一轮复习《静电场》
- 格式:ppt
- 大小:1.46 MB
- 文档页数:89
电场的力的性质知识排查点电荷、电荷守恒定律1.点电荷有一定的电荷量,忽略形状和大小的一种理想化模型。
2.元电荷:e =1.60×10-19 C ,所有带电体的电荷量都是元电荷的整数倍。
3.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变。
(2)起电方式:摩擦起电、接触起电、感应起电。
(3)带电实质:物体带电的实质是得失电子。
库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。
作用力的方向在它们的连线上。
2.表达式:F =k q 1q 2r 2,式中k =9.0×109 N·m 2/C 2,叫静电力常量。
3.适用条件:(1)真空中;(2)点电荷。
电场强度、点电荷的场强1.定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值。
2.定义式:E =Fq ,单位:N/C 或V/m 。
3.点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度E =k Qr 2。
4.方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向。
5.电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,遵从平行四边形定则。
电场线1.定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些有方向的曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱。
2.电场线的特点小题速练1.思考判断(1)点电荷和电场线都是客观存在的。
( ) (2)根据F =kq 1q 2r 2,当r →0时,F →∞。
( ) (3)电场中某点的电场强度方向即为正电荷在该点所受的电场力的方向( ) (4)英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
( )(5)美国物理学家密立根通过油滴实验精确测定了元电荷e 的电荷量,获得诺贝尔奖。
第3讲电容器带电粒子在电场中的运动一、选择题(每小题6分,共60分)1.(2022·陕西西北工业高校附属中学期中检测)静电计是在验电器的基础上制成的,用其指针张角的大小来定性显示其金属球与外壳之间的电势差大小。
如图所示,A、B是平行板电容器的两个金属板,G为静电计。
开头时开关S闭合,静电计指针张开肯定角度,为了使指针张开的角度增大些,下列实行的措施可行的是(A)A.断开开关S后,将A、B分开些B.保持开关S闭合,将A、B两极板分开些C.保持开关S闭合,将A、B两极板靠近些D.保持开关S闭合,将变阻器滑动触头向右移动【解析】断开开关,电容器带电量不变,将AB分开一些,则d增大,依据C=知,电势差增大,指针张角增大,A项正确;保持开关闭合,电容器两端的电势差不变,则指针张角不变,B、C项错误;保持开关闭合,电容器两端的电势差不变,变阻器仅仅充当导线功能,滑动触头滑动不会影响指针张角,D项错误。
2.(2021·锦州二模)(多选)如图所示,水平放置的平行板电容器,两板间距为d。
带负电的小球质量为m,带电量为q,从下极板N的小孔P处,以初速度v0射入,沿直线到达上极板M上的Q点,若重力加速度为g。
则(BD)A.小球在M、N间运动的加速度不为零B.M板电势高于N板电势C.小球从P到Q,电势能增加了mgdD.M、N间电势差大小为【解析】小球受重力、电场力,沿直线运动,则说明重力与电场力平衡,则加速度为零,A项错误;由重力和电场力平衡,可知电场力向上,由于小球带负电,故电场线方向向下,故M板电势高于N板电势,B项正确;由于电场力与重力平衡,即F=mg,电场力方向向上,做正功,W=Fd=mgd,故电势能削减mgd,C项错误;电场力做功W=qU=mgd,解得U=,D项正确。
3.(多选)如图所示,平行板电容器AB两极板水平放置,A在上方,B在下方,现将其和二极管串联接在电源上,已知A和电源正极相连,二极管具有单向导电性,一带电小球从AB间的某一固定点水平射入,打在B极板上的N点,小球的重力不能忽视,现通过上下移动A板来转变两极板AB间距(两极板始终平行),则下列说法正确的是(BC)A.若小球带正电,当AB间距增大时,小球打在N点的右侧B.若小球带正电,当AB间距减小时,小球打在N点的左侧C.若小球带负电,当AB间距减小时,小球可能打在N点的右侧D.若小球带负电,当AB间距增大时,小球可能打在N点的左侧【解析】若小球带正电,当d增大时,电容减小,但二极管具有单向导电性,电容器上电荷不能流回电源,Q不行能减小,所以Q不变,依据E=,E不变,所以电场力不变,小球仍旧打在N点,A项错误;若小球带正电,当d减小时,电容增大,Q增大,所以d减小时E增大,所以电场力变大向下,小球做平抛运动竖直方向加速度增大,运动时间变短,打在N点左侧,B项正确;若小球带负电,当AB间距d减小时,电容增大,则Q增大,所以d减小时E增大,所以电场力变大向上,若电场力小于重力,小球做类平抛运动竖直方向上的加速度减小,运动时间变长,小球将打在N点的右侧,C项正确;若小球带负电,当AB间距d增大时,电容减小,但Q不行能减小,所以Q不变,E不变所以电场力大小不变,方向向上,小球将仍打在N点,D项错误。
第八章 静电场 知能图谱()((()(2122 F E q Q E k r U E d F Eq q q F k r ⎧⎪⎧⎧⎧=⎪⎪⎪⎪⎪⎪⎪⎪⎪=⎨⎪⎪⎪⎪⎪⎪⎪⎪=⎪⎪⎪⎩⎪⎨⎪⎪⎧=⎪⎪⎪⎪⎨⎪⎨=⎪⎪⎪⎩⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩任何电场电场强度匀强电场电场的力的性质任何电场静电力电场静电场电场线电势,等势面电势差电场的能的性质电势能静电力做功静电的应用和防止加速带电粒子在电场中的运电荷电动偏转荷守恒定律⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩一、电荷守恒定律与库仑定律 知识能力解读智能解读:(一)电荷1.两种电荷:正电荷和负电荷用丝绸摩擦过的玻璃棒带正电荷,用毛皮摩擦过的破橡胶棒带负电荷。
基本特点:①同种电荷相互排斥,异种电荷相互吸引;②任何带电体都可以吸引轻小物体。
2.元电荷(1)元电荷(e ):迄今为止,科学实验发现的最小电荷量就是电子所带的电荷量。
人们把这个最小的电荷量叫做元电荷,用e 表示。
计算中,可取元电荷的值为191.6010C e -=⨯。
所有带电体的电荷量或者等于e ,或者是e 的整数倍。
(2)电荷量:电荷的多少叫做电荷量,用Q (或q )表示。
在国际单位制中,电荷量的单位是库仑,简称库,用符号C 表示。
通常,正电荷的电荷量为正值,负电荷的电荷量为负值。
(3)比荷:带电体的电荷量q 与其质量m 之比叫比荷。
例如:电子的比荷为191130e 1.6010C 1.7610C kg 0.9110kge m --⨯=≈⨯⨯。
说明:(1)元电荷只是一个电荷量,没有正负,不是物质。
电子、质子是实实在在的粒子,不是元电荷,其带电荷量为一个元电荷。
(2)元电荷是自然界中最小的电荷量,电荷量是不能连续变化的物理量,所有带电体的电荷量或者等于e ,或者是e 的整数倍。
3.点电荷:若带电体大小与它们之间的距离相比可以忽略时,这样的带电体可以看成点电荷,点电荷是一种理想化模型。
素养练12等效思想在电场中的应用(科学思维)1.(多选)如图所示,用绝缘细线拴一带负电小球,在竖直平面内做圆周运动,匀强电场方向竖直向下。
下列说法正确的是( )A.小球可能做匀速圆周运动B.小球运动到最高点a时,线的拉力一定最小C.小球运动到最低点b时,速度一定最大D.小球运动到最高点a时,电势能最小2.(多选)(浙江嘉兴高三质检)如图甲所示,一带正电的物块从粗糙程度不清楚的绝缘斜面上O点由静止滑下,途经P、Q两点,所在空间有方向平行于斜面向上的匀强电场,以O点为原点,选斜面底端为重力势能参考平面,作出物块从O至Q过程中的机械能E机随位移x变化的关系如图乙所示,其中O至P过程的图线为曲线,P至Q过程的图线为直线,运动中物块的电荷量不变,则( )A.O至P过程中,物块做加速度减小的加速运动B.P至Q过程中,物块做匀加速直线运动C.P至Q过程中,摩擦力对物块做功的功率不变D.O至Q过程中,物块的重力势能与电势能之和不断减小3.(多选)如图甲所示,用轻绳拴着一个质量为m、电荷量为+q的小球在竖直面内绕O点做圆周运动,竖直面内加有竖直向下的匀强电场,不计一切阻力,小球运动到最高点时的动能E k与绳的拉力F间的关系如图乙所示,重力加速度为g,则( )A.轻绳的长度为abB.电场强度大小为b-mgqC.小球在最低点时的最小速度为√5amD.小球在最低点和最高点所受绳子的拉力差为6b4.(浙江名校联考)如图所示,在沿水平方向的匀强电场中有一固定点O,用一根长度为L=0.4 m的绝缘细线把质量为m=0.20 kg,带有q=6.0×10-4C 正电荷的金属小球悬挂在O点,小球静止在B点时细线与竖直方向的夹角为θ=37°。
已知A、C两点分别为细线悬挂小球的水平位置和竖直位置,g 取10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求A、B两点间的电势差U AB。
