的;

(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0

=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)

3.由定理可知()()0

lim 0x x f x g x →?=????

(()()lim 0x f x g x →∞

?=????)

第五节 极限运算法则

○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则

关于多项式()p x 、()x q 商式的极限运算

设:()()?????+?++=+?++=--n

n n m

m m b x b x b x q a x a x a x p 1

101

10

则有()()???????∞=∞→0

lim 0

b a x q x p x m n m n m n >=<

()()()

()000lim 0

0x x f x g x f x g x →??

??=∞?????

()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00

lim 0

x x f x g x →=(不定型)时,通常分

子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)

【题型示例】求值2

3

3

lim

9

x x x →--

【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()

23

333311

lim

lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()23

9

x f x x -=-的可去间断点

倘若运用罗比达法则求解(详见第三章第二节):

解:()()0

2

33323311

lim lim lim 926

9x L x x x x x x x '→→→'--===-'

- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ??→→??=???????? 【题型示例】求值:9

3

lim 23

--→x x x

【求解示例】3

x →===

第六节 极限存在准则及两个重要极限

○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→x

x

x

∵??

?

??∈?2,

0πx ,x x x tan sin <<∴1sin lim

0=→x x x 0

000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===??

???

(特别地,000

sin()

lim

1x x x x x x →-=-)

○单调有界收敛准则(P57)(★★★)

第二个重要极限:e x x

x =??

?

??+∞

→11lim

(一般地,()()

()()

lim lim lim g x g x f x f x =????????

,其中

()0lim >x f )

【题型示例】求值:1

1232lim +∞→??

? ??++x x x x

【求解示例】

()()

21

1

1

212

1212

2121

1221

22121lim

212

21232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞

+→∞

?++++??+++→∞

+→∞++→∞+++??

??

?

?==+ ? ? ?+++??

??

??

???

???

??=+=+ ? ???

++??

?????

??

???=+

???+????

解:()()12lim 121

21212

121

22lim 121x x x x x x x x x e

e e e

+→∞???+??

+??+→∞+→∞??

?+??

+??

+??

?

+?

?

====

第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)

1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U

U U U U U U e +- 2.U U cos 1~2

1

2

-

(乘除可替,加减不行)

【题型示例】求值:()()x

x x x x x 31ln 1ln lim 20++++→ 【求解示例】

()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+?+=++?+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为

第八节 函数的连续性 ○函数连续的定义(★)

()()()00

0lim lim x x x x f x f x f x -

+→→==

○间断点的分类(P67)(★)

??

?∞?

???

?)无穷间断点(极限为

第二类间断点可去间断点(相等)

跳越间断点(不等)

限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)

【题型示例】设函数()?

??+=x a e x f x 2 ,00

择数a ,使得()x f 成为在R 上的连续函数?

【求解示例】

1.∵()()()2010000f e e e f a a f a -

-?++?===?

?=+=??

=??

2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0

∴e a =

第九节 闭区间上连续函数的性质 ○零点定理(★)

【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】

1.(建立辅助函数)函数()()()x f x g x C ?=--在闭区间[],a b 上连续;

2.∵()()0a b ???<(端点异号)

3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξ?,即()()0f

g C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分

第一节 导数概念

○高等数学中导数的定义及几何意义(P83)(★★)

【题型示例】已知函数()?

??++=b ax e x f x 1 ,00

>≤x x 在0

=x 处可导,求a ,b

【求解示例】

1.∵()()0

010f e f a -+'?==??'=??,()()()00001120012f e e f b f e -

-+?=+=+=??=?

?

=+=??

2.由函数可导定义()()()()

()001

0002

f f a f f f b -+-+

''===???====?? ∴1,2a b ==

【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ????处的切线与法线方程) 【求解示例】

1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()

()1

y f a x a f a -=-

-' 第二节 函数的和(差)、积与商的求导法则

○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+

3.函数商的求导法则(定理三):2

u u v uv v v '

''

-??= ???

