统计书后习题答案
- 格式:doc
- 大小:1.17 MB
- 文档页数:38
医学统计学第一章 绪论答案名词解释:(1) 同质与变异:同质指被研究指标的影响因素相同,变异指在同质的基础上各观察单位(或个体)之间的差异。
(2) 总体和样本:总体是根据研究目的确定的同质观察单位的全体。
样本是从总体中随机抽取的部分观察单位。
(3) 参数和统计量:根据总体个体值统计算出来的描述总体的特征量,称为总体参数,根据样本个体值统计计算出来的描述样本的特征量称为样本统计量。
(4) 抽样误差:由抽样造成的样本统计量和总体参数的差别称为抽样误差。
(5) 概率:是描述随机事件发生的可能性大小的数值,用p 表示(6) 计量资料:由一群个体的变量值构成的资料称为计量资料。
(7) 计数资料:由一群个体按定性因数或类别清点每类有多少个个体,称为计数资料。
(8) 等级资料:由一群个体按等级因数的级别清点每类有多少个体,称为等级资料。
是非题:1. ×2. ×3. ×4. ×5. √6. √7. ×单选题:1. C2. E3. D4. C5. D6. B第二章 计量资料统计描述及正态分布答案名词解释:1. 平均数 是描述数据分布集中趋势(中心位置)和平均水平的指标2. 标准差 是描述数据分布离散程度(或变量变化的变异程度)的指标3. 标准正态分布 以μ服从均数为0、标准差为1的正态分布,这种正态分布称为标准状态分布。
4. 参考值范围 参考值范围也称正常值范围,医学上常把把绝大多数的某指标范围称为指标的正常值范围。
填空题:1. 计量,计数,等级2. 设计,收集资料,分析资料,整理资料。
3. σμχ-=u (变量变换)标准正态分布、0、1 4. σ± σ96.1± σ58.2± 68.27% 95% 99%5. 47.5%6.均数、标准差7. 全距、方差、标准差、变异系数8. σμ96.1± σμ58.2±9. 全距 R10. 检验水准、显著性水准、0.05、 0.01 (0.1)11. 80% 90% 95% 99% 95%12. 95% 99%13. 集中趋势、离散趋势14. 中位数15. 同质基础,合理分组16. 均数,均数,μ,σ,规律性17. 标准差18. 单位不同,均数相差较大是非题:1. ×2. √3. ×4. ×5. ×6. √7. √8. √9. √ 10. √11. √ 12. √ 13. × 14. √ 15. √ 16. × 17. × 18. × 19. √ 20. √21. √单选题:1. B2. D3. C4. A5. C6. D7. E8. A9. C 10. D11. B 12. C 13. C 14. C 15. A 16. C 17. E 18. C 19. D 20. C21. B 22. B 23. E 24. C 25. A 26. C 27. B 28. D 29. D 30. D31. A 32. E 33. D 34. A 35. D 36. D 37. C 38. E 39. D 40. B41. C 42. B 43. D 44. C 45. B问答题:1.均数﹑几何均数和中位数的适用范围有何异同?答:相同点,均表示计量资料集中趋势的指标。
第四章统计数据得概括性度量4.1 一家汽车零售店得10名销售人员5月份销售得汽车数量(单位:台)排序后如下: 24710101012121415要求:(1) 计墀汽车销售量得众数、中住数与平均数. (2) 根据定艾公式计算四分位数。
(3) 计算销售童得标准差. (4) 说明汽车销隹量分布得特^|1。
解:Statistics汽车销tt 数ftNValid 10Missing0 Mean9. 60Median10. 00Mode10Sid 、 Deviation4. 169P crcendles25 6. 255010. 007512. 50单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 4120311723要求;(1)计舞众数、中位数:排序形成单变童分值得频数分布与累计频数分布:网络用户得年龄Kean =9. e 514 Dev, =L 169X =102.5 £ 7.5 £0 12-« 154.2 随机拙取25个网络用户•得到她们得年龄数据如下;HiftosraaS从频数瞧出,众数Mo有两个:19、23;从累计频数瞧,中位数Me=23.(2)根据定爻公式计算四分位数。
01位置=25/4=6、25,因此01=19.03位置=3X25/4=8、75,因此03=27,或者,由于25与27都只有一个, 因此Q3也可等于25+0、75X2=26、5。
