当前位置:文档之家› 材料表面与界面-习题含答案

材料表面与界面-习题含答案

材料表面与界面-习题含答案
材料表面与界面-习题含答案

N 』N A ”N A M A M 4

3.14 (7.79 时)3

"7 6.02 1023 乂6个

3 0.018

第一章

1、什么是You ng 方程?接触角的大小与液体对固体的润湿性好坏有怎样的关 系?

答:You ng 方程:界面化学的基本方程之一。它是描述固气、固液、液气界面自 由能丫 SV Y L , Y v 与接触角B 之间的关系式,亦称润湿方程,表达式为: 丫 SV Y L = Y v COS 。该方程适用于均匀表面和固液间无特殊作用的平衡状态。

关系:一般来讲,接触角B 的大小是判定润湿性好坏的依据,若0 =0.cos 0=1 液体

完全润湿固体表面,液体在固体表面铺展;若0v 0V 90°液体可润湿固体, 且0越小,润湿性越好;90°V 0< 180°,液体不润湿固体;0 =180;完全不润湿 固体,液体在固体表面凝集成小球。

2、水蒸气骤冷会发生过饱和现象,在夏天的乌云中,用飞机撒干冰微粒,试气 温骤降至293K ,水气的过饱和度(P/Ps )达4,已知在293K 时,水的表面能力 为0.07288N/m ,密度为997kg/m 3

,试计算:

(1) 在此时开始形成雨滴的半径。

(2) 每一雨滴中所含水的分子数。

,P 2 M

ln —— -----

答: (1)根据 Kelvin 公式有 P ° RT R ' 开始形成的雨滴半径为:

R= 2M

RT 门n —

P 0

将数据代入得:

R 、2 O.。7288 0.018 十9 忙 m

8.314 293 997 In 4 (2)每一雨滴中所含水的分子数为 N=N A n , n=m/M= ?V/M ,得

3、在293k 时,把半径为1.0mm 的水滴分散成半径为1.0 pm 的小水滴,试计算 (已知293K 时水的表面Gibbs 自由为0.07288J m -2

)( 1)表面积是原来的多少倍?

(2)表面Gibbs 自由能增加了多少? ( 9分)

答:(1)设大水滴的表面积为 A i ,小水滴的总表面积为 代,则小水滴数位N , 大水滴半径为小水滴半径为匕。

2 A 2 N4:r 2

2~

A 4 二

又因为将大水滴分散成

4 3

4 3

r 1 N r 2

3 3 推出 A 109 乂4兀 x (1.0um 2

“er - 2 1000

故有 A 4 - 1.0mm

即表面积是原来的1000倍。

(2)表面Gibbs 自由能的增加量为

A2 . — —

-G

dAs=人-A =4二r Nr 2 - r 1

A 1

=4*3.142*0.07288*[109*( 10-6) 2-( 10-3) 2

]

= 9.15 104J 第二章

1、什么是CMC 浓度?试讨论影响CMC 的因素。请设计一种实验测定 CMC 的 方法。

答:(1) CMC 浓度是指随着表面活性剂浓度上升,溶液的表面张力逐渐下降, 直至表面张力几乎不变时所发生转折时的浓度。

(2) 疏水基的影响、亲水基、温度、添加剂(电解质、有机物) 。

(3) 测定方法:测定电导率、渗透压、冰点、增溶性、洗净力等物理量发生显

N 小水滴,则 “ 、3 N 上)”.°mm ] 1“ 丿=\J.0um 丿 3 =109

著变化的转折点

2、温度对离子型表面活性剂和非离子型表面活性剂溶解度的影响有什么不同?为什么离子型表面活性剂在K.P点以上溶解度迅速增大,而非离子型表面活性剂溶液在C.P点变成浑浊?

答:(1)离子型:在足够低的温度下,溶解度随温度升高而慢慢增大,当温度达到一定值后,溶解度会突然增大一一Krafft现象

非离子型:溶解度随温度升高而下降,当温度升高到一定温度时,溶液会突然变浑浊(2)离子型:表面活性剂以胶束形式溶解

非离子型:温度上升时,氢键被削弱,达到C.P点时,氢键断裂,表面活性剂从溶液中析出,溶液变得浑浊。

3、试求表面活性剂十二烷基苯磺酸钠的HLB值。

答:十二烷基苯磺酸钠HLB=艺H-艺L+7=38.7-(12+6)X 0.47+7=37.24

第三章

1、试讨论用液态氧化法处理聚合物的优缺点。

答:优点:(1)可润湿性大大增加(2)表面张力增大(3)与各种液体接触角明显减小,粘接性能大大增加。缺点:氧化处理会有大量的酸废液产生,污染严

重。

2、聚合物表面接枝有哪些方法?其原理各是什么?