第三节 反函数和复合函数的求导法则

○反函数的求导法则(★)

【题型示例】求函数()x f

1

-的导数

【求解示例】由题可得()x f 为直接函数,其在定于域D

上单调、可导,且()0≠'x f ;∴()()

1

1

f

x f x -'

??=

??' ○复合函数的求导法则(★★★)

【题型示例】设(

ln y e =,求y '

【求解示例】

(

22

arcsi y e

x a e e e '

'=

'

?

?

' ?+=

???

? =

?

?

=

解:? ?

第四节 高阶导数 ○()

()()

()1n n f

x f

x -'??=??(或()()11n n n n d y d y dx dx --'??=????

)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1

111y x x

-'=

=++, ()()()12

111y x x --'??''=+=-?+??

, ()()()()()23

11121y x x --'??'''=-?+=-?-?+??

……

()1(1)(1)(1)n

n n y n x --=-?-?+!

第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程y

e x y +=所给定的曲线C :

()x y y =在点()1,1e -的切线方程与法线方程

【求解示例】由y

e x y +=两边对x 求导

即()y y x e '''=+化简得1y

y e y ''=+?

∴e

e y -=-=

'11

111 ∴切线方程:()e x e

y +--=

-111

1

法线方程:()()e x e y +---=-111

○参数方程型函数的求导

【题型示例】设参数方程()()

???==t y t x γ?,求22dx y

d

【求解示例】1.()()t t dx dy ?γ''= 2.()22dy d y dx dx

t ?'??

???=' 第六节 变化率问题举例及相关变化率(不作要求)

第七节 函数的微分

○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ?'=

第三章 中值定理与导数的应用

第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ?∈, 使得()()cos sin 0f

f ξξξξ'+=成立

【证明示例】

1.(建立辅助函数)令()()sin x f x x ?=

显然函数()x ?在闭区间[]0,π上连续,在开区间

()0,π上可导;

2.又∵()()00sin00f ?==

()()sin 0f ?πππ== 即()()00??π==

3.∴由罗尔定理知

()0,ξπ?∈,使得()()cos sin 0f f ξξξξ'+=成立

○拉格朗日中值定理(★)

【题型示例】证明不等式:当1x >时,x

e e x >? 【证明示例】

1.(建立辅助函数)令函数()x f x e =,则对1x ?>,

显然函数()f x 在闭区间[]1,x 上连续,在开区间

()1,x 上可导,并且()x f x e '=;

2.由拉格朗日中值定理可得,[]1,x ξ?∈使得等式

()11x e e x e ξ-=-成立,

又∵1

e e ξ>,∴()11

1x e e x e e x e ->-=?-,

化简得x e e x >?,即证得:当1x >时,x

e e x >? 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】

1.(建立辅助函数)令函数()()ln 1f x x =+,则对

0x ?>,函数()f x 在闭区间[]0,x 上连续,在开区

间()0,π上可导,并且()1

1f x x

'=+;

2.由拉格朗日中值定理可得,[]0,x ξ?∈使得等式

()()()1

ln 1ln 1001x x ξ+-+=-+成立,

化简得()1

ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()1

11f ξξ

'=<+,∴()ln 11x x x +时,x

e e x >?

第二节 罗比达法则

○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆

等价无穷小的替换(以简化运算)

2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(

0,0∞

)且满足条件,

则进行运算:()()()

()

lim lim

x a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)

B .☆

不属于两大基本不定型(转化为基本不定型) ⑴0?∞型(转乘为除,构造分式) 【题型示例】求值:0

lim ln x x x α

→?

【求解示例】

()1000020

1

ln ln lim ln lim lim lim 111

lim 0

x x L x x x x x x x x x x x x x a ααα

αααα∞∞

-'→→→→→'

?===?'??- ???

=-=解: (一般地,()0

lim ln 0x x x β

α

→?=,其中,R αβ∈)

⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:01

1lim sin x x x →??-

??

?

【求解示例】

200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--??????-== ? ? ???