第1讲 电场力的性质[学生用书P126] 【基础梳理】一、电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷. 2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. 二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.公式:F =k q 1q 2r 2,式中的k =9.0×109 N ·m 2/C 2,叫做静电力常量.3.适用条件:(1)点电荷;(2)真空. 三、静电场 电场强度1.静电场:静电场是客观存在于电荷周围的一种物质,其基本性质是对放入其中的电荷有力的作用. 2.电场强度(1)意义:描述电场强弱和方向的物理量. (2)公式①定义式:E =Fq,是矢量,单位:N/C 或V/m .②点电荷的场强:E =k Qr 2,Q 为场源电荷,r 为某点到Q 的距离.③匀强电场的场强:E =Ud.(3)方向:规定为正电荷在电场中某点所受电场力的方向. 四、电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.2.电场线的特点(1)电场线从正电荷或无限远处出发,终止于无限远处或负电荷. (2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越大. (4)电场线上某点的切线方向表示该点的场强方向. (5)沿电场线方向电势降低.(6)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示)【自我诊断】(1)任何带电体所带的电荷量都是元电荷的整数倍.( ) (2)根据公式F =k q 1q 2r2得,当r →0时,有F →∞.( )(3)电场强度反映了电场力的性质,所以电场中某点的场强与试探电荷在该点所受的电场力成正比.( ) (4)电场中某点的场强方向与负电荷在该点所受的电场力的方向相反.( )(5)在真空中,点电荷的场强公式E =kQr 2中的Q 是产生电场的场源电荷的电荷量,E 与试探电荷无关.( )(6)带电粒子的运动轨迹一定与电场线重合.( )(7)在点电荷产生的电场中,以点电荷为球心的同一球面上各点的电场强度都相同.( ) 提示:(1)√ (2)× (3)× (4)√ (5)√ (6)× (7)×如图所示为真空中两点电荷A 、B 形成的电场中的一簇电场线,已知该电场线关于虚线对称,O 点为A 、B 电荷连线的中点,a 、b 为其连线的中垂线上对称的两点,则下列说法正确的是( )A .A 、B 可能带等量异号的正、负电荷 B .A 、B 可能带不等量的正电荷C .a 、b 两点处无电场线,故其电场强度可能为零D .同一试探电荷在a 、b 两点处所受电场力大小相等,方向一定相反提示:选D .根据题图中的电场线分布可知,A 、B 带等量的正电荷,选项A 、B 错误;a 、b 两点处虽然没有画电场线,但其电场强度一定不为零,选项C 错误;由图可知,a 、b 两点处电场强度大小相等,方向相反,同一试探电荷在a 、b 两点处所受电场力一定大小相等,方向相反,选项D 正确.计算两个带电小球之间的库仑力时,公式中的r一定是指两个球心之间的距离吗?为什么?提示:不一定.当两个小球之间的距离相对于两球的直径较小时,两球不能看做点电荷,这时公式中的r 大于(带同种电荷)或小于(带异种电荷)两个球心之间的距离.对库仑定律的理解及应用[学生用书P127]【知识提炼】1.对库仑定律的理解(1)F =k q 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球的球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大. 2.求解涉及库仑力的平衡问题的解题思路涉及库仑力的平衡问题与纯力学平衡问题分析方法一样,受力分析是基础,应用平衡条件是关键,都可以通过解析法、图示法或两种方法相结合解决问题,但要注意库仑力的大小随着电荷间距变化的特点.具体步骤如下:【典题例析】(多选)如图所示,用两根长度相同的绝缘细线把一个质量为0.1 kg 的小球A 悬挂到水平板的M 、N 两点,A 上带有Q =3.0×10-6 C 的正电荷.两线夹角为120°,两线上的拉力大小分别为F 1和F 2.A 的正下方0.3 m 处放有一带等量异种电荷的小球B ,B 与绝缘支架的总质量为0.2 kg(重力加速度取g =10 m/s 2;静电力常量k =9.0×109 N ·m 2/C 2,A 、B 球可视为点电荷),则( )A .支架对地面的压力大小为2.0 NB .两线上的拉力大小F 1=F 2=1.9 NC .将B 水平右移,使M 、A 、B 在同一直线上,此时两线上的拉力大小F 1=1.225 N ,F 2=1.0 ND .将B 移到无穷远处,两线上的拉力大小F 1=F 2=0.866 N[审题指导] 对小球进行受力分析,除受到重力、拉力外,还受到库仑力,按照力的平衡的解题思路求解问题.[解析] 设A 、B 间距为l ,A 对B 有竖直向上的库仑力,大小为F AB =kQ 2l 2=0.9 N ;对B 与支架整体分析,竖直方向上合力为零,则F N +F AB =mg ,可得F N =mg -F AB =1.1 N ,由牛顿第三定律知F ′N =F N ,选项A 错误;因两细线长度相等,B 在A 的正下方,则两绳拉力大小相等,小球A 受到竖直向下的重力、库仑力和F 1、F 2作用而处于平衡状态,因两线夹角为120°,根据力的合成特点可知:F 1=F 2=G A +F AB =1.9 N ,选项B 正确;当B 移到无穷远处时,F 1=F 2=G A =1 N ,选项D 错误;当B 水平向右移至M 、A 、B 在同一条直线上时,如图所示,对A 受力分析并沿水平和竖直方向正交分解, 水平方向:F 1cos 30°=F 2cos 30°+F ′cos 30° 竖直方向:F 1sin 30°+F 2sin 30°=G A +F ′sin 30°由库仑定律知,A 、B 间库仑力大小F ′=kQ 2⎝⎛⎭⎫l sin 30°2=F AB4=0.225 N ,联立以上各式可得F 1=1.225 N ,F 2=1.0 N ,选项C 正确.[答案] BC1.对库仑定律应用的认识(1)对于两个均匀带电绝缘球体,可以将其视为电荷集中于球心的点电荷,r 为两球心之间的距离. (2)对于两个带电金属球,要考虑金属球表面电荷的重新分布.(3)不能根据公式错误地推论:当r →0时,F →∞.其实,在这样的条件下,两个带电体已经不能再看成点电荷了.2.电荷的分配规律(1)两个带同种电荷的相同金属球接触,则其电荷量平分. (2)两个带异种电荷的相同金属球接触,则其电荷量先中和再平分.3.三点电荷共线平衡模型:三个点电荷若只受电场力且共线平衡,则满足“两同夹一异,两大夹一小,近小远大”的原则,即若已知一正一负两点电荷,则第三个点电荷应放在小电荷的外侧且与小电荷电性相反,再根据受力平衡求解相应距离和对应电荷量.【迁移题组】1 库仑定律与电荷守恒定律的结合问题1.三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的电荷量为q ,球2的电荷量为nq ,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F .现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F ,方向不变.由此可知( )A .n =3B .n =4C .n =5D .n =6解析:选D .由于各球之间距离远大于小球的直径,小球带电时可视为点电荷.由库仑定律F =k Q 1Q 2r 2知两点电荷间距离不变时,相互间静电力大小与两球所带电荷量的乘积成正比.又由于三小球相同,则接触时平分总电荷量,故有q ×nq =nq 2×⎝⎛⎭⎫q +nq 22,解得n =6,D 正确.2 三点电荷共线平衡的求解 2.如图所示,在一条直线上有两个相距0.4 m 的点电荷A 、B ,A 带电荷量为+Q ,B 带电荷量为-9Q .现引入第三个点电荷C ,恰好使三个点电荷处于平衡状态,问:C 应带什么性质的电荷,应放于何处?所带电荷量为多少?解析:根据平衡条件判断,C 应带负电荷,放在A 的左边且和A 、B 在一条直线上,设C 带电荷量为q ,与A 点相距为x ,如图所示.答案:应为带电荷量为94Q 的负电荷,置于A 左方0.2 m 处且和A 、B 在一条直线上迁移3 库仑力作用下的平衡问题3.(多选)(2018·吉林长春外国语学校检测)如图所示,带电小球A 、B 的电荷分别为Q A 、Q B ,OA =OB ,都用长L 的丝线悬挂在O 点.静止时A 、B 相距为d .为使平衡时AB 间距离减为d2,可采用以下哪些方法( )A .将小球A 、B 的质量都增加到原来的2倍 B .将小球B 的质量增加到原来的8倍C .将小球A 、B 的电荷量都减小到原来的一半D .将小球A 、B 的电荷量都减小到原来的一半,同时将小球B 的质量增加到原来的2倍 解析:选BD .如图所示,B 受重力、绳子的拉力及库仑力;将拉力及库仑力合成,其合力应与重力大小相等、方向相反;由几何关系可知,m B g L =F d ,而库仑力F =kQ A Q B d 2;即m B g L =kQ A Q B d 2d =k Q A Q Bd 3,即m B gd 3=kQ A Q B L .要使d 变为d2,可以使B 球质量增大到原来的8倍而保证上式成立,故A 错误,B 正确;或将小球A 、B 的电荷量都减小到原来的一半,同时小球B 的质量增加到原来的2倍,也可保证等式成立,故C 错误,D 正确.对电场强度的理解及巧解[学生用书P129]【知识提炼】电场强度三个表达式的比较直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图.M 、N 两点各固定一负点电荷,一电量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( )A .3kQ4a2,沿y 轴正向 B .3kQ4a2,沿y 轴负向C .5kQ4a 2,沿y 轴正向 D .5kQ4a2,沿y 轴负向[审题指导] 由点电荷场强公式E =kQr 2可计算出各点的场强大小,再由矢量合成原则分析场强的叠加.[解析] 处于O 点的正点电荷在G 点处产生的场强E 1=k Qa 2,方向沿y 轴负向;又因为G 点处场强为零,所以M 、N 处两负点电荷在G 点共同产生的场强E 2=E 1=k Qa 2,方向沿y 轴正向;根据对称性,M 、N 处两负点电荷在H 点共同产生的场强E 3=E 2=k Qa 2,方向沿y 轴负向;将该正点电荷移到G 处,该正点电荷在H 点产生的场强E 4=k Q (2a )2,方向沿y 轴正向,所以H 点的场强E =E 3-E 4=3kQ4a 2,方向沿y 轴负向. [答案] B电场强度的叠加与计算【迁移题组】1 点电荷电场中场强的计算1.如图,真空中xOy 平面直角坐标系上的A 、B 、C 三点构成等边三角形,边长L =2.0 m .若将电荷量均为q =+2.0×10-6 C 的两点电荷分别固定在A 、B 点,已知静电力常量k =9.0×109 N ·m 2/C 2,求:(1)两点电荷间的库仑力大小; (2)C 点的电场强度的大小和方向.解析:(1)根据库仑定律,A 、B 两点电荷间的库仑力大小为F =k q 2L 2 ①代入数据得F =9.0×10-3 N .②(2)A 、B 两点电荷在C 点产生的场强大小相等,均为 E 1=k q L2③A 、B 两点电荷形成的电场在C 点的合场强大小为 E =2E 1cos 30°④由③④式联立并代入数据得E ≈7.8×103 N/C 场强E 的方向沿y 轴正方向.答案:(1)9.0×10-3 N (2)7.8×103 N/C 方向沿y 轴正方向2特殊电场中电场强度的巧解2.均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB 上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球面顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R.已知M点的场强大小为E,则N点的场强大小为()A.kq2R2-E B.kq 4R2C.kq4R2-E D.kq4R2+E解析:选A.左半球面AB上的正电荷产生的电场等效为带正电荷为2q的整个球面的电场和带电荷-q的右半球面的电场的合电场,则E=2kq(2R)2-E′,E′为带电荷-q的右半球面在M点产生的场强大小.