当前位置:文档之家› 不对称故障分析与计算的算法

不对称故障分析与计算的算法

不对称故障分析与计算的算法
不对称故障分析与计算的算法

怎样计算不完整缓和曲线起点及终点的坐标及切线方位角资料

通过弧长计算出园心角,通过园心角计算出弦长,以及这段园曲线的弦切角,直线的方位角加上(左转减,右转加)这个弦切角就是弦的方位角,这样就可以求出园曲线的终点(也就是下一段曲线的直缓点)的坐标. 怎样计算不完整缓和曲线起点及终点的坐标及切线方位角 以上为一条匝道的曲线图及要素表。第一缓和段长度根据公式c=R*L及C=A*A,图中A=100,R=150,可算出第一缓和段的长度为66.667米。而HY里程减去YH里程为60.902米。因此此段缓和曲线是在离其起点5.765米的地方与前段圆曲线相交。图上标为YH点。固此YH点并非第一缓和段起点。第二缓和段也有同样的问题,DZD点亦非第二缓和段终点。问题:怎样计算第一缓和段真正起点的坐标和第二缓和段真正终点的坐标。及切线方位角。本人水平有限,苦苦思索未得其解。在此劳烦各位同仁给予小弟支援。不胜感谢!测量路上诚与仁兄们携手同行,让我们的测量之路多一丝欣慰,少一分苦闷。QQ26889412E-mail: yujuying@https://www.doczj.com/doc/955450943.html, 注:曲线要素表可能看不清楚。但可以把图片另存为一个文件。然打开此文件就非常清楚了。1.计算出Y1H的坐标及方位角; 2.计算出过渡段缓和曲线在Y1H点的支距dx,dy及偏角β; 3.由Y1H的方位角及偏角β可反算出过渡缓和曲线虚起点的方位角。 4.由Y1H的坐标、dx,dy及方位角可反算出过渡缓和曲线起点的坐标。(用支距到大地坐标的变换公式反算。 关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中 相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲 线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如 从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而

电力系统练习题

第八章电力系统不对称故障的分析计算 例题: 1、图8-7所示为具有两根架空地线且双回路共杆塔的输电线路导线和地线的

2、如图8-8所示电力系统,试分别作出在k1, k2, K3点发生不对称故障时的正序、负序、零序等值电路,并写出,,120X X X ∑∑∑ 的表达式。(取0m X ≈∞)

习题: 1、什么是对称分量法?ABC分量与正序、负序、零序分量具有怎样的关系? 2、如何应用对称分量法分析计算电力系统不对称短路故障? 3、电力系统各元件序参数的基本概念如何?有什么特点? 4、输电线路的零序参数有什么特点?主要影响因素有哪些? 5、自耦变压器零序等值电路有什么特点?其参数如何计算? 6、电力系统不对称故障(短路和断线故降)时,正序、负序、零序等值电路如何 制定?各有何特点? 7、三个序网(正序、负序、零序)以及对应的序网方程是否与不对称故障的形式有关?为什么? 8、电力系统不对称故障的边界条件指的是什么? 9、试述电力系统不对称故障(短路和断线故障)的分析计算步骤. 10、如何制定电力系统不对称故障的复合序网(简单故障和经过渡电阻故障)? 11、何谓正序等效定则? 12、电力系统不对称故障时,电压和故障电流的分布如何计算? 13、为什么说短路故障通常比断线故障要严重? 14、电力系统不对称故障电流、电压经变压器后,其对称分量将发生怎样的变化?如何计算? 15、电力系统发生不对称故障时,何处的正序电压、负序电压、零序电压最高?何处最低? 16、电力系统两处同时发生复杂故障时,应怎样计算?为什么复合序网的连接必 须要经过理想移相变压器? 17、图8-34所示电力系统,在k点发生单相接地故障,试作正序、负序、零序等值电路. 18、图8-35〔a)、(b)、(c)所示三个系统.在k点发生不对称短路故障时,试画出