?????解:

()()()()00

0002

sin 1cos 1cos sin lim

lim lim lim 022

2L x x L x x x x x x x

x x x ''→→→→'

'---====='

' ⑶0

0型(对数求极限法)

【题型示例】求值:0

lim x

x x →

【求解示例】

()()0000

lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim

111

lim lim 0lim lim 11x x x x x L x y

y x x x x x y x y x x x x

x x

x y x

x x x y e e e x

→∞

'→→→→→→→====

'→=='?? ???

==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)

【题型示例】求值:()10

lim cos sin x

x x x →+

【求解示例】

()()

()

()()

1

000

000lim ln ln 10

ln cos sin cos sin ,ln ,

ln cos sin ln 0limln lim

ln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x x

x x L x x y

y x x x x y x x y x

x x y x y x

x x x x x x x y e e e e

→→→'→→→→+=+=

+→='+??--??====++'===解:令两边取对数得对求时的极限,从而可得

⑸0

∞型(对数求极限法) 【题型示例】求值:tan 01lim x

x x →??

???

【求解示例】

()()tan 00

200

020*******,ln tan ln ,

1ln 0lim ln lim tan ln 1

ln ln lim

lim

lim 1sec 1tan tan tan sin sin lim lim li x

x x x L x x x L x y y x x x y x y x x x x

x x x x

x x x x x →→∞

'→→→'→→??

??

==? ?

???

??

??

??→=? ???

????'

=-=-=-??'??-

? ?????

'==='解:令两边取对数得对求时的极限,0

0lim ln ln 00

2sin cos m 0,

1lim =lim 1

x x y

y x x x x

y e e e →→→→?====从而可得

○运用罗比达法则进行极限运算的基本思路(★★)

00001∞??∞-∞??→←???∞←???∞?∞?∞

(1)(2)(3)

⑴通分获得分式(通常伴有等价无穷小的替换)

⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)

第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】

1.∵函数()f x 在其定义域R 上连续,且可导 ∴()261812f x x x '=-+

2.令()()()6120f x x x '=--=,解得:

121,2x x ==

4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2

【题型示例】证明:当0x >时,1x

e x >+ 【证明示例】

1.(构建辅助函数)设()1x x e x ?=--,(0x >)

2.()10x

x e ?'=->,(0x >)

∴()()00x ??>=

3.既证:当0x >时,1x

e x >+

【题型示例】证明:当0x >时,()ln 1x x +<

【证明示例】

1.(构建辅助函数)设()()ln 1x x x ?=+-,(0x >)

2.()1

101x x

?'=

-<+,(0x >) ∴()()00x ??<=

3.既证:当0x >时,()ln 1x x +<

○连续函数凹凸性(★★★)

【题型示例】试讨论函数2

3

13y x x =+-的单调性、极值、

凹凸性及拐点

【证明示例】

1.()()2

36326661y x x x x y x x '?=-+=--??''=-+=--?? 2.令()()320

610

y x x y x '=--=???''=--=??解得:120,21x x x ==??=?

x (,0)-∞ 0 (0,1)

1 (1,2)

2 (2,)+∞

y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 5

4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)

单调递增区间为(,0)-∞,(2,)+∞;

⑵函数23

13y x x =+-的极小值在0x =时取到,

为()01f =,

极大值在2x =时取到,为()25f =;

⑶函数2

3

13y x x =+-在区间(,0)-∞,(0,1)上凹,

在区间(1,2),(2,)+∞上凸;

⑷函数2

3

13y x x =+-的拐点坐标为()1,3

第五节 函数的极值和最大、最小值

○函数的极值与最值的关系(★★★)

⑴设函数()f x 的定义域为D ,如果M x ?的某个邻域()M U x D ?,使得对()M x U x ?∈o

,都适合不等式()()M f x f x <,

我们则称函数()f x 在点(),M M x f x ????处有极大值()M f x ;

令{}123,,,...,M M M M Mn x x x x x ∈

则函数()f x 在闭区间[],a b 上的最大值M 满足:

()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;