答:(1)表面接枝聚合大分子偶合添加接枝共聚物

(2)表面接枝聚合:在光、辐射线、紫外线、等离子体使聚合物表面产生活性种,引发乙烯基单体自由基聚合,进行表面接枝。

大分子偶合:聚合物表面产生反应性活性基团,使之与带有反应基团的大分子

反应偶合,实现其表面接枝。

添加接枝共聚物在欲改性的高聚物中添加有界面活化性能的共聚物成型,共聚

物亲基材段嵌入到基材内部,留下接枝段在基质聚合物的表面上,达到表面改性的目的。

3、分别用等张比容和内聚能密度法估算下列高分子化合物的表面张力。

1)聚苯乙烯

2)聚乙二醇(聚氧化乙烯)

(1)<7 = C —/式[IF指的是廩子团的等张比容、V」旨聚合物的摩尔体积。

代入数值计算:聚苯乙烯为96xl0_3N m_1聚乙二醇为33,9xlO_3N m'1

(2)内聚能毎“山严J严严式屮F力结构单元色散力常数,

①为髙聚物结构甲元的原子数?巴为重复单元的草尔体积。

代入数据吋以得到:聚苯乙烯J&35.67xlO^N m-1聚乙二醇为2511x1(^4-m1

第四章

1、什么是偶联剂?说明硅烷偶联剂对玻璃纤维增强塑料的作用机理。用偶联剂进行表面处理有哪些方法?

答:(1)偶联剂是分子含有两种不同性质基团的化合物,其中一种基团可与增强材料发生物理或化学作用,另一种基团可与基体发生物理或化学作用。

(2)①X基团的水解,形成硅醇;②硅醇的羟基之间以及硅醇的羟基与玻璃

纤维表面的羟基形成氢键;③硅羟基间脱水形成硅氧键。

2、高性能纤维的表面处理方法有哪些?

答:(1)表面清洁处理(2)表面氧化处理(3)表面涂层(4)化学气相沉积(5)电聚合处理(6)低温等离子处理(7)表面接枝

3、什么是化学键理论?化学键理论有什么缺陷?举例说明化学键理论在碳纤维表面处理中的应用。

材料表界面范围

第一章绪论 名词解释:表、界面;物理表面 表界面是指由一个相到另一个相的过渡区域。 物理表面:三维规整点阵到体外空间之间的过渡区域;厚度随材料种类而异,从一个到多 个原子层不等。 基本知识点: 1、表、界面现象的研究对象通常为具有多相性的不均匀体系,即体系中一般存在两个或两个以上不同性能的相。 2、表界面指相与相之间的过渡区域,因此表界面区的结构、能量、组成等都呈现连续的梯度变化。 3、按照扩散的微观机制可将表面扩散分为两类:自扩散和互扩散。 4、固体中的扩散是通过原子的随机运动进行的,因此扩散的前提是有可供原子运动的空间。 5、扩散过程的微观机制是缺陷的运动。 6、晶界迁移是重要的界面扩散传质现象,可由不同的驱动力引起;晶界迁移的特点与处于一定能量状态的晶界原子结构特点密切相关,其过程的本质是晶界能量的下降。 公式: 第二章液体界面 名词解释:表面张力:液体表面任意二相邻部分之间垂直于它们的单位长度分界线相互作用的拉力表面 自由能:广义,保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。狭义,保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能。 特劳贝(Traube)规则;在同系物溶液中,欲使表面张力降低得一般多,所需溶液浓度因分子中每增加一个亚甲基-ch2-而减少为原来的三分之一。 基本知识点: 1、表面张力本质上是由分子间相互作用力,即范德瓦尔斯力产生的; 2、表面张力产生的根本原因是分子间相互作用力不平衡引起的; 3、处在液体表面层的分子与其内部分子所受力场相同(错); 4、气液界面的分子净受到指向液体内部的引力,该引力主要是范德华力;(对) 5、由于系统的能量越低越稳定,所以液体表面有自动收缩的能力;(对) 6、表面弯曲的液体在表面张力的作用下,表面上承受着附加压力,且方向总是指向液体内部;(错) 7、跨过平液面不存在压差;(对) 8、毛细管法测液体表面张力时,要求毛细管被所测液体完全浸润。(错) 9、Kelvin公式表明:液滴的半径越小,其蒸汽压越大;气泡的半径越小,其蒸汽压越小。 10、利用毛细管法测液体表面张力时,当毛细血管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形;若液体不能浸润管壁,则液面下降呈凸液面。 11、跨过一个平表面不存在压力差,而跨过曲面必然存在压力差。(对) 12、弯曲表面,△P与表面张力成正比,而与曲率半径成反比;(错) 13、人工降雨利用凸液面饱和蒸气压大于平液面蒸气压的原理,向云层提供凝结中心达到降雨目的;(对) 简答题: 1、应用Kelvin公式解释以下现象:①人工降雨;②过热液体;③过饱和溶液。 根据公式: (1)当空气中的水蒸气凝结时,首先形成非常小的液核,在液核存在的基础上继而长大形成大的液滴,从而发生水蒸气的凝结。初始形成的液核半径非常小,对应的饱和蒸气压远

