当前位置:文档之家› 气液压实验指导书--多缸顺序控制回路

气液压实验指导书--多缸顺序控制回路

气液压实验指导书--多缸顺序控制回路
气液压实验指导书--多缸顺序控制回路

实验四多缸顺序控制回路

(设计型)

一、实验目的

1、熟悉多个执行元件的顺序控制回路设计;

2、熟悉压力顺序阀的作用

3、认识元件及组装回路。

4、掌握基本的顺序动作回路的工作过程及原理。

5、学会使用液压元器件设计液压动作回路,提高学生处理及解决问题的能力。

二、实验设备和仪器

1.液压系统试验台

2. 双作用液压缸、3位4通手动换向阀、压力顺序阀和调速阀

3. 油管若干

三、实验原理

●行程控制顺序动作回路:是利用某一执行元件运动到预定行程以后,发出电气或机

械控制信号,使另一执行元件运动的一种控制方式。

●压力控制顺序动作回路:是利用液压回路中压力的差别,如顺序阀、压力继电器等

动作发出控制信号,使执行元件按预定顺序动作。

四、实验内容及要求

1、实验内容:

(一)利用行程开关设计液压的顺序动作回路

(1)实验方法

采用电器行程开关的顺序动作回路,各缸顺序由电气元件发出信号,改变油液的流动方向即可改变顺序动作,并可调整行程。

本实验动作过程如下:首先按动电钮,电磁铁1DT接通,左位接入,压力油流入液压缸A的左腔,右腔回油,实现动作,右行到终点时,缸A的挡铁压下行程开关1XK,电磁铁2DT通电,液压供油又进入缸B实现动作2。右行到终点缸B活塞的挡铁压下行程开关2XK,电磁铁1DT断电,换向阀呈图示状态,压力油进入缸A右腔,左回油,活塞返回,缸A实现动作3。左行到终点,缸A活塞的挡铁压下行程开关3CK,电磁铁2DT

断电,压力油又进入缸B的左腔,活塞也返回,缸B实现动作4,完成一个自动循环,活塞均退回原位,为下一循环作好准备。

行程开关的顺序动作回路

采用压力继电器实现顺序动作的回路。此方法为了防止压力继电器发生误动作,其压力调整数值一方面应比先动的液压缸的最高工作压力高0.3-0.5Mpa,另一方面要比溢流阀的调整压力低0.3-0.5Mpa。

接通电源,打开开关,使缸A换向阀的电磁铁ID通电,压力油进入缸A(假定是夹紧缸)左腔,推动活塞向右运动,碰上定位挡铁后(或夹工件后)系统压力升高,安装在缸A进油腔附近的压力继电器发出电信号,使缸B换向的电磁铁2DT通电,于是压力油以进入缸B(假定为钻削加工的进给缸)的左腔,推动活塞向右运动(开始钻削加工),完成了一个完整的动作循环。见图2

压力继电器的顺序动作回路

(2)实验步骤

检查在实验台上搭建的液压回路是否正确。如确定无误,接通电源,启动电气控制面板的开关,把换向阀插座与电磁铁换向阀进行连接,启动液压油泵开关,调节电机调速器使达到预定的压力,按动换向阀1或2达到实验预计的结果。

(二)利用压力继电器的顺序动作回路

检查在实验台上搭建的液压回路是否正确。如确定无误,接通电源,启动电气控制面板的开关,把换向阀插座与电磁铁换向阀进行连接,启动液压油泵开关,调节电机调速器使达到预定的压力,达到实验预计的结果。

四、实验结果分析及实验报告要求:

1、画出所设计的液压回路(画出多种并符合要求的建议评定成绩考虑加分)。

2、写出自己的设计思路和设计原理。

实验三 双缸顺序动作回路实验

实验三双缸顺序动作回路实验 一、实验目的 1.学会使用换向阀、行程开关等液压元件来控制多个液压缸的顺序动作,加深对所学知识的理解与掌握; 2.培养使用各种液压元件进行系统回路的连接、安装和调试的操作能力; 3.进一步理解采用行程开关控制的顺序动作回路的工作原理及应用 二、实验内容 1.通过亲自装拆,了解液压元件及管路的正确连接与安装的方法。 2.了解顺序动作回路组成和性能。 三、实验基本原理 顺序动作回路的功用是使液压系统中的多个执行元件严格地按规定的顺序动作。按控制方式分为压力控制、行程控制和时间控制三类。 行程控制顺序动作回路,液压原理图见图1.3。工作过程见电磁铁动作表1.3,自动循环。