非对称缓和曲线坐标计算程序

非对称缓和曲线坐标计算程序 CASIO fx-4800P QXZB曲线坐标计算 CASIO4800 QXZB可计算不等缓和曲线、圆曲线上的任意中、边桩坐标: 该程序适用于计算器 CASIO fx-4800P,可计算与线路中心成任意夹角的缓和曲线、圆曲线中、边桩坐标及待测点方位角和距离。 1、DK(JD)?输入交点桩号 2、X(JD)?输入交点坐标X 3、Y(JD)?输入交点坐标Y 4、T1?输入第一切线长(如果只有一条切线两者都输入一致) 5、T2?输入第二切线长(如果只有一条切线两者都输入一致) 6、FWJ?输入直线方位角(ZH→JD) 7、A?输入转角:左转为负,右转为正 8、R?输入圆曲线半径 9、LS1?输入第一缓和曲线长(如果只有一条缓和曲线两者都输入一致) 10、LY?输入圆曲线长(L-LS1-LS2) 11、LS2?输入第二缓和曲线长(如果只有一条缓和曲线两者都输入一致) 12、X(ZJD)?输入置镜点坐标X 13、Y(ZJD)?输入置镜点坐标Y 14、JSDK?输入前视点里程 15、PL?输入偏距 16、PA?输入偏角 程序下载地址: https://www.doczj.com/doc/955450943.html,/blog/post/QXZB-4800.html

评价答案 好:18 不好:1 原创:18 非原创:0 菲メ帆ぅ 回答采纳率:52.8% 2010-06-02 17:37 满意答案 好评率:57% (for Casio-fx4850) 扩展变量操作(15个):Defm 15←┚ ( O为字母、0为数字) J-PQX (平面数据输入,自行切换到J-JSMS) Defm 15←┚ A“JD” B“JDX” C“JDY” F“FWJ” O“A0:Z-,Y+” RE“LS1” K“LS2”: E<1=>E=1E-9⊿K<1=>K=1E-9⊿Z[1]=EE÷24R-E∧4÷2688RRR:Z[2]= E÷2-EEE÷240RR:X=(EE-KK)÷24R÷sin Abs O :“T1=”:Z[3]=(R+Z[1])tan(Abs O÷2)+Z[2]-X◢“T2=”:Z[4]=(R+KK÷24R-K∧4÷2688RRR)tan(Abs O ÷2)+K÷2-KKK÷240RR+X◢ “L=”:L=Abs OπR÷180+(E+K)÷2◢ J=tan-1((R+Z[1])÷(Z[3]-Z[2]):“E=”:X=(R+Z[1])÷sin J-R◢ X=A-Z[3]:Y=X+E:E<1=>“ZY=”:X◢ ≠=> “ZH=”:X◢ “HY=”:Y◢ ⊿ “QZ=”:Y =X+(L-K-E)÷2+E◢ Y=X+L-K:X=X+L:K<1=> “YZ=”:X◢

缓和曲线计算公式

缓和曲线计算公式 缓和曲线计算公式: 缓和曲线参数: 0=A L R ? 缓和曲线长度R A L ÷=20 缓和曲线半径÷=2A R 0L 所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A 及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

不对称故障的分析与计算

《电力系统分析》 不对称故障的分析与计算 水利与建筑工程学院 电气与动力实验室

1、不对称短路分析与计算 一、实验目的 1、掌握运用Matlab进行电力系统仿真实验的方法; 2、理解导纳矩阵、阻抗矩阵及其求解方法; 3、掌握不对称短路的分析和计算方法; 4、学会编写程序分析不对称故障。 二、预习与思考 1、用Matlab对基本的矩阵进行运算。 2、导纳矩阵、阻抗矩阵有何关系,如何求取阻抗矩阵? 3、不对称短路有哪些,它们的边界条件分别是什么,如何形成它们的复合序网络图? 4、如何用程序实现不对称短路的计算? 三、系统网络及参数 图1 系统网络图