⑵设函数()f x 的定义域为D ,如果m x ?的某个邻域

()m U x D ?,使得对()m x U x ?∈o

,都适合不等

()()m f x f x >,

我们则称函数()f x 在点(),m m x f x ????处有极小值

()m f x ;

令{}123,,,...,m m m m mn x x x x x ∈

则函数()f x 在闭区间[],a b 上的最小值m 满足:

()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;

【题型示例】求函数()3

3f x x x =-在[]1,3-上的最值

【求解示例】

1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+

2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= x

1- ()1,1-

1 (]1,3

()f x ' 0

+

- ()f x

极小值

Z

极大值

]

4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)

第八节 方程的近似解(不作要求) 第四章 不定积分

第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:

假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或

()()dF x f x dx =?成立,则称()F x 为()f x 的一

个原函数

⑵原函数存在定理:(★★)

如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)

在定义区间I 上,函数()f x 的带有任意常数项

C 的原函数称为()f x 在定义区间I 上的不定积分,

即表示为:()()f x dx F x C =+?

?

称为积分号,()f x 称为被积函数,()f x dx 称

为积分表达式,x 则称为积分变量)

○基本积分表(★★★)

○不定积分的线性性质(分项积分公式)(★★★)

()()()()1

2

1

2

k f x k g x dx k f x dx k g x dx +=+?

?????? 第二节 换元积分法

○第一类换元法(凑微分)(★★★) (()dx x f dy ?'=的逆向应用)

()()()()f x x dx f x d x ????'?=??

?????????????

【题型示例】求221

dx a x +?

【求解示例】

2

2

221

111

1

arctan 11x x dx dx d C

a x a a a

a x x a a ??==

=+ ?+??????++ ? ???

??

??

?

解:

【题型示例】求

【求解示例】

(

)(

)121212x x C

=+=+=

○第二类换元法(去根式)(★★)

(()dx x f dy ?'=的正向应用)

⑴对于一次根式(0,a b R ≠∈):

t =,于是2t b x a

-=,

则原式可化为t

⑵对于根号下平方和的形式(0a >):

tan x a t =(2

2

t π

π

-

<<

),

于是arctan x

t a

=,则原式可化为sec a t ;

⑶对于根号下平方差的形式(0a >):

a

sin x a t =(2

2

t π

π

-

<<

),

于是arcsin x

t a

=,则原式可化为cos a t ;

b

sec x a t =(02

t π

<<

),

于是arccos a

t x =,则原式可化为tan a t ;

【题型示例】求(一次根式) 【求解示例】

2221t x t dx tdt

tdt dt t C C

t =-=?==+=??

【题型示例】求(三角换元)

【求解示例】

()()2

sin ()

2

2

22arcsin

cos 22cos 1cos 22

1sin 2sin cos 222x a t t x

t a

dx a t

a a tdt t dt

a a t t C t t t C π

π

=-<<==??????→=+??

=++=++ ?????

第三节 分部积分法 ○分部积分法(★★)

⑴设函数()u f x =,()v g x =具有连续导数,则其

分部积分公式可表示为:udv uv vdu =-??

⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '?=) ⑶使用分部积分公式:udv uv vdu =-??

⑷展开尾项vdu v u dx '=???

,判断

a .若v u dx '??

是容易求解的不定积分,则直接计

算出答案(容易表示使用基本积分表、换元法

与有理函数积分可以轻易求解出结果); b .若v u dx '??

依旧是相当复杂,无法通过a 中方

法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C

【题型示例】求2x e x dx ??

【求解示例】

()

()22222

2222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C

?===-=-?=-?=-+=-++???????解:

【题型示例】求sin x e xdx ??

【求解示例】

()()

()()

sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x x

x x x x x x x x x x e xdx e d x e x xd e

e x e xdx e x e d x e x e x xd e e x e x e xdx

?=-=-+=-+=-+=-+-=-+-???????解:

()sin cos sin sin x x x x e xdx e x e x xd e ?=-+-??即:

∴()1sin sin cos 2

x

x

e xdx e x x C ?=

-+?