材料表面与界面名词解释和简

材料表面与界面 1、材料表界面对材料整体性能具有决定性影响,材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、化学反应、复合等等,无不与材料的表界面密切有关。 2、应用领域:a. 航空和航天器件; b.民用;c.特种表面与界面功能材料; d.界面是复合材料的重要特征。 3、隐形涂料:这种涂料含有大量的铁氧体粉末材料,依靠其自身自由电子的重 排来消耗雷达波的能量。 4、表面与界面概念:常把从凝聚相(固相、液体)过渡到真空的区域称为表面; 从一个相到另一个相之间的区域称为界面. 5、表界面尺寸:可以是一个原子层或多个原子层,其厚度随材料的种类不同而 不同。 6、在物质的气、液、固三态中,除了两种气体混合能完全分散均匀而不能形成 界面外,三种相态的组合可构成五种界面:液-气,液-液,固-气,固-液,固-固。 7、物质的分类。从形态上:固体,液体,气体,胶体,等离子体。从结构上: 晶体,无定形。 8、固体表面的分类:理想表面;清洁表面(高温热处理,离子轰击加退火,真 空解理。真空沉积。场致蒸发等)。吸附表面。 9、清洁表面发生的常见重要物理化学现象:(a)表面弛豫;(b)重构;(c) 偏析又称偏聚或分凝;(d)台阶化;(e) 形成化合物;(f)吸附 10、表面处离子排列发生中断,体积大的负离子间的排斥作用,使C1-向外移动,体积小的Na+则被拉向内部,同时负离子易被极化,屏蔽正离子电场外露外移, 结果原处于同一层的Na+和C1-分成相距为0.020 nm的两个亚层,但晶胞结构基本没有变化,形成了弛豫。 11、重构:表面原子重新排列,形成不同于体相内部的晶面。 12、偏析又称偏聚或分凝指化学组成在表面区域的变化但结构不变。 13、台阶化表面附近的点阵常数不变,晶体结构也不变,而形成相梯度表面。 14、形成化合物:指表面化学组成和结构都发生改变,在表面有新相生成。 15、吸附指表面存在周围环境中的物种。分类:物理吸,附和化学吸附。 16、物理吸附:外来原子在固体表面上形成吸附层,由范德华力作用力引起,则此吸附称为物理吸附。特点:物理吸附过程中没有没有电子转移、没有化学键的生成和破坏,没有原子重排等等,产生吸附的只是范德华力。物理吸附的作用力是范德华力,包括:定向力/偶极力、诱导力、色散力;作用力。 17、化学吸附:外来原子在固体表面上形成吸附层由化学键作用力引起,则此吸附称为化学吸附。特点:表面形成化学键;有选择性;需要激活能;吸附热高(21- 42 KJ/mol)。吸附的物种可以是有序=也可以是无序=吸附在表面,也可以是单层=,也可以是多层=吸附。因表面的性质和被吸附的物种而定。 18、表面产生吸附的根本原因:(1)电荷在凝聚相表面发生迁移,包括负电荷的电子迁移和正电荷的离子迁移。(2)表面存在可以构成共价键的基团:A、过渡金属原子空的d轨道如Pt(5d96s1);B、化学反应成键。 19、固体的表面特性:①表面粗糙度r : 实际表面积与光滑表面积之比值。表面粗糙度测定方法:1)干涉法:适合测量精密表面;2)光学轮廓法;3)探针法;4)比较法;5)感触法。