带电荷-q的右半球面在M点的场强大小与带正电荷为q的左半球面AB在N点的场强大小相等,则E N=E′=2kq(2R)2-E=kq2R2-E,则A正确.电场线与粒子运动轨迹问题[学生用书P129]【知识提炼】1.电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合(1)电场线是直线.(2)电荷由静止释放或有初速度,且初速度方向与电场线方向平行.2.由粒子运动轨迹判断粒子运动情况(1)粒子受力方向指向曲线的内侧,且与电场线相切.(2)由电场线的疏密判断加速度大小.(3)由电场力做功的正负判断粒子动能的变化情况.【典题例析】(多选)如图所示,实线为不知方向的三条电场线,从电场中M点以相同速度飞出a、b两个带电粒子,仅在电场力作用下的运动轨迹如图中虚线所示.则()A.a一定带正电,b一定带负电B.a的速度将减小,b的速度将增大C.a的加速度将减小,b的加速度将增大D.两个粒子的电势能都减少[审题指导]解此题关键要抓住两点:(1)利用运动轨迹结合曲线运动分析粒子的受力方向及做功特点.(2)利用电场线的疏密分析电场力及加速度的大小.[解析]因为电场线方向未知,不能确定a、b的电性,所以选项A错误;由于电场力对a、b都做正功,所以a、b的速度都增大,电势能都减少,选项B错误、D正确;粒子的加速度大小取决于电场力的大小,a 向电场线稀疏的方向运动,b向电场线密集的方向运动,所以选项C正确.[答案]CD1.重要电场线的比较2(1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情况.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.【迁移题组】1等量异(同)种电荷电场线的分布1.如图所示,在真空中有两个固定的等量异种点电荷+Q和-Q.直线MN是两点电荷连线的中垂线,O 是两点电荷连线与直线MN的交点.a、b是两点电荷连线上关于O的对称点,c、d是直线MN上的两个点.下列说法中正确的是()A.a点的场强大于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先增大后减小B.a点的场强小于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先减小后增大C.a点的场强等于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先增大后减小D.a点的场强等于b点的场强;将一检验电荷沿MN由c移动到d,所受电场力先减小后增大解析:选C.在两电荷的连线上,由场强的叠加原理可知,中点O场强最小,从O点到a点或b点,场强逐渐增大,由于a、b是两点电荷连线上关于O的对称点,场强相等,选项A、B错误;在两电荷连线的中垂线上,中点O的场强最大,由O点到c点或d点,场强逐渐减小,所以沿MN从c点到d点场强先增大后减小,因此检验电荷所受电场力先增大后减小,所以C正确、D错误.2电场线中带电粒子的运动分析2.如图,P是固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q在P的电场中运动,运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c,则()A.a a>a b>a c,v a>v c>v bB.a a>a b>a c,v b>v c>v aC.a b>a c>a a,v b>v c>v aD.a b>a c>a a,v a>v c>v b解析:选D.由点电荷电场强度公式E=k qr2可知,离场源点电荷P越近,电场强度越大,Q受到的电场力越大,由牛顿第二定律可知,加速度越大,由此可知,a b>a c>a a,A、B选项错误;由力与运动的关系可知,Q 受到的库仑力指向运动轨迹凹的一侧,因此Q与P带同种电荷,Q从c到b的过程中,电场力做负功,动能减少,从b到a的过程中电场力做正功,动能增加,因此Q在b点的速度最小,由于c、b两点的电势差的绝对值小于a、b两点的电势差的绝对值,因此Q从c到b的过程中,动能的减少量小于从b到a的过程中动能的增加量,Q在c点的动能小于在a点的动能,即有v a>v c>v b,C选项错误、D选项正确.3根据粒子运动情况判断电场线分布3.一负电荷从电场中A点由静止释放,只受电场力作用,沿电场线运动到B点,它运动的v-t图象如图所示,则A、B两点所在区域的电场线分布情况可能是下图中的()解析:选C.由v-t图象可知负电荷在电场中做加速度越来越大的加速运动,故电场线应由B指向A且A 到B的方向场强变大,电场线变密,选项C正确.[学生用书P130])1.(多选)(2016·高考浙江卷)如图所示,把A、B两个相同的导电小球分别用长为0.10 m的绝缘细线悬挂于O A和O B两点.用丝绸摩擦过的玻璃棒与A球接触,棒移开后将悬点O B移到O A点固定.两球接触后分开,平衡时距离为0.12 m.已测得每个小球质量是8.0×10-4 kg,带电小球可视为点电荷,重力加速度g=10 m/s2,静电力常量k=9.0×109 N·m2/C2,则()A.两球所带电荷量相等B.A球所受的静电力为1.0×10-2 NC.B球所带的电荷量为46×10-8 CD.A、B两球连线中点处的电场强度为0解析:选ACD.用丝绸摩擦过的玻璃棒带正电荷,与A球接触后A球也带正电荷,两球接触后分开,B球也带正电荷,且两球所带电荷量相等,A 正确;两球相互排斥,稳定后A 球受力情况如图所示sin θ=0.060.10=0.60,θ=37°F 库=mg tan 37°=6.0×10-3 N ,B 项错误;F 库=k Q A Q Br2Q A =Q B =Q ,r =0.12 m联立上式得Q =46×10-8 C ,故C 项正确;由等量同种点电荷产生的电场的特点可知,A 、B 两球连线中点处的场强为0,故D 项正确.2.(多选)(2017·高考天津卷)如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为a A 、a B ,电势能分别为E p A 、E p B .下列说法正确的是( )A .电子一定从A 向B 运动B .若a A >a B ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有E p A <E p BD .B 点电势可能高于A 点电势解析:选BC .电子仅在电场力作用下可能从A 运动到B ,也可能从B 运动到A ,所以A 错误;若a A >a B ,说明电子在A 点受到的电场力大于在B 点受到的电场力,所以A 距离点电荷较近,B 距离点电荷较远,又因为电子受到的电场力指向轨迹凹侧,因此Q 靠近M 端且为正电荷,B 正确;无论Q 是正电荷还是负电荷,若电子从A 运动到B ,一定是克服电场力做功,若电子从B 运动到A ,一定是电场力做正功,即一定有E p A <E p B ,C 正确;对于同一个负电荷,电势低处电势能大,B 点电势一定低于A 点电势,D 错误.3.(多选)(2018·武汉质检)离子陷阱是一种利用电场或磁场将离子俘获并囚禁在一定范围内的装置.如图所示为最常见的“四极离子陷阱”的俯视示意图,四根平行细杆与直流电压和叠加的射频电压相连,相当于四个电极,相对的电极带等量同种电荷,相邻的电极带等量异种电荷.在垂直于四根杆的平面内四根杆的连线是一个正方形abcd ,A 、C 是a 、c 连线上的两点,B 、D 是b 、d 连线上的两点,A 、C 、B 、D 到正方形中心O 的距离相等.则下列判断正确的是( )A .D 点的电场强度为零B .A 、B 、C 、D 四点电场强度相等C .A 点电势比B 点电势高D .O 点的电场强度为零解析:选CD .根据电场的叠加原理,a 、c 两个电极带等量正电荷,其中点O 的合场强为零,b 、d 两个电极带等量负电荷,其中点O 的合场强为零,则O 点的合场强为零,D 正确;同理,D 点的场强方向水平向右,A 错误;A 、B 、C 、D 四点的场强大小相等,方向不同,B 错误;由电场特点知,电场方向由A 指向O ,由O 指向B ,故φA >φO ,φO >φB ,则φA >φB ,C 正确.4.(2017·高考北京卷)如图所示,长l =1 m 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q =1.0×10-6 C ,匀强电场的场强E =3.0×103 N/C ,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小球所受电场力F 的大小. (2)小球的质量m .(3)将电场撤去,小球回到最低点时速度v 的大小. 解析:(1)F =qE =3.0×10-3 N .(2)由qE mg=tan 37°,得m =4.0×10-4 kg . (3)由mgl (1-cos 37°)=12m v 2,得v =2gl (1-cos 37°)=2.0 m/s .答案:见解析[学生用书P319(单独成册)] (建议用时:60分钟)一、单项选择题1.两个分别带有电荷量-Q 和+5Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F ,两小球相互接触后将其固定距离变为r2,则两球间库仑力的大小为( )A .5F16 B .F 5C .4F 5D .16F 5解析:选D .两球相距r 时,根据库仑定律F =k Q ·5Q r 2,两球接触后,带电荷量均为2Q ,则F ′=k 2Q ·2Q⎝⎛⎭⎫r 22,由以上两式可解得F ′=16F5,D 正确.2.(2015·高考浙江卷)如图所示为静电力演示仪,两金属极板分别固定于绝缘支架上,且正对平行放置.工作时两板分别接高压直流电源的正负极,表面镀铝的乒乓球用绝缘细线悬挂在两金属极板中间,则( )A .乒乓球的左侧感应出负电荷B .乒乓球受到扰动后,会被吸在左极板上C .乒乓球共受到电场力、重力和库仑力三个力的作用D .用绝缘棒将乒乓球拨到与右极板接触,放开后乒乓球会在两极板间来回碰撞解析:选D .两极板间电场由正极板指向负极板,镀铝乒乓球内电子向正极板一侧聚集,故乒乓球的右侧感应出负电荷,选项A 错误;乒乓球受到重力、细线拉力和电场力三个力的作用,选项C 错误;乒乓球与任一金属极板接触后会带上与这一金属极板同种性质的电荷,而相互排斥,不会吸在金属极板上,到达另一侧接触另一金属极板时也会发生同样的现象,所以乒乓球会在两极板间来回碰撞,选项B 错误、D 正确.3.(2016·高考江苏卷)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示.容器内表面为等势面,A 、B 为容器内表面上的两点,下列说法正确的是( )A .A 点的电场强度比B 点的大 B .小球表面的电势比容器内表面的低C .B 点的电场强度方向与该处内表面垂直D .将检验电荷从A 点沿不同路径移到B 点,电场力所做的功不同解析:选C .