第四节 有理函数的不定积分 ○有理函数(★)

设:()()()()1011

01m m m

n n n

P x p x a x a x a Q x q x b x b x b --=++?+==++?+ 对于有理函数

()

()

P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数

()

()

P x Q x 是真分式;当()P x 的次数

大于()Q x 的次数时,有理函数()

()

P x Q x 是假分式

○有理函数(真分式)不定积分的求解思路(★)

⑴将有理函数()

()

P x Q x 的分母()Q x 分拆成两个没有

公因式的多项式的乘积:其中一个多项式可以表示为一次因式()k

x a -;而另一个多项式可以表示为

二次质因式()

2

l

x px q ++,(2

40p q -<);

即:()()()12Q x Q x Q x =?

一般地:n mx n m x m ?

?+=+ ??

?,则参数n a m =-

2

2b c ax bx c a x x a a ??++=++ ??

?

则参数,b c

p q a a ==

⑵则设有理函数

()

()

P x Q x 的分拆和式为:

()()()()()()122k l

P x P x P x Q x x a x px q =+-++

其中

()

()()()

112

2...k k

k

P x A A A x a x a x a x a =

+++----

()

()

()()

21122

2

22

22...l

l l

l

P x M x N M x N x px q x px q x px q M x N x px q ++=+

+++++++++

++

参数12

1212,,...,,,,...,l k l

M M M A A A N N N ?????????由待定系数法(比较法)求出

⑶得到分拆式后分项积分即可求解

【题型示例】求2

1

x dx x +?(构造法) 【求解示例】

()()()2

21111111111

ln 112

x x x x dx dx x dx x x x xdx dx dx x x x C

x +-++??==-+ ?+++?

?=-+=-++++??????

第五节 积分表的使用(不作要求)

第五章 定积分极其应用

第一节 定积分的概念与性质 ○定积分的定义(★)

()()0

1

lim n

b

i

i

a

i f x dx f x I λ

ξ→==?=∑?

(()f x 称为被积函数,()f x dx 称为被积表达式,x

则称为积分变量,a 称为积分下限,b 称为积分上限,

[],a b 称为积分区间)

○定积分的性质(★★★)

()()b b

a

a

f x dx f u du =?? ⑵()0a a

f x dx =? ⑶()()b b

a a

kf x dx k f x dx =??????

⑷(线性性质)

()()()()1212b b b

a a a k f x k g x dx k f x dx k g x dx +=+?

?????? ⑸(积分区间的可加性)

()()()b

c b

a

a

c

f x dx f x dx f x dx =+?

??

⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则

()0b

a

f x dx >?;

(推论一)

若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b b

a

a

f x dx

g x dx ≤??;

(推论二)

()()b b

a

a

f x dx f x dx ≤??

○积分中值定理(不作要求) 第二节 微积分基本公式

○牛顿-莱布尼兹公式(★★★)

(定理三)若果函数()F x 是连续函数()f x 在区间

[],a b 上的一个原函数,则

()()()b

a

f x dx F b F a =-?

○变限积分的导数公式(★★★)(上上导―下下导)

()()()

()()()()x x d f t dt f x x f x x dx

?ψ??ψψ''=-????????? 【题型示例】求2

1

cos 2

lim

t x

x e dt x -→?

【求解示例】

()

2

2

11

cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x

--'→→='??

()

()

()()22

22221

cos cos

000cos 0

cos cos 0

cos 010sin sin lim

lim 22sin lim 2cos sin 2sin cos lim

2

1

lim sin cos 2sin cos 21122x

x

x x x

L x x

x

x x x e e

x x e x

x

d

x e dx x x e

x e

x x

e x x x x e e

---→→-'→--→-→-?-?-?==?='

?+??=??

=+??

?=?=

第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)

()()()()b b

a

a f x x dx f x d x ????'?=??????????????

?

【题型示例】求201

21

dx x +?

【求解示例】

()[]2

220001111

21ln 212122121ln 5ln 5ln122

解:dx d x x x x =+=?+??