材料表界面

一、答:表、界面是指由一个相到另一相的过渡区域,通常把凝固相和气相之间的分界面称为表面,把凝固相之间的分界面称为界面。分为两大类:物理表面和材料表面。物理表面又分为:理想表面、清洁表面、吸附表面;材料表面有如下几类:机械作用界面、化学作用界面、固态结合界面、液相或气相沉积界面、凝固共生界面、粉末冶金界面、粘结界面、熔焊界面等。 在国民经济建设各领域,表、界面科学亦显示出愈来愈重要的作用。主要应用在食品、土壤化学、造纸、涂料、橡胶、建材、冶金、能源、电子工业和航天技术等领域。 二、答:溶质的浓度对溶剂表面张力的影响有三种类型,第一类物质的加入会使溶剂的表面张力略为升高,属于此类物质有强电解质(如无机盐、酸、碱);第二类物质的加入会使溶剂的表面张力逐渐降低(如低碳醇、羧酸等有机物);第三类物质少量加入就会使溶剂表面张力急剧下降,但到一定浓度后,表面张力变化很缓慢或几乎不下降,趋于一个稳定值。 我们把能使溶剂(通常为水)表面张力降低的物质称为具有表面活性的物质,如第二类和第三类物质都能使溶剂表面张力降低,它们都具有表面活性。 表面活性剂的种类很多,按亲水基类型分类是表面活性剂分类的主要方法,表面活性剂溶于水能电离生成离子的叫做离子型表面活性剂;不能电离的叫非离子型表面活性剂。离子型表面活性剂按生成离子的性质可分成阴离子、阳离子和两性表面活性剂。按相对分子质量分类:低分子表面活性剂,相对分子质量200-1000;中分子表面活性剂,相对分子质量1000-10000;高分子表面活性剂,相对分子质量10000以上。按工业用途分类:表面活性剂可分为渗透剂、润湿剂、乳化剂、分散剂、起泡剂、消泡剂、净洗剂、杀菌剂、匀染剂、缓染剂、柔软剂、平滑剂、抗静电剂防锈剂等。有的表面活性剂可同时具有几种功能。 三、答:陶瓷材料为无机非金属粉末晶体在一定条件下形成的多晶聚集体。表面结构:由于表面处原子周期性排列突然中断,形成了附加表面能,表面原子的排

材料表面与界面-习题含答案

第一章 1、什么是Young 方程?接触角的大小与液体对固体的润湿性好坏有怎样的关系? 答:Young 方程:界面化学的基本方程之一。它是描述固气、固液、液气界面自由能γsv,γSL ,γLv 与接触角θ之间的关系式,亦称润湿方程,表达式为: γsv -γSL =γLv COSθ。该方程适用于均匀表面和固液间无特殊作用的平衡状态。 关系:一般来讲,接触角θ的大小是判定润湿性好坏的依据,若θ=0.cosθ=1,液体完全润湿固体表面,液体在固体表面铺展;若0<θ<90°,液体可润湿固体,且θ越小,润湿性越好;90°<θ<180°,液体不润湿固体;θ=180°,完全不润湿固体,液体在固体表面凝集成小球。 2、水蒸气骤冷会发生过饱和现象,在夏天的乌云中,用飞机撒干冰微粒,试气温骤降至293K ,水气的过饱和度(P/Ps )达4,已知在293K 时,水的表面能力为0.07288N/m ,密度为997kg/m 3,试计算: (1)在此时开始形成雨滴的半径。 (2)每一雨滴中所含水的分子数。 答:(1)根据Kelvin 公式有 '2ln 0R RT M P P ργ= 开始形成的雨滴半径为: 0ln 2'p p RT M R ργ= 将数据代入得:

m R 101079.74ln 997293314.8018.007288.02'-?=?????= (2)每一雨滴中所含水的分子数为N=N A n ,n=m/M=rV/M ,得 个661002.6018.03997)1079.7(14.34)(34233103'=???????===-A A N M R N M V N ρπρ 3、在293k 时,把半径为1.0mm 的水滴分散成半径为1.0μm 的小水滴,试计算(已知293K 时水的表面Gibbs 自由为0.07288J .m -2)(1)表面积是原来的多少倍?(2)表面Gibbs 自由能增加了多少?(9分) 答:(1)设大水滴的表面积为A 1,小水滴的总表面积为A 2,则小水滴数位N ,大 水滴半径为r 1,小水滴半径为r 2。 21221244r r N A A ππ= 又因为将大水滴分散成N 小水滴,则 32313434r N r ππ= 推出 3 21???? ??=r r N =93100.1mm 0.1=??? ??um 故有 ()()10000.140.141022 912=???=mm um A A ππ 即表面积是原来的1000倍。 (2)表面Gibbs 自由能的增加量为 ()()212212421r Nr r A A dAs G A A -=-==??πγγ =4*3.142*0.07288*[109*(10-6)2-(10-3)2]