(3)计舞平均数与标准差;Mean=24、00; Std、Dev i at i ori=6、652(4)计舞偏态系数与峰态系数:Skewnessh、080:Kurtosis=0> 773(5)对网民年龄得分布特征进行综合分析:分布•均值=24、标准差=6、652、呈右偏分布•如需瞧清楚分布形态,需要进行分组.为分组情况下得直方图;KK用户的年K为分组情况下得槪率密度曲线:分组: k 确定组数;K = l +里凹= l + li凹=11.398ig(2)2s 确定纽•瞪:组距=( 3s 分组频数表网络用户得年龄(Binned)Frequency Percent Cumulative Frequency Cumulative PercentValid<=15 / 4、0 / 4、016-20 8 32、0 9 36、0 21-259 36. 0 IS 72、026-30 3 12. 0 21 84、031-35 2 8、0 23 92、0 36-40 1 4、0 24 96、041 + 1 4、0 25100. 0Total25100、0Mean23、 3000 Sld> Deviation 7. 0237?V^iance 49. 333 Skewness }、163 KunosisI. 302分组后得直方图;L>-lg2 + 0.30103 取 k"最大值-最小值)m 组数=(41-15)^6=4. 3,取5M *1U U A » U » n 丛 3 :s ■«用户»年》3233010.00 II» :&»» 30.05 非.00 10 00&中値4.3某银行为缩短顾客到银行办理业务等待得吋间。
4.2(1)众数:19;23中位数:23 平均数:24(2)四分位数:Q L 位置=425=6.25.所以Q L =19+0.25^0=19 Q U 位置=475=18.75,所以Q U =25+2^0.75=26.5(3)标准差:6.65 (4)峰度0.77,偏度1.08 4.3(1)茎叶图Frequency Stem & Leaf 1.00 5. 5 3.00 6. 678 5.00 7. 13488 (2) 平均数:7,标准差0.71 (3)第一种方式的离散系数x s v s ==2.797.1=0.28 第二种方式的离散系数xs v s ==771.0=0.10 所以,第二种排队方式等待时间更集中。
(4)选择第二种,因为平均等待的时间短,而且等待时间的集中程度高 4.5.甲企业总平均成本nf Mx ki ii∑==1=3406600=19.41(元) 乙企业总平均成本nf Mx ki ii∑==1=(元)29.183426255=所以甲企业的总平均成本比乙企业的高,原因是甲企业高成本的产品B 生产的产量比乙企业多,所以把总平均成本提高了。
4.6计算数据如表:利润总额的平均数nf Mx ki ii∑==1=(万元)67.42612051200= 利润总额标准差()nx x f *2∑-=σ= (万元)99.1151201614666==σ 峰态系数6479.03352.23)99.115(120851087441643)(4414—=-=-⨯=--=∑=ns f x MK ki ii偏态系数313)(ns f x MSK ki ii∑=-==2057.0)99.115(120)67.426(3513=⨯-∑=i iif M4.8对于不同的总体的差异程度的比较采用标准差系数,计算如下:%3.8605===x s v s 男; %10505===x s v s 女 (1)女生的体重差异大,因为离散系数大;(2)以磅为单位,男生的平均体重为132.6磅,标准差为11.05磅;女生的平均体重为110.5磅,标准差为11.05磅%33.86.13205.11===x s v s 男%105.11005.11===x s v s 女 (3)156065=-=-=s x x z i i ,所以大约有68%的人体重在55kg~65kg 之间;(4)255040=-=-=s x x z i i ,所以大约有95%的女生体重在40kg~60kg 之间。
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为其中: 2222α2222)(E z n σα=n z E σα2=与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大;与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。
灯泡的使用寿命频数分布表3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。
(2)制作茎叶图,并与直方图进行比较。
解:(1)频数分布表(2)茎叶图第三章、练习题及解答1. 已知下表资料:试根据频数和频率资料,分别计算工人平均日产量。