?++=-=?

? ⑵(第二换元法)

设函数()[],f x C a b ∈,函数()x t ?=满足: a .,αβ?,使得()(),a b ?α?β==;

b .在区间[],αβ或[],βα上,()(),f t t ??'????连续 则:()()()b

a f x dx f t t dt β

α

??'=??????

【题型示例】求40

? 【求解示例】

()221

0,43

22

0,1014,3

3

2332311132213111332223522933

解:t t x x t x t t dx t t t dt t dt t x t =-====+??????→+??=??=+=+ ???=-=

???? ⑶(分部积分法)

()()()()()()()()()()()()

b

b

a a

b b

b a

a

a

u x v x dx u x v x v x u x dx

u x dv x u x v x v x du x ''=-=-?

????

???

○偶倍奇零(★★)

设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则

()()0

2a

a

a

f x dx f x dx -=?

?

⑵若()()f x f x -=-,则

()0a

a

f x dx -=?

第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)

如:不定积分公式

21

arctan 1dx x C x =++?的证明。很

多同学上课时无法证明,那么在学期结束时,我给出这样一种证明方法以说明问题:

()tan 2

2arctan 222

22211tan 11tan 111cos sec cos cos arctan x t t t x dx t dt x t dt t dt dt t t t t C x C

π

π??

=-<< ???='??????→??++=??=??==+=+????? 如此,不定积分公式22

11arctan x

dx C a x a a

=++?也就很容易证明了,希望大家仔细揣摩,认真理解。

最后,限于编者水平的限制,资料中错误和疏漏在所难免,希望同学们积极指出,以便互相学习改进。

本文档由编辑

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

大一高数上复习重点

大一高数上复习重点 Prepared on 24 November 2020

高数高数重点 本章公式: 两个重要极限: 常用的8个等价无穷小公式:当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2*(x^2) (e^x)-1~x ln(1+x)~x [(1+x)^1/n]-1~(1/n)*x 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

三.微分中值定理与导数的应用:

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ① 在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ② 洛必达法则可连续多次使用,直到求出极限为止. ③ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质

2 第一类换元法(凑微分法) 2 第二类换元法(三角代换无理代换倒代换) 3 分部积分法 f(x)中含有 可考虑用代换

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 2 2 2 2 122 tan 11cos 12sin u du dx x u u u x u u x += =+-=+= , , ,  a x x a a a x x x x x x x x c x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )tan (sec )(tan 2 2 = '='?-='?='-='='2 2 2 2 11)cot (11 )(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

大一上学期 高数复习要点整理

高数解题技巧。高数(上册)期末复习要点 高数(上册)期末复习要点 第一章:1、极限 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧。(高等数学、考研数学通用) 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 线性代数解题的八种思维定势

大一上学期高数知识点

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2 cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )!1()1()(ln 1 )(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00 ,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: lim →x =--0 ) 0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1 sin )(? = 0 lim →x x x K 1 sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ? ?>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?? ???=≠?-?='--0 ,00,1cos 1sin )(21 x x x x x Kx x f K K

大一高数一知识点总结

大一高数一知识点总结 一、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 AB, BC ,那么 AC ④如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 二、集合及其表示 1、集合的含义: “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。 所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。 2、集合的表示 通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作 a∈A ,相反,d不属于集合A ,记作 dA。 有一些特殊的集合需要记忆: 非负整数集(即自然数集) N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 集合的表示方法:列举法与描述法。 ①列举法:{a,b,c……}

高等数学_大一_上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB = (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论m n a x b x --+++++11结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为αβ. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小.

推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设~,~α αββ'', 且lim βα''存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123; (2)lim lim n n n n y z a →∞→∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 10lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型.