多缸顺序动作回路的工作原理为: 1.启动油泵,CT1通电,左换向阀处于左位,液压缸A中活塞向右运动,实现动作1; 2.缸A前进,活塞杆触头压下行程开关L2后,CT2通电,右换向阀处于左位,液压缸B中活塞向右运动,实现动作2; 3.缸B前进,活塞杆触头压下行程开关L3后,CT1断电,左换向阀恢复右位,液压缸A中活塞向左运动,实现动作3; 4.缸A退回,活塞杆触头压下行程开关L4后,CT2断电,右换向阀恢复右位,液压缸B中活塞向左运动,实现动作4; 5.缸B退回,活塞杆触头压下行程开关L1后,CT1通电,左换向阀处于左位,液压缸A中活塞向右运动,实现动作1; 6.二位二通电磁换向阀CT3通电,系统缸荷,液压缸停止工作。 采用行程开关控制多缸顺序动作回路的工作原理见图。工作过程见电磁铁动作表。 四、实验方法与步骤 1.实验方法: 本实验采用透明可视的液压元件和快速插装式的管路在液压实验台上完成。电气线路与控制按钮均在实验台,操作安全、控制方便。根据已学的液压回路的基本知识,选用正确的液压元件,在液压实验台上实现双缸的顺序动作。 2.实验步骤: (1)按照实验回路图的要求,取出要用的液压元件,检查型号是否正确。 (2)将检查完毕性能完好的液压元件安装在实验台面板合理位置。通过快

PLC实验指导书

PLC综合实验课题 1.总体要求: 对每一课题必须绘制运行工序图,设计的PLC控制系统包括:PLC I/O分配、控制线路图设计、梯形图设计;将设计的PLC程序利用手持式编程器送入PLC 并调试通过,符合课题提出的控制要求后,提交现场验收。 实验报告书在提交上述内容的基础上,还要讨论调试心得。 2.实验课题 课题一:小车往返运动控制 小车往返运动情况参如图1。 SQ1 SQ2SQ3 图 1 初态:小车启动前位于导轨的中部(如图1中位置)。系统运行要求如下:1)按启动按钮SB1,小车前进,到SQ1处停车,延时5s后小车后退; 2)小车后退至SQ2处停车,延时5S后第二次前进,到SQ3处后再次后退; 3)后退至SQ2处停车。 要求:设计PLC控制系统,必须采用基本逻辑指令编程。 课题二:三台电机顺序控制 三台电机顺序控制要求如下:M1运行10S 后停止,M2自行启动;M2运行5S 后停止,M3自行启动;M3运行5S后停止,M1重新自行启动运行,如此反复三次后所有电机停止运行,指示开始灯闪烁,按停车按钮指示灯闪烁停。 要求:设计PLC控制系统,必须采用基本逻辑指令编程。

课题三:机械手PLC 控制 悬挂式机械手结构示意图如图3 。 图 3 SQ1 SQ4 机械手工作控制方式分手动、单步、单周期和连续控制,控制方式采用转换开关进行,(手动时X6=ON ,单步时X7=ON ,单周期X10=ON ,连续X11=ON )。 连续操作过程如下: 机械手必须在原位(图3中A 点),按启动按钮SB1,机械手开始动作: 下降→夹紧(电磁阀得电)→上升→右行→下降→放松(电磁阀失电)→上升→左行回到原位→下降(循环执行) 连续操作过程中按停止按钮SB2,必须完成一个工作循环回到A 点后停止运行。 单周期操作:机械手在原位,按启动按钮,机械手工作一个周期后停在原位。 单步操作:机械手在原位开始,按一次启动按钮,机械手自动完成一步后自动停止,再按一次启动按钮机械手自动完成下一步后自动停止…… 手动操作是指机械手的上升/下降、右行/左行、夹紧/放松可以用按钮单独操作,工作方式采用转换开关进行选择,具体控制要求如下: X20=ON :按住启动按钮SB1,机械手左行;按住停止按钮SB2,机械手右行; X21=ON :按住启动按钮SB1,机械手上升;按住停止按钮SB2,机械手下降; X22=ON :按住启动按钮SB1,机械手夹紧;按住停止按钮SB2,机械手放