解:根据频数计算工人平均日产量:687034.35200xf x f===∑∑(件) 根据频率计算工人平均日产量:34.35fx xf==∑∑(件)结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。
习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他 4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ 2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表1 0.9 0.8 0.7 0.6 0.5 0.4 0.30.2 0.11 2 3 4 xy5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().niX i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎛⎫⎛=Φ-Φ-=Φ-≥⎪⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-((12(2(12P T P T pP T p p P T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=-又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N nnσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P XP X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m n i i m X n χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m n i i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P c T P c S X P c S X P c X S P μμμ27.解:22cov(,)(,))(1()()1cov(,)()1(,)1j i j j i j i j i j i j i j X X X X r X X X X D X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=---=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:00ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x txEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰ Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ====极大似然估计:()()/1111exp ,ln ln i nx ni n L enx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫⎛== ⎪⎝⎝⎭∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
第2章统计数据的描述●9.某百货公司6月份各天的销售额数据如下单位万元257 276 297 252 238 310 240 236 265 278 271 292 261 281 301 274 267 280 291 258 272 284 268 303 273 263 322 249 269 295 1计算该百货公司日销售额的均值、中位数和四分位数2计算日销售额的标准差。
解1将全部30个数据输入Excel表中同列点击列标得到30个数据的总和为8223 于是得该百货公司日销售额的均值见Excel练习题2.9 xxn822330274.1万元或点选单元格后点击“自动求和”→“平均值”在函数EVERAGE 的空格中输入“A1A30”回车得到均值也为274.1。
在Excel表中将30个数据重新排序则中位数位于30个数据的中间位置即靠中的第15、第16两个数272和273的平均数Me2722732272.5万元由于中位数位于第15个数靠上半位的位置上所以前四分位数位于第1第15个数据的中间位置第8位靠上四分之一的位置上由重新排序后的Excel 表中第8位是261第15位是272从而QL2612732724261.25万元同理后四分位数位于第16第30个数据的中间位置第23位靠下四分之一的位置上由重新排序后的Excel表中第23位是291第16位是273从而QU2912732724290.75万元。