第四章 材料的表面与界面

第四章材料的表面与界面 4-1 什么叫表面张力和表面能?在固态下和液态下这两者有何差别? 4-2 在晶体中,不同的结晶面上,表面上原子的密度住往是不一样的(见无机材料物理化学表6-1)。你认为原子密度大的晶面的表面能大呢?还是密度小的大?试解释之。 4-3 一般说来,同一种物质,其固体的表面能要比液体的表面能大,试说明原因。 4-4 什么叫吸附、粘附?当用焊锡来焊接铜丝时,手用挫刀除去表面层,可使焊接更加牢固,请解释这种现象。 4-5 为什么在实际晶体中,不存在理想晶体所设想的完整平面?至少也会有相当于螺形位错的柏氏矢量大小的台阶。 4-6 试说明晶界能总小于两个相邻晶粒的表面能之和的原因。 4-7 (a)什么叫弯曲表面的附加压力:其正负根据什么划分? 的曲面附加压力?(b)设表面张力为900尔格/厘米2,计算曲率半径为0.5m 4-8 真空中Al2O3的表面张力约为900尔格/厘米2,液态铁的表面张力为1720尔格/厘米2,同样条件下,界面张力(液态铁-氧化铝)约为2300尔格/厘米2。问接触角有多大?液态铁能否润湿氧化铝? 4-9 表面张力为500尔格/厘米2的某液态硅酸盐与某种多晶氧化物表面相接触,接触角θ=450;若与此氧化物混合,则在三晶粒交界处,形成液态小球,二面角ψ平均为900,假如没有液态硅酸盐时,氧化物-氧化物界面的界面张力为1000达因/厘米,试计算氧化物的表面张力。 4-10 MgO-Al2O3-SiO2系统的低共熔物,放在Si3N4脚瓷片上,在低共熔温度下,液相的表面张力为900尔格/厘米2,液体与固体的界面能为600尔格/厘米2,测得接触角为70.520。 (1)求Si3N4的表面张力。 (2)把Si3N4在低共熔温度下进行热处理,测得其腐蚀的槽角为123.750,求Si3N4晶界能。 (3)如果把20%的低共熔物与Si3N4粉末混合,加热到低共熔温度下,试画出低共熔物与Si3N4混合组成的陶瓷显徽结构示意图。 4-11 氟化锂晶体经多边形化、抛光和腐蚀后,观察到沿某一直线的位错腐蚀坑的间距为10微米,在外加剪应力作用下观察到小角度晶界垂直于晶界平面移动,为什么会发生这种现象?若柏氏矢量为2.83?,穿过晶界的倾斜角是多少? 4-12 在高温将某金属熔于Al2O3片上。 (a)若Al2O3的表面能估计为1000尔格/厘米2,此熔融金属的表面能也与之

材料表面与界面

《材料表面与界面》课程简介 课程编号:02024915 课程名称:材料表面与界面/Material surface and interface 学分:2 学时:32 (实验:上机:课外实践:) 适用专业:无机非金属材料工程 建议修读学期:第6学期 开课单位:材料科学与工程学院无机非金属材料系 课程负责人:张毅 先修课程:物理化学、材料科学基础 考核方式与成绩评定标准:闭卷考试, 期末考试成绩70%,平时成绩30% 教材与主要参考书目: 教材:胡福增主编.材料表面与界面[M]. 上海:华东理工大学出版社, 2008. 参考书目 [1] 王兆华主编. 材料表面工程[M]. 北京:化学工业出版社, 2011. [2] 赵亚溥主编. 表面与界面物理力学[M]. 北京:科学出版社, 2012. [3] 腾新荣主编. 表面物理化学[M]. 北京:化学工业出版社, 2009. [4] 赵振国主编. 应用胶体与界面化学[M]. 北京:化学工业出版社, 2008. 内容概述: 材料的表界面在材料科学中占有重要的地位。材料表面与界面无机非金属材料工程专业的专业选修课。通过本课程的学习,使学生掌握材料表面与界面的基本概念、基本理论和基本研究方法,为今后在工作中打下有关材料研究和材料表面改性的理论基础。 The surface interface of materials plays an important role in material science. “Material surface and interface”is a specialized optional course of inorganic non-metallic materials specialty. The course mainly introduces the material surface basic concepts, basic theory and basic research methods of the interface. The study of this course is to lay the theoretical foundation for the study of materials and surface modification of materials in the future. 1

材料表界面知识点总结

第九章玻璃表界面 4 玻璃的表面反应 玻璃成型后一段时间就容易被周围环境介质所侵蚀,侵蚀情况主要取决于玻璃的本质(组成)和介质的种类。 4.1 水对玻璃的侵蚀 开始于水中的H+和玻璃中的Na+进行离子交换: 离子交换反应停止的真正原因: ?Na+含量的降低; R n+(n>1)抑制效应 4.2酸对玻璃的侵蚀 除氢氟酸外,一般酸并不直接与玻璃起反应,而是通过水的作用侵蚀玻璃。 浓酸对玻璃的侵蚀能力低于稀酸。 酸对玻璃的作用与水对玻璃作用又有所不同。 高碱玻璃的耐酸性小于耐水性,高硅玻璃的耐酸性大于耐水性。 4.3 碱对玻璃的侵蚀 硅酸盐玻璃一般不耐碱。 碱对玻璃的侵蚀是通过OH-破坏硅氧骨架(≡Si-O-Si ≡),使Si-O键断裂,SiO2溶解在碱液中。 碱的大量存在使得中和反应能够不断进行,所以,侵蚀不是形成硅酸凝胶薄膜,而是玻璃表面层不断脱落。