由于A 点处电场线比B 点处电场线疏,因此A 点电场强度比B 点小,A 项错误;沿着电场线的方向电势逐渐降低,因此小球表面的电势比容器内表面的电势高,B 项错误;由于处于静电平衡的导体表面是等势面,电场线垂直于等势面,因此B 点的电场强度方向与该处内表面垂直,C 项正确;将检验电荷从A 点沿不同的路径移到B 点,由于A 、B 两点的电势差恒定,因此电场力做功W AB =qU AB 相同,D 项错误.4.如图所示,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( )A .k 3qR2B .k 10q 9R2C .k Q +q R 2D .k 9Q +q 9R 2解析:选B .由b 点处的合场强为零可得圆盘在b 点处的场强与点电荷q 在b 点处的场强大小相等、方向相反,所以圆盘在b 点处的场强大小为E b =k qR 2,再根据圆盘场强的对称性和电场强度叠加即可得出d 点处的场强大小为E d =E b +k q (3R )2=k 10q9R 2,B 正确.5.如图所示,xOy 平面是无穷大导体的表面,该导体充满z <0的空间,z >0的空间为真空.将电荷量为q 的点电荷置于z 轴上z =h 处,则在xOy 平面上会产生感应电荷.空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的.已知静电平衡时导体内部场强处处为零,则在z 轴上z =h2处的场强大小为(k为静电力常量)( )A .k 4q h 2B .k 4q 9h 2C .k 32q 9h2D .k 40q 9h2解析:选D .点电荷q 和感应电荷所形成的电场在z >0的区域可等效成关于O 点对称的电偶极子形成的电场.所以z 轴上z =h 2处的场强E =k q ⎝⎛⎭⎫h 22+k q ⎝⎛⎭⎫32h 2=k 40q9h 2,选项D 正确. 6.将两个质量均为m 的小球a 、b 用绝缘细线相连,竖直悬挂于O 点,其中球a 带正电、电荷量为q ,球b 不带电,现加一电场强度方向平行竖直平面的匀强电场(没画出),使整个装置处于平衡状态,且绷紧的绝缘细线Oa 与竖直方向的夹角为θ=30°,如图所示,则所加匀强电场的电场强度大小可能为( )A .mg4q B .mg qC .mg 2qD .3mg4q解析:选B .取小球a 、b 整体作为研究对象,则受重力2mg 、悬线拉力F T 和电场力F 作用处于平衡,此三力满足如图所示的三角形关系,由图知F 的最小值为2mg sin 30°=mg ,由F =qE 知A 、C 、D 错,B 对.二、多项选择题7.如图所示为在同一电场中a 、b 、c 、d 四点分别引入检验电荷时,测得的检验电荷所受电场力跟它的电荷量的函数关系图象,那么下列叙述正确的是( )A .这个电场是匀强电场B .a 、b 、c 、d 四点的场强大小关系是E d >E a >E b >E cC .a 、b 、c 、d 四点的场强大小关系是E a >E c >E b >E dD .a 、b 、d 三点的强场方向相同解析:选CD .由场强的定义式E =Fq 并结合图象的斜率可知电场强度的大小,则E a >E c >E b >E d ,此电场不是匀强电场,选项A 、B 错误,选项C 正确;图象斜率的正负表示电场强度的方向,a 、b 、d 三点相应图线的斜率为正,三点的场强方向相同,选项D 正确.8.(2015·高考江苏卷)两个相同的负电荷和一个正电荷附近的电场线分布如图所示.c 是两负电荷连线的中点,d 点在正电荷的正上方,c 、d 到正电荷的距离相等,则( )A .a 点的电场强度比b 点的大B .a 点的电势比b 点的高C .c 点的电场强度比d 点的大D .c 点的电势比d 点的低解析:选ACD .由题图看出,a 点处电场线比b 点处电场线密,则a 点的场强大于b 点的场强,故A 正确.电场线从正电荷到负电荷,沿着电场线方向电势降低,所以b 点的电势比a 点的高,所以B 错误;负电荷在c 点的合场强为零,c 点只有正电荷产生的电场强度,在d 点正电荷产生的场强向上,两个负电荷产生的场强向下,合场强是它们的差值,所以c 点的电场强度比d 点的大,所以C 正确;正电荷到c 点的平均场强大于正电荷到d 点的平均场强,根据U =Ed 可知,正电荷到c 点电势降低的多,所以c 点的电势比d 点的低,所以D 正确.9.(多选)(高考浙江卷)如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为θ.一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球A ,细线与斜面平行.小球A 的质量为m 、电量。
第2节 电场能的性质一、电势能和电势1.电势能 (1)电场力做功的特点:电场力做功与路径无关,只与初、末位置有关。
(2)电势能①定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时电场力所做的功。
②电场力做功与电势能变化的关系:电场力做的功等于电势能的减少量,即W AB =E p A -E p B =-ΔE p 。
2.电势(1)定义:试探电荷在电场中某点具有的电势能与它的电荷量的比值。
(2)定义式:φ=E p q 。
(3)矢标性:电势是标量,有正、负之分,其正(负)表示该点电势比零电势高(低)。
(4)相对性:电势具有相对性,同一点的电势因选取零电势点的不同而不同。
3.等势面(1)定义:电场中电势相等的各点组成的面。
(2)四个特点①等势面一定与电场线垂直。
②在同一等势面上移动电荷时电场力不做功。
③电场线方向总是从电势高的等势面指向电势低的等势面。
④等差等势面越密的地方电场强度越大,反之越小。
二、电势差1.定义:电荷在电场中由一点A 移到另一点B 时,电场力做功与移动电荷的电荷量的比值。
2.定义式:U AB =W AB q。
3.电势差与电势的关系:U AB =φA -φB ,U AB =-U BA 。
三、匀强电场中电势差与电场强度的关系1.电势差与电场强度的关系:匀强电场中两点间的电势差等于电场强度与这两点沿电场线方向的距离的乘积。
即U =Ed ,也可以写作E =U d。
2.公式U =Ed 的适用X 围:匀强电场。
1.思考辨析(正确的画“√”,错误的画“×”)(1)电场中电场强度为零的地方电势一定为零。
(×) (2)沿电场线方向电场强度越来越小,电势逐渐降低。
(×)(3)A 、B 两点间的电势差等于将正电荷从A 点移到B 点时静电力所做的功。
(×)(4)A 、B 两点的电势差是恒定的,所以U AB =U BA 。
(×)(5)等差等势线越密的地方,电场线越密,电场强度越大。
【备考2022 高考物理一轮电磁学专题复习】 选择题专练1 静电场(含解析) 1.“牟缀芥”是东汉王充在《论衡⋅乱龙篇》中记载的摩擦起电现象,意指摩擦后的带电琥珀能吸引轻小物体。
现做如下简化:在某处固定一个电荷量为Q 的带正电的点电荷,在其正下方h 处有一个原子。
在点电荷的电场的作用下原子的负电荷中心与正电荷中心会分开很小的距离l 。
点电荷与原子之间产生作用力F 。
你可能不会求解F ,但是你可以通过物理分析进行判断,关于F 的表达式,可能正确的是(式中k 为静电力常量)( )A .0F =B .F=2kQq lC .22kQq F h =D .F=32kQql h 2.口罩是人们抗击新冠病毒人侵的一种常见防护物品。
口罩对病毒起阻隔作用的是一层熔喷无纺布层,布层纤维里加有一种驻极体材料,驻极体材料分子中的正、负电荷原本不重合且杂乱分布(图甲所示),经过静电处理后变得较为规则的分布(图乙所示),从而具有静电吸附作用。
以下说法中正确的是( )A .静电处理前,驻极体材料带有静电B .静电处理过程,电场力对驻极体材料中的正、负电荷做正功C .静电处理过程,驻极体材料分子中的电荷电势能增加D .口罩熔喷布不能阻挡不带电的中性微小颗粒物3.在物理学的发展过程中,科学家们总结出了许多物理学研究方法,以下关于物理学研究方法的叙述正确的是()A.在不需要考虑带电物体本身的大小和形状时,用点电荷来代替物体的方法叫微元法B.在探究加速度、力和质量三者之间的关系时采用了假设法C.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了理想模型法D.伽利略认为自由落体运动是物体在倾角为90°的斜面上的运动,再根据铜球在斜面上的运动规律得出自由落体的运动规律,这是采用了实验和逻辑推理相结合的方法4.如图,在光滑绝缘斜面上有带电小球a与b,两球同时释放瞬间,a球的加速度刚好为零,则下列关于a、b的电性及初始位置,符合要求的是()A.B.C.D.5.富兰克林为研究雷电现象,设计了如图所示的装置,避雷针线路与接地线分开,并在分开处装上帽形的金属钟A与B,两钟之间以丝线悬挂一个金属小球C,A钟下方用导线连接两个很轻的金属小球形成验电器D,避雷针上空附近的云不带电时,三个金属小球均静止下垂。
专题27 静电场 电场强度(讲)1.多个电荷库仑力的平衡和场强叠加问题.2.利用电场线和等势面确定场强的大小和方向,判断电势高低、电场力变化、电场力做功和电势能的变化等.3.带电体在匀强电场中的平衡问题及其他变速运动的动力学问题. 4.对平行板电容器电容决定因素的理解,解决两类有关动态变化的问题. 5.分析带电粒子在电场中的加速和偏转问题.6.示波管、静电除尘等在日常生活和科学技术中的应用.1.理解电场强度的定义、意义及表示方法.2.熟练掌握各种电场的电场线分布,并能利用它们分析解决问题. 3.会分析、计算在电场力作用下的电荷的平衡及运动问题.一、电场强度 1.静电场(1)电场是存在于电荷周围的一种物质,静电荷产生的电场叫静电场.(2)电荷间的相互作用是通过电场实现的.电场的基本性质是对放入其中的电荷有力的作用. 2.电场强度(1)物理意义:表示电场的强弱和方向.(2)定义:电场中某一点的电荷受到的电场力F 跟它的电荷量q 的比值叫做该点的电场强度. (3)定义式:qFE. (4)标矢性:电场强度是矢量,正电荷在电场中某点受力的方向为该点电场强度的方向,电场强度的叠加遵从平行四边形定则. 二、电场线 1.定义:为了直观形象地描述电场中各点电场强度的强弱及方向,在电场中画出一系列的曲线,使曲线上各点的切线方向表示该点的电场强度方向,曲线的疏密表示电场强度的大小. 2.特点:(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处; (2)电场线在电场中不相交;(3)在同一电场里,电场线越密的地方场强越大; (4)电场线上某点的切线方向表示该点的场强方向; (5)沿电场线方向电势逐渐降低; (6)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示).考点一 电场强度的理解及计算 1.电场强度三个表达式的比较 表达式 比较 qFE =2rQ kE = dU E =公式意义电场强度定义式真空中点电荷电场强度的决定式 匀强电场中E 与U 的关系式适用条件 一切电场 ①真空②点电荷匀强电场决定因素 由电场本身决定,与q 无关 由场源电荷Q 和场源电荷到该点的距离r 共同决定由电场本身决定,d 为沿电场方向的距离相同点矢量,遵守平行四边形定则 单位:1 N/C =1 V/m除用以上三个表达式计算外,还可以借助下列三种方法求解:(1)电场叠加合成的方法. (2)平衡条件求解法. (3)对称法.★重点归纳★1、分析电场叠加问题的一般步骤电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是: (1)确定分析计算的空间位置;(2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向; (3)依次利用平行四边形定则求出矢量和.2、认识场强的三个特性:矢量性、惟一性和叠加性的?(1)矢量性:电场强度E 是表示电场力的性质的一个物理量.规定正电荷受力方向为该点场强的方向,有关计算按矢量法则.(2)惟一性:电场中某一点的电场强度E 是惟一的,它的大小和方向与放入该点的电荷q 无关,它决定于形成电场的电荷(场源电荷)及空间位置.(3)叠加性:如果有几个静止电荷在空间同时产生电场,那么空间某点的场强是各场源电荷单独存在时在该点所产生的场强的矢量和.★典型案例★均匀带电球壳在球外空间产生的电场等效于电荷集中与球心处产生的电场。