高数一知识点

第一章~~第三章 一、极限 数列极限lim n n x ->∞ 函数极限lim ()x f x ->∞ ,lim ()x f x →+∞ ,lim ()x f x →-∞ lim ()x x f x ->,0 lim ()x x f x -->,0 lim ()x x f x +-> 求极限(主要方法): (1)1 00 sin 1 lim 1,lim(1),lim(1)x x x x x x e x e x x ->->∞->=+=+= (2)等价无穷小替换(P76)。当()0x ?→时, 代换时要注意,只有乘积因子才可以代换。 (3)洛必达法则( 000,,0,,0,1,0∞∞?∞∞-∞∞∞),只有0,0∞∞ 可以直接用罗比达法则。 幂指函数求极限:()lim ()ln ()lim ()v x v x u x u x e =; 或,令()()v x y u x =,两边取对数l n ()l n (y v x u x =,若l i m ()l n ()v x u x a =,则 ()lim ()v x a u x e =。 结合变上限函数求极限。 二、连续 0 0lim ()()x x f x f x ->= 左、右连续 0 00lim ()(),lim ()()x x x x f x f x f x f x -+->->== 函数连续?函数既左连续又右连续 闭区间上连续函数性质:最值,有界,零点(结合证明题),介值,推论。 三、导数 0 000000()()()() '()lim lim x x x f x f x f x x f x f x x x x ->->-+-==- 左导数 0 000000()()()() '()lim lim x x x f x f x f x x f x f x x x x - - -->->-+-==-

大一第一学期高数总结

大一第一学期高数总结 高数学习起来确实是不太轻松。下面是小编整理的大一第一学期高数总结,欢迎阅读。 转眼间,大一已经过去一半了,高数学习也有了一个学期了,仔细一想高数也不是传说的那么可怕,当然也没有那么容易。 有人说,高数是一棵高数,很多人挂在了上面。但是,只要努力,就能爬上这棵高树,凭借它的高度,便能看到更远的风景。 首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至老师说高数很难学,有很多人挂科了。这基本上是事实,但是或多或少夸张了点吧。事实上,当我们抛掉那些畏难情绪,心无旁骛的学习高数时,他并不是那么难,至少不是那种难到学不下去的。所以我们要有信心去学好它,有好大学的第一步。 其次,课前预习很重要。每个人学习习惯不同,有些人习惯预习,有些人觉得预习不适合自己。每次上课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的自己先理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。 然后,要把握课堂。课堂上老师讲的每一句话都是有可

能是很有用的,如果错过了就可能会使自己以后做某些习题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在需要的是方法,是思维,而不是仅仅是例题本身的答案。我们学习高数不是为了将来能计算算数,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。此外,要以教材为中心。虽说“尽信书,不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点,便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。 最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后习题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话,做好一题,就能解决很多类型的题了。 下面是我对这学期的学习重点的一些总结: 1.判断两个函数是否相同 一个函数相同的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断表达式是否同意即可。 2.判断函数奇偶性判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇函数之和还是奇函数;两个奇函数积

大一高数知识点,重难点整理

第一章 基础知识部分 &1.1初等函数 一、函数的概念 1、函数的定义 函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。 设有两个变量x 与y ,如果对于变量x 在实数集合D 内的每一个值,变量y 按照一定的法则都有唯一的值与之对应,那么就称x 是自变量,y 是x 的函数 ,记作y=f (x ),其中自变量x 取值的集合D 叫函数的定义域,函数值的集合叫做函数的值域。 2、函数的表示方法 (1)解析法 即用解析式(或称数学式)表示函数。如y=2x+1, y=︱x ︱,y=lg(x+1),y=sin3x 等。 便于对函数进行精确地计算和深入分析。 (2)列表法 即用表格形式给出两个变量之间函数关系的方法。 便于差的某一处的函数值。 (3)图像法 即用图像来表示函数关系的方法 非常形象直观,能从图像上看出函数的某些特性。 分段函数——即当自变量取不同值时,函数的表达式不一样,如 ???--≥+=0,120 x 1,2x y x x ()?????=≠=0 0, 1sin x f x x x x 隐函数——相对于显函数而言的一种函数形式。所谓显函数,即直接用含自变量的式子表示的函数,如y=x 2+2x+3,这是常见的函数形式。而隐函数是指变量x 、y 之间的函数关系式是由一个含x ,y 的方程F(x,y)=0给出的,如2x+y-3=0,0e y x =--+y x 等。 而由2x+y-3=0可得y=3-2x ,即该隐函数可化为显函数。 参数式函数——若变量x,y 之间的函数关系是通过参数式方程()()()? ? ?∈==T t t y t x , ψ?给出的,这样的函数称为由参数方程确定的函数,简称参数式方程,t 称为参数。 反函数——如果在已给的函数y=f(x)中,把y 看作自变量,x 也是y 的函数,则所确定的函数x=∮(y)叫做y=f(x)的反函数,记作x=f ˉ1(y)或y= f ˉ1(x)(以x 表示自变量). 二、函数常见的性质 1、单调性(单调增加、单调减少) 2、奇偶性(偶:关于原点对称,f (-x )=f (x );奇:关于y 轴对称,f (-x )=-f(x).) 3、周期性(T 为不为零的常数,f (x+T )=f (x ),T 为周期) 4、有界性(设存在常数M >0,对任意x ∈D ,有f ∣(x)∣≤M,则称f(x)在D 上有界,如果不存在这样的常数M ,则称f(x)在D 上无界。 5、极大值、极小值