碱对玻璃的侵蚀程度与下列因素有关: 侵蚀时间 OH-离子的浓度 阳离子的种类 侵蚀后玻璃表面的硅酸盐在碱溶液中的溶解度 玻璃受碱侵蚀分为以下三个阶段: ?第一阶段,碱溶液中的阳离子首先吸附在玻璃表面; ?第二阶段,阳离子束缚周围的OH-离子,OH-离子攻击玻璃表面的硅氧键。 ?第三阶段,硅氧骨架破坏后变成硅酸离子,和吸附在玻璃表面的阳离子形成 硅酸盐,并逐渐溶解在碱溶液中。 碱性溶液对玻璃的侵蚀机理与水或酸不同 ?水或酸(包括中性盐或酸性盐)对玻璃的侵蚀只是改变、破坏或溶解(沥滤) 玻璃结构组成中R2O、RO等网络外体物质。 ?碱性溶液不仅对网络外体氧化物起作用,而且也对玻璃结构中的硅氧骨架起 溶蚀作用。 大气对玻璃的侵蚀 先是以离子交换为主的释碱过程后逐步过渡到以破坏网络为主的溶蚀过程。 4.4 影响玻璃表面反应性的因素 1) 化学组成的影响 硅酸盐玻璃的耐水性和耐酸性主要取决于硅氧和碱金属氧化物的含量。 玻璃中同时存在两种碱金属氧化物时,由于“混合碱效应”使玻璃的化学稳定性出现极值。

《材料表面与界面》

材料表面与界面调研报告题目:航空用铝合金表面研究 班级:材料化学12-2 学号:1209020208 姓名:宫宝昌 教师:李丽波 哈尔滨理工大学化学与环境工程学院 2014年10月8日

摘要 全面介绍了国内外铝合金在建筑"汽车"航空航天等行业的应用及研究进展,主要阐述了航空航天领域结构胶接在国内外的发展状况"胶接用铝合金表面处理方法的目的"表面处理的机理及分类"影响表面处理质量的工艺参数"现代表面分析技术等#并对近年来国内外应用最广"技术最成熟的磷酸阳极化表面处理技术的应用及优缺点进行了分析,并展望了该领域研究的发展趋势

目录 摘要...................................................................................................................... I 目录............................................................................................................ IV 第1章绪论.. (1) 1.1 意义目的 (1) 1.1.1 铝合金特性简介 (1) 1.1.2 铝合金表面常用的处理方法 (1) 1.1.3 铝基复合材料 (2) 1.1.4 超塑性成型铝合金 (2) 1.1.5 铝锂合金 (3) 第2章铝合金表面氧化现象研究 (5) 2.1.1 表面预处理 (5) 2.1.2阳极化处理 (6) 2.1.3阳极氧化膜生成一般原理 (7) 2.2阳极氧化的种类 (7) 2.3阳极氧化膜结构、性质 (8) 第3章铝合金阳极氧化缺陷 (9) 3.1铝合金阳极氧化缺陷 (9) 3.1.1酸或碱浸蚀 (9) 3.1.2 大气腐蚀 (9) 3.1.3 纸腐蚀(水斑) (10) 3.1.4氧化烧损(烧焦) (10) 3.1.5 粉化 (10) 3.1.6 黑斑(又称热斑或软斑) (10) 总结 (12)

材料科学基础课后习题答案第二章

第2章 习题 2-1 a) 试证明均匀形核时,形成临界晶粒的△G K 与其临界晶核体积V K 之间的关系式为2 K K V V G G ?=-?; b) 当非均匀形核形成球冠形晶核时,其△G K 与V K 之间的关系如何 a) 证明 因为临界晶核半径 2K V r G σ=-? 临界晶核形成功 3 2163() K V G G πσ?=? 故临界晶核的体积 3423K K K V r G V G π?==? 所以 2 K K V V G G ?=-? b) 当非均匀形核形成球冠形晶核时,SL 2K V r G σ=-?非 临界晶核形成功 3324(23cos cos )3()K SL V G G πσθθ?=-+?非 故临界晶核的体积 33 1(23cos cos )3K K V r πθθ=-+非() 3333SL 3281(23cos cos )(23cos cos )33()SL K V V V V V G G G G σπσπθθθθ?=--+?=-+??() 所以 2 K K V V G G ?=- ?非 2-2 如果临界晶核是边长为a 的正方体,试求出其△G K 与a 的关系。为什么形成立方体晶核的△G K 比球形晶核要大 解:形核时的吉布斯自由能变化为 326V V G V G A a G a σσ?=?+=?+ 令()0d G da ?= 得临界晶核边长4K V a G σ=- ?