静电场检测题一、单选题1.如图所示,实线表示电场线,虚线表示只受电场力作用的带电粒子的运动轨迹.粒子先经过M 点,再经过N 点,以下说法正确的是( )A .粒子在N 点的加速度大于在M 点的加速度B .该带电粒子应该带负电C .M 点的电势低于N 点的电势D .粒子在M 点的电势能小于在N 点的电势能2.如图所示,a 、b 、c 、d 、e 、f 是以O 为球心的球面上的点,平面aecf 与平面bedf 垂直,分别在b 、d 两点处放有等量同种点电荷+Q ,取无穷远处电势为零,则下列说法正确的是( )A .a 、e 、c 、f 四点电场强度相同B .a 、e 、c 、f 四点电势不同C .电子沿球面曲线a →e →c 运动过程中,电场力先做正功后做负功D .电子沿直线由a →O →c 运动过程中,电势能先减少后增加3.如图所示,在空间中存在竖直向上的匀强电场,质量为m 、电荷量为+q 的物块从A 点由静止开始下落,加速度为13g ,下落高度H 到B 点后与一轻弹簧接触,又下落 h 后到达最低点C ,整个过程中不计空气阻力,且弹簧始终在弹性限度内,重力加速度为g ,则带电物块在由A 点运动到C 点过程中,下列说法正确的是( )A .该匀强电场的电场强度为mg3qB .带电物块和弹簧组成的系统机械能减少量为mg (H +h )3C .带电物块电势能的增加量为mg (H +h )D .弹簧的弹性势能的增加量为mg (H +h )34.直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图所示.M 、N 两点各固定一负点电荷,一电荷量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( )A.3kQ4a 2,沿y 轴正向 B.3kQ4a 2,沿y 轴负向 C.5kQ4a2,沿y 轴正向 D.5kQ4a2,沿y 轴负向 5.竖直平面内有一匀强电场,电场方向与x 轴负方向成37°角,x 轴上各点的电势随坐标x 的变化规律如图所示.现有一带负电小球以初速度0.5 m/s 从x =-1 cm 的P 处沿直线运动到x =2 cm 的Q 处,已知小球的质量为3×10-4 kg ,取g =10 m/s 2,则( )A .匀强电场的场强大小为400 V/mB .带电小球的电荷量大小为1×10-5 CC .带电小球从P 点运动到Q 点的过程中的加速度大小为40 m/s 2D .带电小球运动到Q 点时动能可能为06.如图甲所示,一带正电的小球用绝缘细线悬挂在竖直向上的、范围足够大的匀强电场中,某时刻剪断细线,小球开始向下运动,通过传感器得到小球的加速度随下行速度变化的图象如图乙所示.已知小球质量为m ,重力加速度为g ,空气阻力不能忽略.下列说法正确的是( )A .小球运动的速度一直增大B .小球先做匀加速运动后做匀速运动C .小球刚开始运动时的加速度大小a 0=gD .小球运动过程中受到的空气阻力与速度大小成正比7.如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷(带电荷量与质量的比值)之比是( )A .1∶2B .2∶1C .1∶8D .8∶18.如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A .动能增加12m v 2B .机械能增加2m v 2C .重力势能增加32m v 2D .电势能增加2m v 29.如图甲所示,两水平平行金属板A 、B 间距为d ,在两板右侧装有荧光屏MN (绝缘),O 为其中点.在两板A 、B 上加上如图乙所示的电压,电压最大值为U 0.现有一束带正电的离子(比荷为k ),从两板左侧中点以水平初速度v 0连续不断地射入两板间的电场中,所有离子均能打到荧光屏MN 上,已知金属板长L =2v 0t 0,忽略离子间相互作用和荧光屏MN 的影响,则在荧光屏上出现亮线的长度为( )A .kdU 0t 02B.kU 0t 022dC.kU 0t 02dD.3kU 0t 022d二.多选题10.如图所示,把A 、B 两个相同的导电小球分别用长为0.10 m 的绝缘细线悬挂于O A 和O B 两点.用丝绸摩擦过的玻璃棒与A 球接触,棒移开后将悬点O B 移到O A 点固定.两球接触后分开,平衡时距离为0.12 m .已测得每个小球质量是8.0×10-4 kg ,带电小球可视为点电荷,重力加速度g =10 m/s 2,静电力常量k =9.0×109 N·m 2/C 2,则( )A .两球所带电荷量相等B .A 球所受的电场力为1.0×10-2 N C .B 球所带的电荷量为46×10-8 C D .A 、B 两球连线中点处的电场强度为011.电场线能直观、方便地反映电场的分布情况.如图甲是等量异号点电荷形成电场的电场线,图乙是电场中的一些点;O 是电荷连线的中点,E 、F 是连线中垂线上关于O 对称的两点,B 、C 和A 、D 是两电荷连线上关于O 对称的两点.则( )A .E 、F 两点场强相同B .A 、D 两点场强不同C .B 、O 、C 三点中,O 点场强最小D .从E 点向O 点运动的电子加速度逐渐减小12.如图所示,四个带电荷量绝对值相等的点电荷分别固定在竖直平面内某一正方形的四个顶点上,A 、B 、C 、D 四个点分别为对应的四条边的中点,现有某一带正电的试探电荷在四个电荷产生的电场中运动,下列说法正确的是()A.D点的电势小于A点的电势B.D点的电势小于C点的电势C.试探电荷仅在电场力作用下从A点沿AC运动到C点,其加速度逐渐增大D.直线BD所在的水平面为等势面13.某电场的等势面如图所示,图中a、b、c、d、e为电场中的5个点,则()A.一正电荷从b点运动到e点,电场力做正功B.一电子从a点运动到d点,电场力做功为4 eVC.b点电场强度垂直于该点所在等势面,方向向右D.a、b、c、d四个点中,b点的电场强度大小最大14.如图,圆心为O的圆处于匀强电场中,电场方向与圆平面平行,ab和cd为该圆直径.将电荷量为q(q>0)的粒子从a点移动到b点,电场力做功为2W(W>0);若将该粒子从c点移动到d点,电场力做功为W.下列说法正确的是()A.该匀强电场的场强方向与ab平行B.将该粒子从d点移动到b点,电场力做功为0.5WC.a点电势低于c点电势D.若只受电场力,从d点射入圆形电场区域的所有带电粒子都做曲线运动15.一带正电微粒只在电场力作用下沿x轴正方向运动,其电势能随位移x变化的关系如图所示,其中O~x1段是曲线,x1~x2段是平行于x轴的直线,x2~x3段是倾斜直线,则下列说法正确的是()A .O ~x 1段电势逐渐升高B .O ~x 1段微粒做加速度逐渐减小的加速运动C .x 1~x 2段电场强度为零D .x 2~x 3段的电势沿x 轴均匀减小16.如图所示,平行板电容器与电动势为E 的直流电源连接,下极板接地,静电计所带电荷量很少,可忽略,开关闭合,稳定时一带电的油滴静止于两极板间的P 点,若断开开关K ,将平行板电容器的上极板竖直向下平移一小段距离,则下列说法正确的是( )A .静电计指针的张角变小B .P 点电势升高C .带电油滴向上运动D .带电油滴的电势能不变17.如图所示,竖直平面内有固定的半径为R 的光滑绝缘圆形轨道,匀强电场的方向平行于轨道平面水平向左,P 、Q 分别为轨道上的最高点、最低点,M 、N 是轨道上与圆心O 等高的点.质量为m 、电荷量为q 的带正电小球(可视为质点)在轨道内运动,已知重力加速度为g ,电场强度E =3mg4q,要使小球能沿轨道做完整的圆周运动,则下列说法正确的是( )A .小球在轨道上运动时,动能最小的位置,电势能最大B .小球在轨道上运动时,机械能最大的位置一定在M 点C .小球过Q 、P 点时所受轨道弹力大小的差值为6mgD .小球过Q 、P 点时所受轨道弹力大小的差值为7.5mg三.实验题18.电流传感器可以测量电流,它的反应非常快,可以捕捉到瞬间的电流变化;将它与计算机相连还能用计算机显示出电流随时间变化的i -t 图象,图甲所示的电路中:直流电源电动势为8 V ,内阻可忽略;C 为电容器,先将单刀双掷开关S 与1相连,电源向电容器充电,这个过程可在短时间内完成;然后把开关S与2相连,电容器通过电阻R放电,传感器将电流信息传入计算机,屏幕上显示出电流随时间变化的i-t图象如图乙所示,(下列结果均保留两位有效数字)(1)根据i-t图象可估算电容器在全部放电过程中释放的电荷量为________ C;(2)通过实验数据,计算出电容器的电容为________ F;(3)如果不改变电路其他参数,只减小电阻R,充电时i-t曲线与横轴所围成的面积将________(填“增大”“不变”或“变小”);充电时间将________(填“变长”“不变”或“变短”).四.计算题19.如图所示,虚线左侧有一场强为E1=E的匀强电场,在两条平行的虚线MN和PQ之间存在着宽为L,电场强度为E2=2E的匀强电场,在虚线PQ右侧相距为L处有一与电场E2平行的屏.现将一电子(电荷量e,质量为m)无初速度放入电场E1中的A点,最后打在右侧的屏上,AO连线与屏垂直,垂足为O,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E2时的速度方向与AO连线夹角的正切值;(3)电子打到屏上的点B到O点的距离.20.如图所示,一半径为R的绝缘圆形轨道竖直放置,圆轨道最低点B点与一条水平轨道相连,轨道是光滑的,轨道所在空间存在水平向右、场强为E的匀强电场,从水平轨道上的A 点由静止释放一质量为m带正电的小球,设A、B间的距离为s.已知小球受到的电场力大小等于小球重力的34倍,C 点为圆形轨道上与圆心O 的等高点.(重力加速度为g )(1)若s =2R ,求小球运动到C 点时对轨道的压力大小; (2)为使小球刚好在圆轨道内完成圆周运动,求s 的值21.如图所示,一质量M =1kg 的绝缘长木板静止于水平地面上,在距其最左端L =1m 处存在宽度d =2m ,方向竖直向下的匀强电场区域,电场强度E =300N/C .一质量m =1kg 、带电量215q C =+的物块放在长木板的最左端,物块在F =10N 的水平向右恒力作用下从静止开始运动,在物块刚离开电场右边界时撤去外力F ,物块最终未从长木板末端滑离。