表1 元件参数及阻抗 四、实验步骤和要求 1、根据以上网络和参数,编写程序进行下列故障情况下的故障电流、节点电压和线路电流的计算。 (1)通过故障阻抗Z f=j0.1p.u., 节点3发生三相短路; (2)通过故障阻抗Z f=j0.1p.u.,节点3发生单相接地短路; (3)通过故障阻抗Z f=j0.1p.u.,节点3发生相间短路; (4)通过故障阻抗Z f=j0.1p.u.,节点3发生两相接地短路。 五、实验报告 1、完成下表2-表9。 表2 节点3发生三相对称短路时的故障电流

表3 节点3发生三相对称短路时各节点电压 表4 节点3发生单相短路时的故障电流 表5 节点3发生单相短路时各节点电压 表6 节点3发生相间短路时的故障电流 表7 节点3发生相间短路时各节点电压 表8 节点3发生两相接地短路时的故障电流

表9 节点3发生两相接地短路时各节点电压 2、书面解答本实验的思考题。

不对称短路例题

例一 系统接线如图所示,已知各元件参数如下。发电机G :S N =30MVA , ()2.02==''x x d ;变压器T-1:S N =30MVA ,U k %=,中性点接地阻抗z n =j10Ω;线路L :l =60km ,x (1)=Ω/km ,x (0)=3x (1);变压器T-2:S N =30MVA ,U k %=;负荷:S LD =25MVA 。试计算各元件电抗的标幺值,并作出各序网络图。 解:(1)求各元件参数标幺值 SB=30MVA ,UB=Uav ()2.030 30 2.02.02=?==''=GN B d S S x X 105.030 301005.10100%1=?=?= NT B k T S S U X ()()()0544.011530 604.02 2 121=??===av B L L U S l x X X ()()1633.00544.03310=?==L L X X 44.125302.12 .1)1(=?==LD B LD S S X 42.025 30 35.035 .0)2(=?==LD B LD S S X 0227.0115 301010 2 2j j U S j Z av B n =?== 06805.00227.033j j Z n =?= (2)各序网络如图所示。

例题二电力系统接线如图所示,试分别作出f1和f2点发生接地短路时的系统零序网络图。

jX 23j3X 17 jX 23 j3X 17 ) 0( 例三 系统接线如图所示。已知各元件参数如下。发电机G :S N =100MVA , ()18.02==''x x d ;变压器T-1:S N =120MVA ,U k %=;变压器T-2:S N =100MVA ,U k %=;线路L :l =140km ,x (1)=Ω/km ,x (0)=3x (1)。在线路的中点发生单相接地短路,试计算短路点入地电流及线路上各相电流的有名值,并作三线图标明线路各相电流的实际方向。 解:S B =100MVA ,U B =U av )(251.0230 31003kA U S I B B B =?== ,取?∠=9005.1E ()18.0100 100 18.018.02=?=?==''GN B d S S x X 0875.01201001005.10100%111=?=?= N T B k T S S U X 105.0100 100 1005.10100%222=?=?= N T B k T S S U X ()()10586.0230100 1404.02 211=??==B B L U S l x X

缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ

计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

不对称短路计算题

不对称短路计算题 --------------------------------------------------------------------------作者: _____________ --------------------------------------------------------------------------日期: _____________

计算题部分: 1、电力系统如图所示,变压器T 2 低压侧开路。在输电线中间发生单相短路时,计算:(1)故障点的次暂态短路电流;(2)变压器T1,变压器T2中性线中的次暂态短路电流。 解:1)画出正序、负序、零序网,求正序、负序、零序等值电抗: 125 .0 ) 18 .0 087 .0 //( ) 18 .0 056 .0( 19 .0 06 .0 056 .0 074 .0 176 .0 06 .0 056 .0 06 .0 2 1 = + + = = + + = = + + = ∑ ∑ ∑ x x x 2)画出复合序网,求故障点正序、负序、零序电流: ) ( 51 .0 230 3 100 ) 125 .0 19 .0 176 .0( 1 I I I 2 1 kA j j a a a = ? ? + + = = =& & & 3)故障点的次暂态短路电流:) ( 53 .1 51 .0 3 I3 I 1 kA a fa = ? = =& & 4)在零序网中求流过变压器T1,变压器T2的零序电流: ) ( 24 .0 27 .0 51 .0 ) ( 27 .0 18 .0 056 .0 125 .0 51 .0 20 10 kA I kA I T T = - = = + ? = & & 5)求流过变压器T1,变压器T2中性线中的次暂态短路电流 ) ( 72 .0 24 .0 3 3 ) ( 81 .0 27 .0 3 3 20 2 10 1 kA I I kA I I T N T T N T = ? = = = ? = = & & & &