2未分组数据的标准差计算公式为s30211iixxn 利用上公式代入数据计算是个较为复杂的工作。
手工计算时须计算30个数据的离差平方并将其求和再代入公式计算其结果得s21.1742。
见Excel练习题2.9 我们可以利用Excel表直接计算标准差点选数据列A列的最末空格再点击菜单栏中“∑”符号右边的小三角“▼”选择“其它函数”→选择函数“STDEV”→“确定”在出现的函数参数窗口中的Number1右边的空栏中输入A1:A30→“确定”即在A列最末空格中出现数值21.17412即为这30个数据的标准差。
第一章1*.下面的列联表是根据一个小城市的居民教育水平(以获得了高中文凭和没有获得高中文凭分类)和就业状况(以全职和非全职分类)所做出如果原假设即在教育水平和工作状态之间没有联系为真,那么下列哪一个选项表明了获得了高中文凭并且是全职工作的期望值? A.9252157 B. 9282157 C.528292 D. 655292 E. 9252821*. Answer :B Analysis :本题考查二维表中两个变量的独立性,如果原假设独立成立,那么cell “earned at least a high school diploma ”和“ employed full time ”的期望值为:92829282(,)()()157157157157P Earned Employed Total P Earned P Employed Total ===2*.一次实验中,每一个随机样本中的成人都有他的最喜爱的颜色,下表展示了按年龄分组的试验结果。
如果对于颜色的偏好是同年龄组相互独立,下列哪一个选项表明了年龄组30到50岁,喜爱绿色的人数的期望值? A.(99)(108)314 B. (69)(108)314 C. (99)(35)108 D. (35)(108)314 E. (99)(35)3142*. Answer :AAnalysis :本题考查二维表中两个变量的独立性,如果两个变量独立,那么cell “aged 30 to 50”和“prefer green ”的期望值为:1089999108(3050,)(3050)()314314314314P green Total P P green Total -=-== 第二章1*.下面的直方图代表了五种不同的数据集的分布,每个都包含28个整数,从1到7,水平和垂直比例对所有图形都是相同的。
下面哪个图代表了有最大标准差的数据集?A. B.C. D.E.2*..这张图是一次统计学考试中40个成绩的累积相对频率直方图,下列哪一个选项可以从这张图中得出?A.较低的20个分数的差异大于较高的20个分数的差异B.中位数小于50C.60%的学生的分数高于80分D.如果设定及格线是70,那么大多数人没通过这次考试E.这张图的平均水平组是60分,低于这个组的分数出现的频率更高F.1*. Answer:DG.Analysis:本题考查如何判断直方图的spread,显然,图D的标准差是最大的。
统计学课后习题答案+模拟题库2套选择题第一章统计学及其基本概念----(孙晨凯整理)一、单项选择题1. 推断统计学研究()。
(知识点:1.2 答案:D)A.统计数据收集的方法B.数据加工处理的方法C.统计数据显示的方法D.如何根据样本数据去推断总体数量特征的方法2. 在统计史上被认为有统计学之名而无统计学之实的学派是()。
(知识点:1.3 答案:D)A.数理统计学派B.政治算术学派C.社会统计学派D.国势学派3. 下列数据中哪个是定比尺度衡量的数据()。
(知识点:1.4 答案:B)A.性别B.年龄C.籍贯D.民族4. 统计对现象总体数量特征的认识是()。
(知识点:1.6 答案:C)A.从定性到定量B.从定量到定性C.从个体到总体D.从总体到个体5. 调查10个企业职工的工资水平情况,则统计总体是()。
(知识点:1.6 答案:C)A.10个企业B.10个企业职工的全部工资C.10个企业的全部职工D.10个企业每个职工的工资6. 从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体是().(知识点:1.6 答案:A)A. 样本B. 总体单位C. 个体D. 全及总体7. 三名学生期末统计学考试成绩分别为80分、85分和92分,这三个数字是()。
(知识点:1.7 答案:D)A. 指标B. 标志C. 变量D. 标志值8. 以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。
(知识点:1.7 答案:A)A. 品质标志B. 数量标志C. 质量指标D. 数量指标9. ()表示事物的质的特征,是不能以数值表示的。
(知识点:1.7 答案:A)A. 品质标志B. 数量标志C. 质量指标D. 数量指标10. 在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。