课标导航课程内容标准:2.了解静电场,初步了解场是物质存在的形式之一。
理解电场强度。
会用电场线描述电场。
例如(09年广东理科基础)第12题就考到了电场线的相关知识。
复习导航第1课时 库仑定律、电场力的性质1、高考解读真题品析 A. A ϕ>B ϕ>C ϕ B. E C >E B >E A D. U AB =U BCB 选项依据电场线越密,电场强度越大 B 对. 热点关注 知识:库仑定律A .B .C .D . ,得 点评:应用库仑定律时要注意②两带电体的电荷量均以其绝对值代入计算库仑力2、知识网络20225l k kq l +202l k kq l -20245l k kq l -20225l k kq l -()220222l q K Kx k l q +=2245l k Kq x =202045lk Kq l x l l -=-=F 13F 23 F 弹考点1.电荷、电荷守恒定律 考点2.库仑定律1. 内容:在真空中静止的两个点电荷之间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在他们的连线上。
2. 公式:叫静电力常量)式中,/100.9(229221C m N k rQ Q kF ⋅⨯== 3. 点电荷:如果带电体间的距离比它们的大小大得多,以致带电体的形状对相互作用力的影响可忽略不计,这样的带电体可以看成点电荷。
1.电场⑴ 定义:存在电荷周围能传递电荷间相互作用的一种特殊物质。
⑵ 基本性质:对放入其中的电荷有力的作用。
2.电场强度⑴ 单位:N/C 或V/m 。
⑵ 电场强度的三种表达方式的比较⑸叠加性:多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的矢量和,这种关系叫做电场强度的叠加,电场强度的叠加尊从平行四边形定则。
考点4.电场线、匀强电场 1. 电场线的特点⑴ 始于正电荷或无穷远,终于无穷远或负电荷,电场线是不闭合曲线。
⑵ 任意两条电场线不相交。
选修3-1 第七章 静电场第 1 课时 电荷 库仑定律基础知识归纳1.两种电荷及使物体带电的方法自然界中只存在正电荷和负电荷两种,使物体带电的方法有 摩擦起电 、 接触起电 、 感应起电 .起电的本质是 电子的得失与转移 .2.电荷守恒定律电荷不会凭空 产生 ,也不会凭空 消失 ,只能从一个物体 转移 到另一个物体,或从物体的一部分 转移 到另一部分,即电荷的总量保持 不变 .元电荷:一个电子或一个质子所带的电荷量用e 表示,e =1.6×10-19 C. 点电荷:不计带电体的 形状和大小 ,可把其看做一点,是一种理想化的物理模型. 3.库仑定律真空中两个点电荷之间相互作用的力,跟它们的电荷量的乘积成 正比 ,跟它们的距离的二次方成 反比 ,作用力的方向在它们的连线上. 即221r Q Q k F =(其中k =9.0×109 N ·m 2/C 2). 重点难点突破一、带电体的电荷分布与什么有关处于静电平衡状态的带电导体电荷只能分布在外表面上,而导体外表面上的电荷分布又与表面的形状有关,因此两个完全相同的带电导体接触时必先中和然后等分电荷.二、应用库仑定律解题时应注意的几点1.适用条件:真空、点电荷;两静止点电荷之间或静止点电荷与运动点电荷之间.2.真空中两点电荷间的一对静电力是一对相互作用力,满足牛顿第三定律.3.对于两个带电导体间库仑力大小的比较,要考虑带电体上电荷的重新分布.4.库仑力是长程力,当r →0时,带电体不能看成点电荷,故不能得出F →∞的结论.5.微观带电粒子间的库仑力远大于它们之间的万有引力,研究微观带电粒子之间的相互作用力时,可忽略万有引力.6.应用库仑定律进行计算时,先将电荷量的绝对值代入计算,然后根据电性来判断方向.三、如何解决涉及到库仑力的有关力学问题库仑力可以和其他力平衡,也可以和其他力一起使带电体产生加速度.因此这类问题的实质仍是力学问题,要按照处理力学问题的基本思路来解题,只不过我们多了一种新的性质的力而已.由于带电体之间的库仑力是一对相互作用力,满足牛顿第三定律,因此对于孤立的带电系统在内部各带电体相互作用的过程中,一般可考虑用动量守恒或动能与电势能之和守恒来处理.典例精析1.理解:电荷的代数和的含义【例1】真空中两个静止的点电荷相距10 cm ,它们之间的相互作用力大小为9×10-4 N ,当它们结合在一起时,形成一个带电荷量为3×10-8 C 的点电荷,原来两个点电荷所带电荷量各为多少? 某同学求解如下:根据电荷守恒定律:q 1+q 2=3×10-8 C =a ① 根据库仑定律:q 1q 2=F ·r 2/k =9×10-4×(10×10-2)2/(9×109) C 2=1×10-15 C 2=b 以q 2=b /q 1代入①式得q 21-aq 1+b =0,解得q 1=12(a ±b a 42-)=12(3×10-8±9×10-16-4×10-15) C 根号中的数值小于0,经检查,运算无误.试指出求解过程中的问题并给出正确的解答.【解析】题中仅给出相互作用力的大小,不能确定两个点电荷的电性,所以可能带同种电荷,也可能带异种电荷,该同学只按同种电荷计算,无解,说明两个点电荷可能带异种电荷,应再解:由q 1-q 2=3×10-8 C =a ,q 1q 2=1×10-15 C 2=b 得q 21-aq 1-b =0由此解得q 1=5×10-8 C ,q 2=2×10-8 C 【思维提升】(1)在应用库仑定律,通过库仑力求电荷量时,只能求出两个电荷量的乘积,若要再分别求两个电荷量,必须考虑到由于带电性的相同和不同会出现的多解.(2)应用电荷守恒定律时,要理解“电荷的代数和”的含义,列方程时要注意电荷量的正、负号.【拓展1】如图A 、B 是两个完全相同的带电金属球,它们所带的电荷量分别为+4q 和+6q ,放在光滑绝缘的水平面上,若金属球A 、B 分别在M 、N 两点以相等的动能相向运动,经时间t 0两球刚好发生接触,然后两球又分别向相反方向运动,设A 、B 返回M 、N 两点所经历的时间分别为t 1、t 2,则( C )A.t 1>t 2B.t 1<t 2C.t 1=t 2<t 0D.t 1=t 2>t 0【解析】两球所带电荷量虽然不同,但其相互作用力总是等大反向(F =k 264r q q ∙),故A 、B 两球靠近时速度大小相等,又两球具有相同的质量、相同的初动能,由此可知两球初速度大小相同,所以相同时间内两球的位移大小一定相同,必然在连线中点相遇,又同时返回出发点.由动量观点看,系统动量守恒,两球的速度始终等值反向,也可得出结论:两球必将同时返回各自的出发点,相撞后因电荷量均分使得库仑力(F =k 25rq q ∙)变大,返回时加速度(相比之前同一位置处)变大,因而运动时间将变小,所以再次返回时t 1=t 2<t 0 2.库仑定律的应用【例2】有三个点电荷甲、乙、丙,甲带电荷量为+Q ,乙带电荷量为-q ,且Q >q .每一个电荷受其他两个电荷的电场作用力的合力均为零,则( )A.丙的位置一定在甲和乙的连线的延长线上,且距乙较近B.丙一定带正电荷C.丙所带的电荷量q ′一定大于qD.丙所带的电荷量一定小于Q【解析】由两力平衡的条件可知丙一定在甲、乙连线上.因甲所带电荷量大于乙,丙受力平衡,F 甲丙=F 乙丙即k 22乙丙甲丙r q q k r q Q '=',q Q =22乙丙甲丙r r >1,丙应距乙近些.如果丙在甲、乙之间则丙不能平衡,所以丙应在甲、乙连线的延长线上,A 对.如果丙带负电荷,则乙不能平衡, 所以丙一定带正电荷,B 对.对甲作受力分析有F 丙甲=F 乙甲,k 22乙甲丙甲r q q k r q Q '=',q′q =22乙甲丙甲r r >1,q ′>q .所以丙所带的电荷量q ′一定大于q ,C 对.无法判断丙所带的电荷量与Q 的大小关系,D 错.【答案】ABC【思维提升】(1)要综合运用受力分析和物体平衡的知识解题.(2)三个自由电荷,仅在静电力作用下平衡时,遵循的规律为“三点共线,两多夹少,两同夹异”.【拓展2】如图所示,有三个点电荷q 1、q 2和q 3,固定在同一直线上,q 2与q 3的距离是q 1与q 2的距离的2倍.如果每个电荷受到的库仑力均为零,则三者所带电荷量之比为( A )A.(-9)∶4∶(-36)B.9∶4∶36C.(-3)∶2∶6D.3∶2∶6【解析】三个固定电荷受到的静电力均为零,可以等效为三个平衡的自由电荷,根据“三点共线,两多夹少,两同夹异”的特点,选A.根据F =k 221rq q ,在F 大小相等时,q 1q 2∝r 2,则91)3(2323121===r r q q q q q q ;2313221)2(r r q q q q q q ===14 三者电荷量绝对值之比为:q 1∶q 2∶q 3=9∶4∶36易错门诊3.涉及到库仑力的力学问题【例3】如图所示,带电小球A 、B 的电荷量分别为Q A 、Q B ,OA =OB ,都用长L 的丝线悬挂在O 点.静止时A 、B 相距为d .为使平衡时AB 间距离减为d /2,可采用以下哪些方法( )A.将小球B 的质量增加到原来的2倍B.将小球B 的质量增加到原来的8倍C.将小球B 的电荷量减小到原来的一半D.将小球A 、B 的电荷量都减小到原来的一半,同时将小球B 的质量增加到原来的2倍【错解】由B 的共点力平衡图知g m F B =d L ,则d =gm F B L ,所以可将B 的质量增大一倍,或将电场力 减小到原来的一半,所以A 、C 正确.【错因】没有考虑到电场力F 也是距离d 的函数,错认为电荷量不变时,F 就不变.【正解】由B 的共点力平衡图知g m F B =d L 而F =2dQ kQ B A ,可知d =3g m L Q kQ B B A 【答案】BD【思维提升】两电荷间的距离d 变化后,既影响了各力之间的角度关系,又影响了库仑力的大小,只有把这两者均表示成d 的函数,我们才能找出它们之间的具体对应关系. 第 2 课时 电场强度 电场线基础知识归纳1.电场带电体周围存在的一种特殊物质,它的基本性质是对放入其中的电荷 有力 的作用,这种力叫电场力.电荷间的相互作用就是通过 电场 发生作用的.电场还具有 能 的性质.2.电场强度E反映电场 强弱 和 方向 的物理量,是矢量.(1)定义:放入电场中某点的电荷所受的电场力F 跟它的电荷量q 的比值,叫做该点的电场强度,即E =F q,单位: V/m 或 N/C . (2)场强的方向:E 是矢量,规定 正电荷 在电场中某点的受力方向为该点的场强方向.(3)电场中某点的场强与放入该点的试探电荷无关,而是由产生这个电场的场源电荷和这一点的位置决定.3.点电荷产生的电场的场强E =2r kQ ,其中Q 为场源电荷,E 为距离Q 为r 处某点的场强大小.对于求均匀带电的球体或球壳外某点的场强时,r 为该点到 球心 的距离.4.电场的叠加若空间中几个电场同时存在,电场中某点的场强就等于它们单独存在时在该点产生的场强的矢量和.5.电场线为了形象地描述电场而引入的假想的曲线.(1)电场线的 疏密 表示场强的 弱强 ,电场线上每一点的切线方向表示该点的场强方向.(2)电场线从 正电荷 或无穷远处出发,终止于无穷远处或 负电荷 .