匝道等不完整缓和曲线计算解释和说明

匝道等不完整缓和曲线坐标计算 随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPS RTK的坐标放样功能就可很方便、快捷地完成实地放样。道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。 一、基本形曲线中桩坐标计算: 1、对于第一缓和曲线及圆曲线段(ZH ~ YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。先计算曲线各点在曲线坐标系下的坐标。 ⑴对于第一缓和曲线段(ZH ~HY)内任一点i(此时L=K i -K ZH ) 若圆曲线半径R≥100m时,则 X i ′=L-L5/(40R2L s1 2) 公式① Y i ′=L3/(6RL s1 ) 公式② 若圆曲线半径R<100m时,则 X′=L-L5÷[40(RL S )2]+L9÷[3456(RL S )4]–L13÷[599040(RL S )6]+L17÷[175472640 (RL S )8]- L21÷[7.80337152×1010(RL S )10](公式③) Y′=L3÷[6(RL S )] - L7÷[336(RL S )3]+L11÷[42240(RL S )5] - L15÷[9676800 (RL S )7]+L19÷[3530096640(RL S )9] - L23÷[1.8802409472×1012(RL S )11](公式 ④) ⑵对于圆曲线段(HY ~ YH)上任一点i

不对称短路故障分析与计算-课程设计报告

信息工程学院 课程设计报告书 题目: 不对称短路故障分析与计算 专业:电气工程及其自动化 班级: 0312408班 学号: 031240868 学生姓名:わ- 深蓝 指导教师: 2015年06月05日

信息工程学院课程设计任务书 学号031240868 学生姓名わ- 深蓝专业(班级)电气0312408班设计题目不对称短路故障分析与计算 设计技术参数1 发电机参数 G1:为水电厂,额定容量110MVA,85 .0 φ cos N =,264 .0 " d = X G2、G3:为水电厂,额定容量25MVA,8.0 φ cos N =,13 .0 " d = X M:电动机(用电负载),2000KW,85 .0 φ cos N =,起动系数为6.5 2 变压器T参数 T1:额定容量16MVA,一次电压110KV,短路损耗86KW,空载损耗23.5KW,阻抗电压百分值UK%=10.5,空载电流百分值I0%=0.9。变压器连接组标号:Ynd11。 T2、T3:额定容量31.5MVA,一次电压110KV,短路损耗148KW,空载损耗38.5KW,阻抗电压百分值UK%=10.5,空载电流百分值I0%=0.8。变压器连接组标号:Ynd11。 T4:额定容量10MVA,一次电压110V,短路损耗59KW,空载损耗16.5,阻抗电压百分比UK%=10.5,空载电流百分比I0%=1.0。变压器连接组标号:Ynd11。 3 线路参数 LGJ-120:截面120 2 m,长度100km,每条线路单位长度的正序电抗 km X/ 391 .0 )1(0 Ω =,零序电抗 )1(0 (0) 3 X X =,每条线路单位长度的对地电容 km S/ 10 92 .2 b6 0(1) - ? =。 LGJ-150:截面150 2 m,长度100km,每条线路单位长度的正序电抗 km X/ 384 .0 )1(0 Ω = ,零序电抗)1(0 (0) 3 X X = ,每条线路单位长度的对地电容 km S/ 10 97 .2 b6 0(1) - ? = 4 负载参数 容量8+6jMVA,在基准容量B S=100MVA下,负载负序电抗标幺值为X0(2)=0.35,零序电抗标幺值X(0)=1.2。