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

数控插补多轴运动控制实验指导书(学生)

数控插补多轴运动控制系统解剖实验 实验学时:8 实验类型:独立授课实验 实验要求:必修 一、实验目的 1、通过本实验使学生掌握数控插补多轴控制装置的基本工作原理; 2、根据常用低压电器原理分析各运动控制电气元件的应用原理,分析数控插补运动实现的控制原理; 3、根据机电一体化产品的设计要求和设计流程进行运动控制系统的功能分析、机械结构分析、控制系统分析以及相关传感器选型等方面的设计内容。 本实验以数控插补多轴运动控制系统为具体对象,使学生掌握机电一体化产品设计和开发的技术流程和主要内容,通过运动控制系统的实现过程掌握常用电气元件识别和原理、数控插补原理、位置伺服控制系统等的设计和实现方式。 二、实验内容 1、通过数控插补多轴控制装置及其相关系统的测试和观察,分析数控插补的工作原理; 2、分析系统的功能、机械结构分析、运动关系以及相关传感器等,分析其相关的机械结构、电机及其驱动模块和传感反馈环节等; 3、根据常用低压电器原理,分析系统各运动控制电气元件的应用原理,分析数控插补运动过程实现的控制原理,并绘制相关的控制原理图和系统连接图。 三、实验设备 1、多轴运动控制系统一套(含电控箱) 2、PC机一台 3、GT-400-SG-PCI 卡一块(插在PC机内部)

四、实验原理 该数控插补多轴运动控制系统是依据开放式数控系统原理构建的,其以通用计算机(PC)的硬件和软件为基础,采用模块化、层次化的体系结构,能通过各种形式向外提供统一应用程序接口的系统。开放式数控系统可分为 3类:(1)CNC 在 PC中;(2)PC作为前端,CNC作为后端;(3)单 PC,双 CPU平台。 本实验采用第一类,把顾高公司的 GT-400-SG-PCI 多轴运动控制卡插入PC 机的插槽中,实现电机的运动控制,完成多轴运动控制系统的控制。其优点如下:(1)成本低,采用标准 PC机;(2)开放性好,用户可自定义软件;(3)界面比传统的 CNC 友好。 图1为该系统的硬件构成图,运动平台机械本体采用模块化拼装,主要由普通PC机、电控箱、运动控制卡、伺服(步进)电机及相关软件组成。其主体由两个直线运动单元(GX系列)组成。每个GX系列直线运动单元主要包括:工作台面、滚珠丝杆、导轨、轴承座、基座等部分,其结构见图2。伺服型电控箱内装有交流伺服驱动器,开关电源,断路器,接触器,运动控制器端子板,按钮开关等。步进型电控箱则装有步进电机驱动器,开关电源,运动控制器端子板,船形开关等。 图1 数控插补多轴控制系统硬件构成

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

机电传动控制实验指导书(最新)

机电传动控制实验指导书 实验一、继电—接触器控制三相异步电动机 一、实验目的 1.熟悉继电—接触器断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握三相异步电动机主回路和控制回路的接线方法; 3.了解继电—接触器断续控制电路的组成 二、实验使用仪器、设备 1.DB电工实验台; 2.三相异步电动机二台; 3.万用表一台; 4.专用连接线一套。 三、实验要求 实现三相异步电动机的正、反转、点动、互锁、连锁控制。满足以下具体要求: (1) M1可以正、反向点动调整控制; (2) M1正向起动之后,才能起动M2; (3) 停车时,M2停止后,才能停M1; (4) 具有短路和过载保护; (5) 画出主电路和控制电路。 四、实验参考电路

五、实验步骤 1.按布局图要求将各元器件定位; 2.按接线图要求,以正确的规格电线连接各器件;3.按接线图要求,连接电动机的定子线圈; 4.自查并互查连接线; 5.合上电源,调试电路; 6.观察电动机的运行情况。 六、实验注意事项 1.操作前切断总电源; 2.接线完毕,必须检查接线情况,并做好记录;3.在指导老师认可后,方能接通电源。 七、思考题 1.熔断器与热继电器可否省去其中任何一个?为什么?2.熔断器与热继电器的规格可否随意选择?为什么?3.连接电线的规格可否随意选择?为什么? 4.交流接触器可否带直流负载?为什么?