临界形核功 333 3222244649632()6()()()()K t K V K V V V V V V G V G A G G G G G G σσσσσσσ?=?+=-?+-=-+=????? 2K V r G σ=-?,球形核胚的临界形核功 3 32242216()4()33()K b V V V V G G G G G σσπσππσ?=-?+=??? 将两式相比较 3 232 163()13262 ()K K b V t V G G G G πσπσ??==≈?? 可见形成球形晶核得临界形核功仅为形成立方形晶核的1/2。 2-3 为什么金属结晶时一定要有过冷度影响过冷度的因素是什么固态金属熔化时是否会出现过热为什么 答:金属结晶时要有过冷度是相变热力学条件所需求的,只有△T>0时,才能造成固相的自由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的,则不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖在整个固体表面(因为液态金属总是润湿其同种固体金属)。熔化时表面自由能的变化为: ()GL SL SG G G G A σσσ?=-=+-表面终态始态 式中G 始态表示金属熔化前的表面自由能;G 终态表示当在少量液体金属在固体金属表面形成时的表面自由能;A 表示液态金属润湿固态金属表面的面积;σGL 、σSL 、σSG 分别表示气液相比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根据润湿时表面张力之间的关系式可写出:σSG ≥σGL +σSL 。这说明在熔化时,表面自由能的

1 第二章表面与界面电子过程第二章表面与界面的电子过程第二章表面 ...

第二章表面与界面电子过程第二章表面与界面的电子过程第二章表面与界面的电子过程第二章表面与界面的电子过程

第一节晶体电子的表面势第一节 第一节晶体电子的表面势1.2V对总表面势的贡献 )表面区域势垒示意图。 ,平均体势能约在价带底上体内平均势能与真空电子能级的差约14.8eV,可 间的差(9.6eV)可看成为价电 ) 第二节表面态第二节 第二节表面态2.1表面态的产生原因和特征

第二节表面态 ●波矢 的可取之值要满足一定的边界条件,所以是 值对称而单调地变 化,在布里渊区的边界能量发生 区 第二节表面态(2)表面电子态 第二节表面态(3)金属、氧化物、半导体表面态的特点 第二节表面态(2)本征表面态与外诱表面态

第二节表面态 (3)本征表面态的类型 (a)两个不连续的能级; (b)两个能带; (c)两带交迭; (d)类sh带;(e)类离子 带;(f)分布有各种可能的非本征表面态;第三节清洁表面的电子结构 ρs、V es、V ST与z的关系 第三节清洁表面的电子结构第三节清洁表面的电子结构 3.2半导体清洁表面的电子结构

第三节清洁表面的电子结构 (2)Si(111)一个在禁带中,宽约0.2eV Si(111)-2?1重构表面上分裂后的悬挂键表面状 态密度 第三节清洁表面的电子结构 3.3氧化物表面的电子结构 第三节清洁表面的电子结构 氧化物(TiO 2) ?在TiO 2中,离子的电子结构是Ti 4+(3d 0),Ti 的最高 填满轨道是3p,低于Fermi 能级约3.5eV 。 ?TiO 2是宽禁带材料 (E g =3.1eV),它的满带是O 的2p,空导带由Ti 的3d,4s,4p 等组成;3d 带的能量最低。 第三节清洁表面的电子结构 金刚石结构氧化物电子结构变化不大

材料表界面期末复习

一、绪论 二、 1、表界面的定义及其种类。 定义;表界面是由一个相过渡到另一个相的过渡区域。若其中一相为气体,这种界面通常称为表面。 种类:表界面通常有五类:气-液界面(表面),气-固界面(表面),液-液界面,液-固界面,固-固界面。 二、液体表面 1、表面张力定义及表面自由能定义 答:表面张力是单位长度上的作用力,单位是N/m ,是功的单位或能的单位。所以σ也可以理解为表面自由能,简称表面能。 表界面张力的热力学定义为: 由能量守恒定律,外界所消耗的功存储于表面,成为表面分子所具有的一种额外的势能,也称为表面能。 广义表面自由能的定义:保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。狭义的表面自由能定义:保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能,用符号σ表示,单位为J·m-2。(1J·m-2=1 N·m ·m-2=1 N·m-1) B n T p A G , , ) / (? ? = σ σ的物理意义——(1)表面自由能(2)表面张力 由于分子在体相内部与界面上所处的环境是不同的,产生了净吸力。而净吸力会在界面 σ表示. 2、计算: A、例:20℃时汞的表面张力为4.85×10-1 Jm-2,求在此温度及101.325 kPa 的压力下,将半径1mm的汞滴分散成半径10-5 mm的微小汞滴,至少需要消耗多少功? 解:σ=4.85×10-1 Jm-2 r1=1mm, r2=10-5 mm