静电场中电场线不闭合,不中断于距场源电荷有限远的地方.(3)电场线 不相交 ,也不相切,更不能认为是电荷在电场中的运动轨迹.(4)顺着电场线 电势降低 ,而且降落最快,电场线与等势面 处处垂直 .6.匀强电场电场中各点场强大小相等,方向相同,匀强电场的电场线是一些等间距的平行线.7.几种典型的电场线重点难点突破一、怎样理解场强的三个表达式?掌握用比值定义的物理量的特点1.定义式E =F q:适用于一切电场,但场强E 与试探电荷的电荷量q 及其所受的电场力F 无关,与试探电荷是否存在无关.2.决定式E =2r kQ :只适用于在真空中点电荷产生的电场,场强E 与场源电荷的电荷量Q 及研究点到场源电荷的距离r 有关.3.关系式E =U d :只适用于匀强电场,U 指电场中两点的电势差,d 指这两点沿电场线方向的距离. 二、怎样理解电场强度的三性电场强度的三性为:矢量性、唯一性和叠加性.因为场强是矢量,且电场中某点处场强E 是唯一的,空间中多个电场存在时,某点的场强为多个电场的合场强,场强叠加遵循矢量合成法则(平行四边形定则).场强叠加是高考热点,本节难点,需重点突破.电场线是认识和研究电场问题的有利工具,必须掌握典型电场的电场线分布.电场线的应用:①判断库仑力的方向; ②判断场强的大小(定性)和方向; ③判断电荷在电场中电势能的大小; ④判断电势的高低和电势降落的快慢;⑤间接判断电场力做功的正负;⑥判断等势面的疏密和位置.三、怎样解决与电场力有关的力学问题1.明确研究对象(多为一个带电体,也可以是几个带电体组成的系统);2.分析研究对象所受的全部外力,包括电场力;3.分析研究对象所处的状态:平衡、加速等;4.由平衡条件或牛顿第二定律列方程求解即可.四、求解电场强度的几种特殊方法补偿法、极值法、微元法、对称法、等效替代法等.典例精析1.理解场强的表达式【例1】在真空中O 点放一个点电荷Q =+1.0×10-9 C ,直线MN 通过O 点,OM 的距离r =30 cm ,M 点放一个点电荷q =-1.0×10-10 C ,如图所示,求:(1)q 在M 点受到的作用力; (2)M 点的场强;(3)拿走q 后M 点的场强; (4)M 、N 两点的场强哪点大;(5)如果把Q 换成-1.0×10-9 C 的点电荷,情况如何.【解析】(1)F M =k 2rQq =9×109×1×10-19 9×10-2 N 解得F M =1×10-8 N ,方向由M →O . (2)M 点的场强E M =F M q =1×10-81×10-10 N/C 解得E M =102 N/C ,方向由O →M . 另法:利用点电荷的场强公式有E M =k r Q =9.0×109×1.0×10-90.32 N/C E M =102 N/C (3)E M =102 N/C ,方向由O →M . (4)M 点的场强大. (5)方向改变为相反,其大小相等.【思维提升】弄清形成电场的电荷与试探电荷的区别、电场强度的概念及决定因素.【拓展1】有质量的物体周围存在着引力场.万有引力和库仑力有类似的规律,因此我们可以用定义静电场强度的方法来定义引力场的场强.由此可得,与质量为M 的质点相距r 处的引力场场强的表达式为E G =2r GM (万有引力常量用G 表示). 【解析】库仑力F C =k rQq ,将q 视为Q 产生的电场中的试探电荷,则距Q 为r 处的场强为E =F C q =k2rQ .与此类似,万有引力F G =2r GMm ,将m 视为M 产生的引力场中的试探物,则距M 为r 处的场强为E G =F G m =2r GM2.理解场强的矢量性,唯一性和叠加性【例2】如图所示,分别在A 、B 两点放置点电荷Q 1=+2×10-14 C 和Q 2=-2×10-14 C.在AB 的垂直平分线上有一点C ,且AB =AC =BC =6×10-2 m.求: (1)C 点的场强;(2)如果有一个电子静止在C 点,它所受的库仑力的大小和方向如何.【解析】(1)本题所研究的电场是点电荷Q 1和Q 2所形成的电场的合电场.因此C 点的场强是由Q 1在C 处场强E 1C 和Q 2在C 处的场强E 2C 的合场强.根据E =k2r Q 得: E 1C =k 211r Q =9.0×109×2×10-14(6×10-2)2 N/C =0.05 N/C 方向如图所示.同理求得:E 2C =k 212r Q =0.05 N/C ,方向如图所示. 根据平行四边形定则作出E 1C 和E 2C 的合场强如图所示. △CE 1C E C 是等边三角形,故E C =E 1C =0.05 N/C ,方向与AB 平行指向右.(2)电子在C 点所受的力的大小为:F =qE C =1.6×10-19×0.05 N =0.8×10-20 N 因为电子带负电,所以方向与E C 方向相反.【思维提升】(1)解决此类问题,需要巧妙地运用对称性的特点,将相互对称的两个点电荷的场强进行叠加.(2)不在同一直线上电场的叠加要根据电荷的正、负,先判断场强的方向,然后利用矢量合成法则,结合对称性分析叠加结果.【拓展2】如图所示,空间中A 、B 、C 三点的连线恰构成一直角三角形,且∠C =30°,AB =L ,在B 、C 两点分别放置一点电荷,它们的电荷量分别是+Q 和-Q .(静电力常量为 k )求:(1)斜边AC 的中点D 处的电场强度;(2)为使D 处的电场强度方向与AB 平行,则应在A 处再放一个什么样的电荷.【解析】(1)连接B 、D ,由几何关系知,D 为BC 中垂线上的点,且r =BD =DC =L ,则两点电荷在D 处产生的场强,如图甲,E B =E C =k 22LkQ r Q = E 1=2·E B ·sin 60°=3E B =23LkQ ,方向沿B →C 方向. (2)应在A 处放置一个负电荷.如图乙所示,E A 和E 1合成后与AB 平行,由几何关系知E A =︒60 sin 1E =3k 2L Q ×23=2k 2LQ ① 又E A =k 2r Q A ,即Q A =k r E A 2∙ ② 联立①②式解得Q A =2Q3.与电场力有关的力学问题【例3】如图所示,带等量异种电荷的平行金属板,其间距为d ,两板间电势差为U ,极板与水平方向成37°角放置,有一质量为m 的带电微粒,恰好沿水平方向穿过板间匀强电场区域.求:(1)微粒带何种电荷? (2)微粒的加速度多大? (3)微粒所带电荷量是多少?【解析】由于微粒恰好做直线运动,表明微粒所受合外力的方向与速度的方向在一条直线上,即微粒所受合外力的方向在水平方向,微粒受到重力mg 和电场力Eq的作用.(1)微粒的受力如图所示,由于微粒所受电场力的方向跟电场线的方向相反,故微粒带负电荷.(2)根据牛顿第二定律有:F 合=mg tan θ=ma 解得a =g tan θ=34g(3)根据几何关系有:Eq cos θ=mg 而E =U d 解得q =Umgd 45 【思维提升】(1)本题考查了带电微粒在匀强电场中的匀变速直线运动、牛顿第二定律、电场力、匀强电场中场强与电势差的关系,这是一道综合性较强的试题,同时也可以考查学生学科内的综合能力.(2)确定带电微粒受到的电场力的方向及是否受重力是解答此题的关键所在.(3)由于微粒在电场中做直线运动,故一般从合运动出发,分析该题比较方便.4.补偿法求解电场的强度【例4】如图所示,用金属丝AB 弯成半径r =1 m 的圆弧,但在A 、B 之间留出宽度为d =2 cm ,相对来说很小的间隙.将电荷量Q =3.13×10-9 C 的正电荷均匀分布在金属丝上,求圆心O 处的电场强度.【解析】设原缺口环所带电荷的线密度为σ,σ=dr Q -π2.则补上的金属小段带电量Q ′=σd ,它在O 处的场强为E 1=k 22)π2(r d r Qd k r Q -='=9×109×( 3.13×10-9×0.022×3.14×13-0.02×12) N/C =9×10-2 N/C 设待求的场强为E 2,由E 1+E 2=0可得 E 2=-E 1=-9×10-2 N/C 负号表示E 2与E 1方向相反,即E 2的方向向左,指向缺口.【思维提升】中学物理只学点电荷场强及匀强电场场强的计算方法.一个不规则的带电体(如本题的缺口带电环)所产生的场强,没有现成的公式可用.但可以这样想:将圆环的缺口补上,并且它的电荷密度与缺了口的环体原有电荷密度一样,这样就形成了一个电荷均匀分布的完整带电环,环上处于同一直径两端的微小部分可看成两个相对应的点电荷,它们产生的电场在圆心O 处叠加后场强为零.根据对称性,圆心O 处总场强E =0.补上的小段在O 处产生场强E 1是可求的.题中待求场强为E 2,则由E 1+E 2=E =0,便可求得E 2.【拓展3】如图所示,均匀带电圆环的电荷量为Q ,半径为R ,圆心为O ,P 为垂直于圆环平面的对称轴上的一点,OP =L ,试求P 点的场强.【解析】本题需要用“微元法”,将非点电荷电场问题转化成了点电荷电场问题求解.设想将圆环等分为n 个小段,每一小段便可看做点电荷,其带电荷量为q =nQ ,由点电荷场强公式可得每一小段点电荷在P 处的场强为E =k )(222L R n Q k nr Q += 由对称性可知,各小段带电环在P 处的场强E 的垂直于轴向的分量E y 相互抵消.而E 的轴向分量E x 之和即为带电圆环在P 处的场强E P =∑E x =∑k )(22L R n Q +·cos α=∑k )(22L R n Q +·22LR L +=k 2/322)(L R QL + 易错门诊5.场强公式的使用条件【例5】下列说法中,正确的是( )A.在一个以点电荷为中心,r 为半径的球面上各处的电场强度都相同B.E =rkQ 仅适用于真空中点电荷形成的电场 C.电场强度的方向就是放入电场中的电荷受到的电场力的方向D.电场中某点场强的方向与试探电荷的正负无关【错解】因为点电荷的场强公式为E =k rQ ,所以同一球面上各处r 相同,电场强度都相同,A 、B 对;又因为电场强度定义式E =F /q ,q 是标量,场强E 的方向与力F 的方向相同,C 、D 对.【错因】没有正确理解电场强度的矢量性,不明白电场强度的方向与电荷在电场中所受电场力方向有时相同,有时相反.若为正电荷,两者相同,若为负电荷,两者相反.【正解】A 选项中同一球面上各处电场强度大小相等但方向不同,A 错,B 对;又因为电荷有正负,物理学中规定了正电荷的受力方向与场强方向相同,而场强的大小和方向由电场本身决定,与放入的试探电荷无关,所以C 错,D 对.【答案】BD【思维提升】(1)本题分析的关键是理解电场强度的矢量性及公式的适用条件.(2)电场强度是描述电场力的性质的物理量.虽然E =F q,但E 与F 、q 都无关,电场强度由电场本身决定. 第 3 课时 电场能的性质基础知识归纳1.电势能、电势、等势面、电势差的概念(1)电势能:与重力势能一样,电荷在电场中也具有势能,这种势能叫电势能.电荷在电场中某点具有的电势能等于它的电荷量与该点电势的乘积,E p = q φ .它是电荷与电场共同具有的.(2)电势:φ=qE p ,即电场中某点的电势等于电荷在该点具有的电势能与它的电荷量的比值,是标量.描述电场 能 的性质,由电场本身决定,与试探电荷 无关 .(3)等势面:电场中 电势相等 的点构成的面叫 等势面 .