(知识点:1.7 答案:B)A. 一个B. 二个C. 三个D. 四个二、多项选择题1.“统计”一词通常的涵义是指()。
第一章 绪 论 思考题 1. 什么是统计学?请简要说明一下它的发展过程。 统计学是关于数据搜集、整理、归纳、分析的方法论科学。 统计学的发展主要经历了三个阶段: (1) 17世纪中叶至18世纪,统计学的产生和形成阶段; (2) 18世纪末至20世纪中叶,统计推断方法和理论体系确立的阶段; (3) 20世纪50年代以来,统计理论、方法和应用进入了一个全面发展的阶段。
2. 统计学、统计数据,以及统计活动之间有什么关系? 统计活动直接影响统计数据的数量和质量;统计学是统计实践活动的理论概括,同时,它又用理论和方法研究分析统计实践活动,统计学和统计活动是理论与实践的关系。
3. 统计学的研究方法有哪些,它们有怎样的关系?并举例说明。 主要方法有两个: (1) 描述统计:搜集由试验或调查所获得的资料,进行整理、归类,计算出各种用于说明总体数量特征的数据,并运用图形或表格的形式将它们显示出来。 (2) 推断统计:指利用概率论的理论,根据试验或调查获得的样本信息科学地推断总体的数量特征。 关系:描述统计和推断统计都是统计方法的两个组成部分,前者是统计学的基础,后者是现代统计学的主要内容。由于现实问题中,要获得总体数据存在很大的难度,能够获得的数据多为样本数据,因此,推断统计在现代统计学中的地位和作用越来越重要,它已成为统计学的核心内容。当然,描述统计的重要性不可忽略,通过它得到可靠的统计数据并为后面的推断统计提供有效的样本信息,只有这样,才可以运用推断统计方法得出符合实际情况的结论。
4. 简要说明总体、样本、变量的概念。 总体:根据一定的目的确定的所要研究对象的全体,它是统计问题最基本的要素; 样本:从总体中随机抽取的若干单位构成的集合体,它是统计问题的第二要素; 变量:可变的数量;变量的具体表现,即可变数量的不同取值,称为变量值。 5. 简述SPSS统计软件的特点和应用领域。 (1) 特点: 第一,工作界面友好完善、布局合理、操作简便,大部分统计分析过程可以借助鼠标,通过菜单命令的选择、对话框参数设置、点击功能按钮来完成,不需要用户记忆大量的操作命令。菜单分类合理,并且可以灵活编辑菜单以及设置工具栏。 第二,具有完善的数据转换接口,可以方便地和Windows其他应用程序进行数据共享和交换。可以读取Excel、FoxPro、Lotus等电子表格和数据库软件产生的数据文件,可以读取ASCII数据文件。 第三,提供强大的程序编辑能力和二次开发能力,方便高级用户完成更为复杂的统计分析任务的需要,具有丰富的内部函数和统计功能。 第四,附带丰富的数据资料实例和完善的使用指南,为用户学习掌握软件的使用方法提供更多的方便。软件启动后,用户可直接上网访问SPSS公司主页获得更多的帮助和信息。 (2) 应用领域:社会科学、自然科学、经济管理、商业金融、医疗卫生、体育运动等。
6. SPSS软件的数据编辑器包括哪些内容? (1) 标题栏,显示当前工作文件名称。 (2) 主菜单栏,排列SPSS的所有菜单命令。 (3) 工具栏,排列系统默认的标准工具图标按钮,此栏图标按钮可以通过单击View菜单的Toolbars命令选择隐藏、显示或更改。 (4) 状态栏,状态栏位于SPSS窗口底部,它反映了工作状态。当用户将光标置于不同的区域时或者进行不同的操作时将显示不同的内容。 (5) 数据编辑栏,用户通过键盘输入的数据首先显示在这里。 (6) 数据显示区域。它是一个二维的表格,编辑确认的数据都将在这里显示,其中每一个矩形格为单元格(Cell),其中边框加黑的单元格称为选定单元格。数据显示区域的左边缘排列观测量序号,上边缘排列要定义的各变量名。
7. 调查表明,顾客每周花在某超市蛋糕的平均费用是30元,他们选择经常购买蛋糕的主要原因是该蛋糕味道很好。要求: (1) 总体是什么? (2) 该项研究所使用的方法是描述统计方法还是推断统计方法? (1) 总体是所有的购买蛋糕的顾客; (2) 推断统计方法。 第二章 数据整理和描述 思考题 1. 获取统计数据有哪两种途径? 一种是直接向调查对象搜集反映调查单位的统计数据,一般称为原始数据或第一手数据;另一种是搜集已经加工、整理过的、说明总体现象的数据,一般称为次级数据或第二手数据。
2. 统计数据的搜集有哪几种方法? 直接观察法、访问法、报告法、问卷法。
3. 对统计数据进行搜集时,有哪几种组织方式? 普查、抽样调查、重点调查、典型调查。