实验二、PLC控制三相异步电动机 一、实验目的 1.了解PLC——AC电动机断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握继电—接触器逻辑电路与PLC梯形图的转换方式; 3.熟悉PLC控制系统的接线方法; 3.了解PLC断续控制电路的组成。 二、实验使用仪器、设备 1.PLC模拟实验台; 2.三相异步电动机二台; 3.万用表一台; 4.专用连接线一套。 三、实验要求 实现PLC对三相异步电动机的正、反转、点动、互锁、连锁控制。满足以下具体要求: (1) M1可以正、反向点动调整控制; (2) M1正向起动之后,延时5分钟再可起动M2; (3) 停车时,M2停止后,延时2分钟再可停M1; (4) 主电路同实验一。 四、实验参考电路与梯形图 1.电路

过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验 实验一 过程控制系统建模 ............................................................................................................. 1 实验二 PID 控制 ............................................................................................................................. 2 实验三 串级控制 ............................................................................................................................. 6 实验四 比值控制 ........................................................................................................................... 13 实验五 解耦控制系统 . (19) 实验一 过程控制系统建模 指导内容:(略) 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 作业题目二: 某二阶系统的模型为2 () 22 2n G s s s n n ?ζ??= ++,二阶系统的性能主要取决于ζ,n ?两个参数。试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶 系统的理解,分别进行下列仿真: (1)2n ?=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ?分别为2, 5, 8, 10时的单位阶跃响应曲线。

《自动控制原理》实验指导书

自动控制原理实验指导书 池州学院 机械与电子工程系

目录 实验一、典型线性环节的模拟 (1) 实验二、二阶系统的阶跃响应 (5) 实验三、根轨迹实验 (7) 实验四、频率特性实验 (10) 实验五、控制系统设计与校正实验 ......................................... 错误!未定义书签。实验六、控制系统设计与校正计算机仿真实验...................... 错误!未定义书签。实验七、采样控制系统实验 ..................................................... 错误!未定义书签。实验八、典型非线性环节模拟 ................................................. 错误!未定义书签。实验九、非线性控制系统分析 ................................................. 错误!未定义书签。实验十、非线性系统的相平面法 ............................................. 错误!未定义书签。

实验一、典型线性环节的模拟 一、实验目的: 1、学习典型线性环节的模拟方法。 2、研究电阻、电容参数对典型线性环节阶跃响应的影响。 二、实验设备: 1、XMN-2型实验箱; 2、LZ2系列函数记录仪; 3、万用表。 三、实验内容: 1、比例环节: r(t) 方块图模拟电路 图中: i f P R R K= 分别求取R i=1M,R f=510K,(K P=0.5); R i=1M,R f=1M,(K P=1); R i=510K,R f=1M,(K P=2); 时的阶跃响应曲线。 2、积分环节: r(t) 方块图模拟电路图中:T i=R i C f 分别求取R i=1M,C f=1μ,(T i=1s); R i=1M,C f=4.7μ,(T i=4.7s););

实验38三相异步电动机顺序启动控制

实验三十八三相异步电动机顺序启动控制 一、实验目的 1、通过各种不同顺序控制的接线,加深对一些特殊要求机床控制线路的了解。 2、进一步加深学生的动手能力和理解能力,使理论知识和实际经验进行有效的结合。 三、实验方法 1、三相异步电动机起动顺序控制(一): 按图38-1接线。因每台实验装置只配一只电机和热继电器,故须用灯组负载来模拟M2,FR2不接。图中U、V、W为实验台上三相调压器的输出插孔。 (1) 将调压器手柄逆时针旋转到底,启动实验台电源,调节调压器使输出线电压为220V。 FR1 图 38-1 起动顺序控制(一)