(4)电势差:电荷在电场中两点间移动时,电场力所做的功跟它的电荷量的比值叫这两点间的电势差.U AB =W AB q,是标量,由电场本身决定.U AB = B A ϕϕ-,U AB = BA U -,U AB +U BC = AC U . 2.电场力做功与电势能改变的关系电场力对电荷做 正功 ,电势能 减少 ;电场力对电荷做 负功 ,电势能 增加 .且电势能的改变量与电场力做功的关系是 W =-ΔE .3.电场强度与电势差的关系两点间的电势差等于场强和这两点间沿 匀强电场方向 的距离的乘积,即 U =Ed .4.常见电场等势面分布图重点难点突破一、电场力做功的特点及计算方法电场力做功与路径无关,只与初末位置有关.计算方法:1.由求功公式计算W =F ∙s ∙cos θ,此式只适用于匀强电场.2.由电场力做功与电势能的改变关系计算W =-ΔE p =qU ,对任何电场都适用.3.由动能定理计算W 电+W 非电=ΔE k .二、电势与电场强度的区别和联系区别:1.电势与电场强度的大小没有必然的联系,某点电势为零,电场强度可以不为零,反之亦然;2.电势反映电场能的性质,而电场强度反映电场力的性质;3.电势是标量,具有相对性,而电场强度是矢量,不具有相对性,两者叠加的法则不同;联系:1.电势和电场强度都是由电场本身的因素决定,与试探电荷无关;2.在匀强电场中有关系式φA -φB =Ed .三、等势面与电场线的关系1.电场线总是与等势面垂直,且从高等势面指向低等势面,沿电场线方向电势降低最快;2.电场线越密的地方,等势面越密;3.沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功;4.电场线和等势面都是人们虚拟出来形象描述电场的工具;5.实际中测量等势点较容易,所以往往通过描述等势线来确定电场线.四、解决电场线、等势面、运动轨迹综合问题应注意1.运动轨迹不一定与电场线重合,轨迹的切线方向为该点的速度方向;2.带电粒子所受合力应指向轨迹弯曲的凹侧;3.弄清力和运动的关系,揭示粒子为什么这样运动.典例精析1.电场力做功与电势能改变的关系【例1】有一带电荷量q =-3×10-6 C 的点电荷,从电场中的A 点移到B 点时,克服电场力做功6×10-4 J.从B 点移到C 点时,电场力做功9×10-4 J.问: (1)AB 、BC 、CA 间电势差各为多少?(2)如以B 点电势为零,则A 、C 两点的电势各为多少?电荷在A 、C 两点的电势能各为多少?【解析】(1)解法一:|U AB |=|W AB ||q|=6×10-43×10-6V =200 V 因负电荷从A →B 克服电场力做功,必须是从高电势点移向低电势点,即φA >φB ,所以U AB =200 V|U BC |=|W BC ||q|=9×10-43×10-6V =300 V 因负电荷从B →C 电场力做功,必是从低电势点移到高电势点,即φB <φC ,所以U BC =-300 VU CA =U CB +U BA =-U BC +(-U AB ) U CA =300 V -200 V =100 V解法二:由U =W q 得U AB =W AB q =-6×10-4-3×10-6V =200 V U BC =W BC q =9×10-4-3×10-6V =-300 V U AC =U AB +U BC =(200-300) V =-100 V U CA =-U AC =100 V (2)若φB =0,由U AB =φA -φB 得 φA =U AB =200 V 由U BC =φB -φC 有φC =φB -U BCφC =0-(-300) V =300 V电荷在A 点电势能E pA =q φA =-3×10-6×200 J E pA =-6×10-4 J 电荷在C 点电势能E pC =q φC =-3×10-6×300 J E pC =-9×10-4 J 【思维提升】利用公式W =qU AB 计算时,有两种运算法.(1)正负号运算法:按照符号规定把电荷量q ,移动过程始、末两点电势差U AB 及电场力的功W AB 代入公式计算.(2)绝对值运算法:公式中q ·U AB 、W AB 均为绝对值,算出数值后再根据“正(或负)电荷从电势较高的点移动到电势较低的点时,电场力做正功(或电场力做负功);正(或负)电荷从电势较低的点移到电势较高的点时,电场力做负功(或电场力做正功)”来判断.【拓展1】一带电油滴在匀强电场E 中的运动轨迹如图中虚线所示,电场方向竖直向下.若不计空气阻力,则此带电油滴从a 运动到b 的过程中,能量变化情况为( C )A.动能减小B.电势能增加C.动能和电势能之和减小D.重力势能和电势能之和增加【解析】由油滴运动轨迹可知其合外力方向必为竖直向上,故该油滴必带负电,由a 运动到b 的过程中,动能增加.电势能减小,由于要克服重力做功,故动能和电势能之和减小,且运动过程中有动能、电势能、重力势能之和守恒,故由于动能增加必有重力势和电势能之和减小,故选C.2.电势与电场强度的区别和联系【例2】如图所示,a 、b 、c 为同一直线上的三点,其中c 为ab 的中点,已知a 、b 两点的电势分别为φa =1 V ,φb =9 V ,则下列说法正确的是( )A.该电场在c 点的电势一定为5 VB.a 点处的场强E a 一定小于b 点处的场强E bC.正电荷从a 点运动到b 点过程中电势能一定增大D.正电荷只受电场力作用,从a 点运动到b 点过程中动能一定增大【解析】由一条电场线不能确定这个电场是不是匀强电场,故E a 与E b 无法比较,而U ac 与U bc 的大小关系也不能确定,故A 、B 错;因为φb >φa ,故电场线方向为由b →a ,正电荷从a 点到b 点过程中电势能一定增大,动能一定减少,因此C 对,D 错.【答案】C【思维提升】本题考查的知识点为电场强度、电势、电势差、电势能、电场线、等势面及它们的关系,由于一条电场线无法判断,可以再多画几条电场线,如:【拓展2】如图甲所示,A 、B 是电场中的一条直线形的电场线,若将一个带正电的点电荷从A 由静止释放,它只在电场力作用下沿电场线从A 向B运动过程中的速度图象如图乙所示.比较A 、B 两点的电势和场强E ,下列说法正确的是( C )A.φA <φB ,E A <E BB.φA <φB ,E A >E BC.φA >φB ,E A >E BD.φA >φB ,E A <E B【解析】由乙图可知,此正电荷的加速度越来越小,由牛顿第二定律a =F m可知电场力由A →B 是减小的,又由F =qE ,可知E A >E B ,故A 、D 错;又正电荷由静止释放从A 向B 运动,可知电场力方向A →B ,场强方向A →B ,顺着电场线方向电势降低,所以,φA >φB ,C 对,B 错.3.等势面与电场线的关系【例3】如图所示,虚线方框内为一匀强电场,A 、B 、C 为该电场中的三个点.已知φA =12 V ,φB =6 V ,φC =-6 V.试在该方框中作出该电场的示意图(即画出几条电场线),并要求保留作图时所用的辅助线(用虚线表示),若将一个电子从A 点移到B 点,电场力做多少电子伏特的功?【解析】因φB =6 V ,φC =-6 V ,根据匀强电场的特点,在B 、C 连线的中点D 处的电势必为零.同理,把AC 分成三份,在等分点F 处的电势也必为零,可得F 、D 为等势面,E 、B 两点是等势面上的两点,根据电场线与等势面垂直,可以画出电场线分布图.将电子从A 移到B ,电场力做功为W =-eU AB =-e ×(12-6) V =-6 eV【思维提升】运用电场线和等势面判断电场的性质,电荷在电场中移动,电场力做功与电势能的变化问题是本节内容的难点,本题将寻找电场线和等势面的关系体现在作图的过程中,对能力要求较高.易错门诊4.电场线、等势面、运动轨迹的综合问题【例4】如图虚线a 、b 、c 代表电场中三个等势面,相邻等势面之间的电势差相等,即U ab =U bc ,实线为一带负电的质点仅在电场力作用下通过该区域时的运动轨迹,P 、Q 是这条轨迹上的两点,据此可知( )A.P 点的电势高于Q 点的电势B.带电质点在P 点具有的电势能比在Q 点具有的电势能大C.带电质点通过P 点时的动能比通过Q 点时大D.带电质点通过P 点时的加速度比通过Q 点时大【错解】AC【错因】(1)将等势线与电场线混淆,认为电场力沿虚线的切线方向.(2)加速度与速度的关系不清,错认为速度小,加速度就小.(3)错认为负电荷只能向电势高的地方运动,且认为电势高电势能就大.【正解】由图可知P 处的等势面比Q 处的等势面密,说明P 处的场强大于Q 处的场强.即在P 处受力应大些,根据牛顿第二定律,检验电荷在P 处的加速度大于在Q 处的加速度,D 正确.又电场线垂直于等势面,如图所示,电荷做曲线运动,且负电荷的。
静电场及其作用一.计算题训练1.如图所示,把质量为0.2g的带电小球A用绝缘丝线吊起,若将带电荷量为4×10﹣8C的小球B靠近它,当两小球在同一高度且相距3cm时,丝线与竖直方向夹角为45°.g取10m/s2,则:(1)此时小球B受到的静电力F的大小为多少?(2)小球A带何种电荷?(3)小球A所带电荷量大小是多少?2.如图所示,A、B两小球带等量同号电荷,A固定在竖直放置绝缘支柱上,B受A的斥力作用静止于光滑的绝缘斜面上与A等高处,两者的水平距离为r=0.48m,斜面倾角为θ=30°,B的质量为m=10×10﹣3kg.(g取10m/s2,静电力常量k=9.0×109N•m2/C),求:(1)画出小球B的受力分析图;(2)斜面对小球B的支持力大小;(3)B球所带的电荷量大小。
3.如图所示,带电小球A悬浮于空中,带电小物块B、C静置于绝缘水平面上。
已知A的带电量为+q,A、B、C的质量都为m,它们之间的距离都为d,B、C的带电量相同,重力加速度为g,静电力常量为k。
求:(1)B的带电性质(2)B的电荷量(3)B对地面的压力4.守恒是物理学中的重要思想。
请尝试用守恒思想分析问题。
如图所示,将带正电荷Q的导体球C靠近不带电的导体。
沿虚线将导体分成A、B两部分,这两部分所带电荷量分别为Q A、Q B。
判断这两部分电荷量的正负及大小关系,并说明理由。
5.有三个相同的绝缘金属小球A、B、C,其中A小球带有3×10﹣3C的正电荷,B小球带有2×10﹣3C的负电荷,小球C不带电。
先让小球C与小球A接触后分开,再让小球B与小球A接触后分开,最后让小球B与小球C接触后分开,试求这时三个小球所带的电荷量分别为多少?6.如图所示,电量为q、质量为m的小球用一长为l的绝缘细线悬于O点,O点处放一电量为﹣q的点电荷.现在最低点使小球获得一个水平初速度v0,小球刚好可以绕O点在竖直平面内做完整的圆周运动,则v0应为多少?7.如图所示,真空中两个相同的小球带有等量同种电荷,质量均为0.1g,分别用10cm长的绝缘细线悬挂于绝缘天花板的一点,当平衡时B球偏离竖直方向60°,A球竖直悬挂且与墙壁接触,g=10m/s2,求:(1)两个小球所带电荷量;(2)墙壁受到的压力;(3)每条细线的拉力.答案解析1【分析】(1)对小球A进行正确受力分析,小球受水平向左的库仑力、重力、绳子的拉力,根据平衡条件列方程求解库仑力大小;(2)同时根据同种电荷相斥,异种电荷相吸,即可求解;(3)再依据库仑定律的公式,即可求解小球A电量。