4. 什么是数据分组?数据分组的方式有哪几种? (1) 统计数据分组是根据统计研究目的,按某一标志将数据分别列入不同的组,使组与组之间有比较明显的差别,而在同一组内的单位具有相对的同质性,即同一组内各单位之间具有某些共同的特征。 (2) 统计数据分组可以按品质标志分组和按数量标志分组。 (一)按品质标志分组就是按照事物的性质和属性特征进行分组。一般来言,按品质标志分组的操作比较容易,分组也相对稳定。如人口按性别分组、职工按文化程度分组等; (二)按数量标志分组,就是按照事物的数量特征进行分组。例如,企业按职工人数、产值、产量等标志分组,人口按年龄分组等。
5. 简述组距、组限、组数与组中值的含义以及它们的计算方法。 (1) 组距是指各组中最大变量值与最小变量值之差,用i表示。计算方法为: i=R/n, 其中,n表示组数,R表示变量最大值与最小值之差(即全距); (2) 组限是指限定各组组距的数值。各组的较大值称上限,较小值称下限; (3) 组数是指数据被分成的组个数。计算方法为: Nnlg322.31 式中:n表示组数;N表示变量值个数; (4) 组中值是上限到下限之间的中点数值,其计算公式为: 组中值=(上限+下限)/2
6. 向上积累和向下积累的数据有什么区别? 累计频数(或频率)可以是向上累计频数(或频率),也可以是向下累计频数(或频率)。(1) 向上累计频数(或频率),通常是指由变量值小的组向变量值大的组依次累计; (2) 向下累计频数(或频率),通常是指由变量值大的组向变量值小的组依次累计。
7. 什么是频数分布?试描述频数分布表的编制过程。 (1) 分布数列是指在统计分组的基础上,将总体的所有单位按一定标志分组整理,并按一定顺序排列,形成总体单位在各组的分布; (2) 一、确定变量数列的形式。 根据变量的类型和变量值的多少及现象本身的特点确定是编制单项数列还是编制组距数列。 二、组距式变量数列编制方法: 计算全距、确定组数、确定组距、确定组限、计算组中值、计算累计频数和累计频率。
8. 对统计数据进行描述时,有哪几种统计图表表达方式? 有统计表和统计图,其中统计图包括:直方图、折线图、曲线图。
9. 直方图和折线图有什么区别和关系? 折线图可以在直方图的基础上,将直方图的每个长方形的顶端中点用折线连点而成。如果不绘直方图,也可以用组中值与频数求出坐标点,连接而成。 它们与横轴围成的区域面积相等。
10. 请举出自己实际生活中的一组数据,对它进行分组,然后绘制直方图、折线图以及箱线图,分析该组数据的结构特征。 略
练习题 1. 某地区7月份的气温数据(单位:摄氏度)如下: 28 31 32 29 31 33 30 32 34 29 32 30 38 38 37 39 34 36 36 33 34 30 37 36 32 38 35 30 34 35 35 (1) 对以上数据进行适当的分组; (2) 绘制直方图,说明该城市气温分布的特点。 解:(1) 频数分布如下:[28,30) 3;[30,32) 6;[32,34) 6;[34,36) 7;[36,38) 5;[38,40) 4; (2) 直方图略。从直方图可以看出,该地区7月份气温集中在34~36摄氏度的天数最多,其次多的时间集中在30~32摄氏度或32~34摄氏度。
2. 某人的家位于城市的A地,工作单位位于城市的B地,为了确定A、B两地的车程,他记录了60天(来回共乘车120次)内往返于A、B两地所花的时间(单位:分钟),所得数据如下: 98 101 120 112 94 96 89 108 106 111 113 109 108 112 99 93 98 100 87 89 125 120 118 103 117 111 119 100 105 108 98 96 110 123 117 115 109 103 92 99 88 80 83 86 93 98 90 120 93 98 90 111 109 103 108 112 123 120 109 118 92 91 89 87 95 121 119 123 108 99 103 92 97 95 102 108 113 99 114 89 95 106 109 100 108 112 109 123 121 110 110 124 108 109 113 96 123 105 109 112 96 98 108 112 99 90 93 96 99 96 105 111 120 98 92 103 102 90 113 120 (1) 利用SPSS对以上数据进行排序。 (2) 以组距10进行等距分组,编制频数分布表,并绘制直方图。 解:(1) 略 (2) 频数分布表如下:[80,90) 10,[90,100) 37,[100,110) 33,[110,120) 25,[120,130) 15; 直方图略。
3. 某百货公司冬天连续60天的销售额数据如下(单位:万元): 372 338 403 321 286 357 328 309 329 318 368 349 369 372 353 380 331 347 302 308 383 326 329 333