电力系统不对称故障的分析计算

第八章 电力系统不对称故障的分析计算 主要内容提示: 电力系统中发生的故障分为两类:短路与断路故障。短路故障包括:单相接地短路、两相短路、三相短路与两相接地短路;断路故障包括:一相断线与两相断线。除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压与电流,三相电路变成不对称电路。直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。 本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。 §8—1 对称分量法及其应用 利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之与。 设c b a F F F ? ? ? 为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下: ()()()()()()()()() 021021021c c c c b b b b a a a a F F F F F F F F F F F F ? ? ? ? ? ? ? ? ? ???++=++=++= 三组序分量如图8-1所示。 正序分量: ()1a F ?、()1b F ? 、()1c F ? 三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c, 在电机内部产生正转磁场,这就就是正序分量。此正序分量为一平衡的三相系统,因此有:()()11b a F F F ? ?? ++ 负序分量:()2a F ? 、()2b F ? 、()2c F ? 三相的负序分量大小相等,彼此相位互差°,与系统正 常对称运行方式下的相序相反,达到最大值的顺序a →c →b,在电机内部产生反转磁场,这就就是负序分量。此负序分量为一平衡的三相系统,因此有:()()()222c b a F F F ? ??++=0。 零序分量:()0a F ? 、()0b F ? 、()0c F ? 三相的零序分量大小相等,相位相同,三相的零序分量同时达到最大值,在电机内部产生漏磁,其合成磁场为零。这就就是零序分量。 如果以a 相为基准相,各序分量有如下关系: 图 8-1 三序分量 F c(0) ·零序 F b(0) ·F a(0) ·120° 120° 120° 正序 F b(1) · F a(1) · F c(1) ·ω 120° 120° 120° 负序 F a(2) · F c(2) ·F b(2) ·ω

短路故障分析习题

1. 下图所示的电网中,f 点三相短路时,发电机端母线电压保持不变。r 1,x 1分别为电抗 器的电阻和电抗,r 1=Ω,x 1=Ω,r 2,x 2分别为电缆的电阻和电抗,r 2=Ω, x 2=Ω。若母线的三相电压为: ( )( )() a s b s c s 6.3cos 6.3cos 1206.3cos 120u t u t u t ωαωαωα=+=+-=++o o 在空载情况下,f 点突然三相短路。设突然短路时α=30°,试计算: (1) 电缆中流过的短路电流交流分量幅值。 (2) 电缆中三相短路电流表达式。 (3) 三相中哪一相的瞬时电流最大,并计算其近似值。 (4) α为多少度时,a 相的最大瞬时电流即为冲击电流。 解:r 1, x 1分别为电抗器的电阻和电抗,r 1=Ω , 140.693100x = =Ω r 2, x 2分别为电缆的电阻和电抗,r 2=Ω, x 2=Ω 令r = r 1+ r 2=Ω, x = x 1+ x 2=Ω 令0.943arctan()57.64x z r ?==Ω ==o (1) 三相短路电流交流分量的幅值为:9.45kA m I == (2) 直流分量衰减时间常数为:/0.7970.005s 3140.505 a L x T R r ω= ===? 由于短路前线路处于空载,则短路前瞬间线路电流为0,则每条电缆中三相短路电流的表达式为: 1 1 2 2