B 、试求25℃,质量m =1g 的水形成一个球形水滴时的表面能E1。若将该水滴分散成直径2nm 的微小水滴,其总表面能E2又是多少?(已知25℃时水的比表面自由焓Gs 为72×10-3 J*m-2) 解:设1g 水滴的体积为V ,半径为r1,表面积为A1,密度为ρ,则: 3、Laplace 方程表达式 就是Laplace 方程,是表面化学的基本定律之一。 注释:(1)若:r1=r2=r ,则曲面为球面,回到(2-15)式; (2)若:r1=r2=无穷大,则液面为平面,压差为0。 4、表面张力的几种测定方法。 (1)毛细管法 (2)最大气泡压力法 (3)滴重法 (4)吊环法 25℃时,水的饱和蒸气压为3.168kPa ,求该温度下比表面积为106 m2 *kg-1时球形水滴的蒸气压(水在25℃时的表面张力为71.97×10-3 N*m-1). 解:先求水滴半径: 代入Kelvin 公式: 2321142 s 1132425A =4r 4 3.1416(6.210)4.8310G A A 7210J m )(4.8310)3.510m m E m J πσ-----=???=?=???=?1-==(12(1/1/) (2-18) p r r σ?=+

材料表界面知识点汇总

材料表界面知识点汇总 1.表,界面是指一个相到另一个相的过渡区域。 2.表界面可以分为一下五类:固-气,液-气,固-液,液-液,固-固。 3.把凝聚相和气相之间(固-气,液-气)的分界面称为表面;把凝聚相之间(固-液,液-液,,固-固)的分界面称为界面。 4.理想表面的定义:指除了假设确定的一套边界条件外,系统不发生任何变化的表面。特点:表面的原子位置和电子密度都和在体内一样,且在实际生活中理想表面是不可能存在的。 5.清洁表面的定义:指不存在任何污染的化学纯表面,即不存在吸附,催化反应或杂质扩散等一系列物理,化学效应的表面。特点:可以发生多种与体内不同的结构和成分变化。 6.吸附表面的定义:吸附有外来原子的表面称之为吸附表面。特点:吸附原子可以形成无序的或有序的覆盖层。 7.材料表面的分类:机械作用界面,化学作用界面,固态结合界面,液相或气相沉积界面,凝固共生界面,粉末冶金界面,粘接界面,熔焊界面。 8.表面张力的定义:在液体表面膜中,存在着使液体表面积缩小的张力,这种张力称为表面张力。 9.吸附是组分在热力学体系的各相中偏离热力学平衡组成的非均匀分布现象。通常将被吸附的分子成为吸附质,固体则称为吸附剂。 10.吸附类型分为物理吸附和化学吸附。 11.表面张力计算公式:

12.表面张力产生的根本原因是分子间相互作用力的不平衡引起的。 13.表面张力本质上是由分子间相互作用力,即范德瓦尔斯力,单位为:J/m2 https://www.doczj.com/doc/956723188.html,place方程:附加压力的方向总是指向曲率中心一边,且与曲率大小有关。 https://www.doczj.com/doc/956723188.html,place方程:球面:与曲率半径成反比 任意曲面:;对于平液面,两个曲率半径都为无限大,p=0,表示跨过平液面不存在压差。 16.当毛细管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形。反之,若液体不能浸润管壁,则液面下降呈凸液面。 17.Kelvin公式:po为T温度下,平液面的蒸汽压;P为T温度下,弯液面的蒸汽压;V为液体摩尔体积;r为弯液面的曲率半径。 18.Kelvin公式表明,液滴的半径越小,其蒸汽压越大。 19.在0 以下,很纯的水可能不结冰,即为过冷水。 20.过热液体是加热到沸点也不沸腾的液体。 21.过饱和溶液是指浓度高于正常溶解度而不结晶的溶液。 22.固体表面产生不均一性的原因:固体表面的凹凸不平;固体中晶体晶面的不均一性;固体表面几乎总是被外来物质所污染,我们很难得到真正洁净的固体表面。 23.

相关主题
文本预览
相关文档 最新文档