大一高数学习知识重点与例题讲解

大一高数 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1 f x -为无穷小;反之,若()x f 为无穷小,且

大一高数总结

大一高数总结 ---姓名:孙功武 学号:1506011012 转眼间,大一已经过去一半了,高数学习也有了一个学期了,仔细一想高数也不是传说的那么可怕,当然也没有那么容易。 有人说,高数是一棵高数,很多人挂在了上面。但是,只要努力,就能爬上这棵高树,凭借它的高度,便能看到更远的风景。 首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至老师说高数很难学,有很多人挂科了。这基本上是事实,但是或多或少夸张了点吧。事实上,当我们抛掉那些畏难情绪,心无旁骛的学习高数时,他并不是那么难,至少不是那种难到学不下去的。所以我们要有信心去学好它,有好大学的第一步。 其次,课前预习很重要。每个人学习习惯不同,有些人习惯预习,有些人觉得预习不适合自己。每次上课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的自己先理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。 然后,要把握课堂。课堂上老师讲的每一句话都是有可能是很有用的,如果错过了就可能会使自己以后做某些习题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在需要的是方法,是思维,而不是仅仅是例题本身的答案。我们学习高数不是为了将来能计算算数,而是为了获

得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。此外,要以教材为中心。虽说“尽信书,不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点,便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。 最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后习题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话,做好一题,就能解决很多类型的题了。 下面是我对这学期的学习重点的一些总结: 一、函数 1.判断两个函数是否相同 一个函数相同的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断表达式是否同意即可。 2.判断函数奇偶性 判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和还是奇(偶)函数;两个奇函数积是偶函数;两个偶函数之积仍是偶函数;一积一偶之积是奇函数。 3.求极限的方法

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 lim ln 0n x x x + →=, 0, x x e x →-∞ ?→?+∞→+∞ ? 四. 必备公式: 1. 等价无穷小: 当()0u x →时, sin ()()u x u x ;tan ()()u x u x ; 2 11cos () ()2 u x u x -;()1()u x e u x -; ln(1()) () u x u x +(1())1() u x u x αα+-arcsin ()() u x u x arctan ()()u x u x 2. 泰勒公式: (1)2211()2!x e x x o x =++ +; (2)221 ln(1)()2x x x o x +=-+; (3)341sin ()3!x x x o x =-+; (4)245 11cos 1()2!4! x x x o x =-++; (5)22(1)(1)1()2! x x x o x α ααα-+=+++. 五. 常规方法: 前提: (1)准确判断0, ,1,0M α∞ ∞∞ (其它如:00,0,0,∞-∞?∞∞);

大一高数复习资料【全】

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明(★) 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????。当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞ →x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ?? =∞ ????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值23 3 lim 9 x x x →--

相关主题
文本预览
相关文档 最新文档