()()()()()()()()a m m 0.005 0.005 b 0.005 c cos 0cos 9.45cos 27.649.45cos 27.649.45cos 147.649.45cos 147.649.45cos 92.369.45cos 92.36a t T s t s t s t s i I t I e t e i t e i t e ωα?α?ωωω- -- - =+-+--????=---=---=--o o o o o o (3) 直流分量值越大,短路电流瞬时值越大,且任意初相角下总有一相直流分量起始值最 大。由步骤(2)可知,cos(?°)>cos(?°)>cos °),a 相的直流分量最大,大约在短路发生半个周波之后,a 相电流瞬时值将到达最大值,即 ()()0.010.005 a 9.45cos 3140.0127.649.45cos 27.649.5304kA i e -=?---=-o o 同理可以写出i b , i c ,并进行比较验证: ()()0.010.005 b 9.45cos 3140.01147.649.45cos 147.649.0624kA i e -=?---=o o ()()0.010.005 c 9.45cos 3140.0192.369.45cos 92.360.4418kA i e - =?+-=o o (4) 在短路前空载情况下,有步骤(2)所列的各相短路电流表达式可知:若初相角|α?φ| 等于0°或是180°时,a 相短路电流直流分量起始值达到最大,短路电流最大瞬时值也最大。由于φ=°,则α=φ=°或α=?180+φ=°。 带入步骤(2) i a , i b , i c 的表达式中进行验证: ()()()()()()()()0.01 0.005 a 0.010.005 b 0.010.005 c 0.01s 9.45cos 3140.0109.4510.7286kA 0.01s 9.45cos 3140.011209.45cos 120 5.3643kA 0.01s 9.45cos 3140.011209.45cos 120 5.3643kA i t e i t e i t e --- ==?+-===?---===?+-=o o o o o 2. 一发电机、变压器组的高压侧断路器处于断开状态,发电机空载运行,其端电压为额定电压。试计算变压器高压侧突然三相短路后短路电流交流分量初始值I ''m 。 发电机:S N =200MW ,U N =,cos φN =,x d =,x 'd =,x ''d = 变压器:S N =240MVA ,220kV/,U s(%)=13 解:取S B =100MVA ,U B1取为,则U B2=?(220/=220kV 1 4.18kA B I == 20.26kA B I = = =

完整及不完整缓和曲线

转载自测量空间! 本帖最后由 wenyajun 于 2010-9-30 16:30 编辑 关于不同类型缓和曲线的起点、终点曲率半径判断方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的 概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区 分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。 第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不 易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已

不对称电路课程设计

电力系统分析课程设计 题目:系统不对称短路电流的计算机算法专业:电气工程及其自动化 学号:201114240144 姓名:周钘

目录 摘要 (2) 前言 (2) 一.电力系统短路故障相关知识 (2) 二如何应用对称分量法分析不对称短路 (2) (1)不对称三相量的分解 (3) (2)应用对称分量法分析不对称短路 (4) 三简单不对称短路的分析与计算 (6) (1)单相接地短路(选a相) (6) (3)两相(b相和c相)短路接地 (8) 四简单不对称短路的计算机程序计算法 (11) (1)简单故障的计算程序原理 (11) (2)网络节点方程的形成 (12) 五电力系统不对称短路计算实例 (13) 结语 (17) 参考资料 (17)

摘要 电力系统运行时常会发生故障,大多数是短路故障。短路通故障分为单相接地短路、三相短路、两相接地短路和两相短路。在这些故障中三相短路为对称短路,其余为不对称短路。分析与计算不对称短路常用的方法为对称分析法。 计算不对称短路方法目前实际最常用的方法是对称分量法。而以对称分量法为核心的计算方法又可有解析法和计算机程序算法等,下面介绍这两种计算方法。解析法,是将微分方程代数化、暂态分析稳态化、不对称转化为对称并叠加完成不对称故障的分析与计算。计算机程序算法是在形成三个序网的节点导纳矩阵后,对其应用高斯消去法求得故障端点等值阻抗,根据故障类型选用相应公式计算各序电流、电压,进而合成三相电流、电压。 电力系统在设计、运行分析,特别是继电保护的整定中,除了需要知道故障点的短路电流和电压以外,还需要知道网络中某些支路的电流和某些节点(母线)的电压,这可以通过对故障后各序网络的电流和电压分布计算得到。 。 1.电力系统短路故障相关知识 1.1短路故障的概述 短路概述电力系统运行有三种状态:正常运行状态、非正常运行状态和短路故障。电力系统运行有三种状态:正常运行状态、非正常运行状态和短路故障。短路就是指不同电位导电部分之间的不正常短接。短路就是指不同电位导电部分之间的不正常短接。短路原因及后果: 1.短路的主要原因是电气设备载流部分绝缘损坏。(1)短路的主要原因是电气设备载流部分绝缘损坏。误操作及误接。(2)误操作及误接。飞禽跨接裸导体。(3)飞禽跨接裸导体。其它原因。(4)其它原因。2.短路后果电力系统发生短路,短路电流数值可达几万安到几十万安。电力系统发生短路,短路电流数值可达几万安到几十万安。产生很大的热量,很高的温度,从而使故障元件和其它元件损坏。(1)产生很大的热量,很高的温度,从而使故障元件和其它元件损坏。产生很大的电动力,该力使导体弯曲变形。(2)产生很大的电动力,该力使导体弯曲变形。短路时,电压骤降。(3)短路时,电压骤降。短路可造成停电。(4)短路可造成停电。严重短路要影响电力系统运行的稳定性,造成系统瘫痪。(5)严重短路要影响电力系统运行的稳定性,造成系统瘫痪。单相短路时,对附近通信线路,电子设备产生干扰。(6)单相短路时,对附近通信线路,电子设备产生干扰。 短路种类:

不完整曲线复核与曲率半径计算方法 两条缓和曲线相接计算方法

关于不同类型缓和曲线的起点、终点曲率半径判断方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。 第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。 2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程: A^2=[(R大-R小)÷(R大*R小)]*Ls

电力系统不对称故障分析与计算

广东工业大学华立学院 课程设计(论文) 课程名称电力系统课程设计 题目名称复杂网络N-R法潮流分析与计算的设计学生学部(系)电气工程系 专业班级11电气工程及其自动化()班 学号 学生姓名 指导教师罗洪霞 2014年6月12日

发出任务书日期:2014 年6 月3日指导教师签名: 计划完成日期:2014年6 月10日教学单位责任人签章:

摘要 随着电力事业的快速发展,电力电子新技术得到了广泛应用;出于技术、经济等方面的考虑,500kV及以上的超高压输电线路普遍不换位,再加上大量非线性元件的应用,电力系统的不对称问题日益严重。因此电力系统不对称故障分析与计算显得尤为重要。基于对称分量法的基本理论,对称分量法采取的具体方法之一是解析法,即把该网络分解为正,负,零序三个对称序网,这三组对称序分量可分别按对称的三相电路分解。计算机程序法。通过计算机形成三个序网的节点导纳矩阵,然后利用高斯消去法通过相应公式对他们进行数据运算,即可求得故障端点的等值阻抗。最后根据故障类型选取相关公式计算故障处各序电流,电压,进而合成三相电流电压。 进行了参数不对称电网故障计算方法的研究。通过引计算机算法,系统介绍电网参数不对称的计算机算法方法。根据断相故障和短路故障的特点,通过在故障点引入计算机算法,,给出了各种断相故障和短路故障的仿真计算。此方法以将故障电网分为对称网络和不网络两部分,在程序法则下建立起不对称电网故障计算统一模型,根据线性电路的基本理论,并借助于相序参数变换技术完成故障计算。 关键词: 参数不对称; 电网; 故障计算

目录 前言 (1) 1.电力系统短路故障的基本知识 (2) 1.1 短路故障的概述 (2) 1.2 标幺制 (4) 2对称分量法在不对称短路计算中的应用 (2) 2.1 不对称三相量的分解 (3) 2.2对称分量法在不对称短路计算中的应用 (4) 3 简单不对称短路的分析与计算 (4) 3.1 单相(a相)接地短路 (7) 3.2 两相(b,c相)短路 (7) 3.3 两相(b相和c相)短路接地 (7) 4 简单不对称短路的分析与计算计算机计算程序法 (8) 4.1 简单故障的计算程序原理 (9) 4.2 网络节点方程的形成 (10) 5 电力系统不对称短路计算实例 (11) 5.1 单相接地短路和两相短路不对称故障分析与计算 (11) 5.2 两种计算方法的对比 (18) 结语 (19) 参考资料 (19) 附录:不对称短路电流计算程序 (20)

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法

目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一

相关主题
文本预览
相关文档 最新文档