(2) 按下SB 1,观察电机运行情况及接触器吸合情况。 (3) 保持M 1运转时按下SB 2,观察电机运转及接触器吸合情况。 (4) 在M 1和M 2都运转时,能不能单独停止M 2? (5) 按下SB 3使电机停转后,按SB 2,电机M 2是否起动?为什么? 图38-2 起动顺序控制(二) 2、三相异步电动机起动顺序控制(二): 本实验须将两台实验装置的配件合并才能实施。 按图38-2接线。图中U 、V 、W 为实验台上三相调压器的输出插孔。 (1) 将调压器手柄逆时针旋转到底,启动实验台电源,调节调压器使输出线电压为220V 。 (2) 按下SB 2,观察并记录电机及各接触器运行状态。 (3) 再按下SB 4,观察并记录电机及各接触器运行状态。 (4) 单独按下SB 3,观察并记录电机及各接触器运行状态。 (5) 在M 1与M 2都运行时,按下SB 1,观察电机及各接触器运行状态。 四、讨论题 1、画出图38-1、38-2的运行原理流程图。 2、比较图38-1、38-2二种线路的不同点和各自的特点。 3、例举几个顺序控制的机床控制实例,并说明其用途。 FR

单回路控制系统实验过程控制实验指导书模板

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静( 动) 态水温定值控制实验 实验三 实验项目名称: 单容液位定值控制系统 实验项目性质: 综合型实验 所属课程名称: 过程控制系统 实验计划学时: 2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和( 原理) 要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱( 也可采用上水箱或下水箱) 的液位高度, 实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反

馈信号, 在与给定量比较后的差值经过调节器控制电动调节阀的开度, 以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制, 系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量, 然后将阀门F1-1、F1-2、F1-7、F1-11全开, 将中水箱出水阀门F1-10开至适当开度, 其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 ( 一) 、智能仪表控制 1.按照图3-5连接实验系统。将”LT2中水箱液位”钮子开关拨到”ON”的位置。

现代控制理论实验指导书3-第3章[1]

实验三利用MATLAB求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现 实验目的: 1、通过实验掌握线性系统的对角线标准型、约当标准型、模态标准型以及伴随矩阵标准型的表示及相应变换阵的求解; 2、通过编程、上机调试,掌握系统可控性和可观测性的判别方法、系统的可控性和可观测性分解等; 3、加深理解由控制系统传递函数建立能控、能观、约当标准型等不同状态模型的方法。实验原理: 一、线性系统状态空间模型的相似变换及其标准型 (1)将状态空间模型G经变换矩阵T变换为状态空间模型G1; G1=ss2ss(G,T) (2)将状态空间模型G经变换矩阵T变换为其他形式的状态空间模型G1 [G1,T]=canon(G,type) 其中,当type为'companion'、'modal'、'jordan' 时,分别将状态空间模型G变换 为伴随矩阵标准型、模态标准型、约当标准型状态空间模型G1,并得到相应的变 换矩阵T; (3)计算矩阵A的特征值及与特征值对应的对角型变换矩阵D; [V,D]=eig(A) (4)计算矩阵A变换为约当标准型J,并得到变换矩阵V; [V,J]=jordan(A) 二、线性系统可控、可观判别方法与分解 (1)构造系统的可控性判别矩阵Tc; Tc=ctrb(A,B) (2)构造系统的可观测性判别矩阵To; To=obsv(A,C) (3)求取可控Gram矩阵和可观测Gram矩阵; W=gram(G,type) 其中type为'c'时,为求取可控Gram矩阵,type为'o'时,为求取可观测Gram 矩阵。 (4)能控性分解 [Ac,Bc,Cc,Tc,Kc]=ctrbf(A,B,C) 将系统分解为可控子系统和不可控子系统,Tc是变换阵,sum(Kc)是可控状 态的数目; (5)能观测性分解

液压基本回路

第七章液压基本回路 7-4 多缸(马达)工作控制回路 一、顺序动作回路(sequencing circuit) 1、行程控制顺序动作回路 图a所示为用行程阀控制的顺序动作回路。在图示状态下,A、B两缸的活塞均在端。当推动手柄,使阀C左位工作,缸A左行,完成动作①;挡块压下行程阀D后,缸B左行,完成动作②;手动换向阀C复位后,缸A先复位,实现动作③;随着挡块后移,阀D复位,缸B退回实现动作④。完成一个工作循环。 图b所示为用行程开关控制的顺序动作回路。当阀E得电换向时,缸A左行完成 动作①;其后,缸A触动行程开关S 1使阀得电换向,控制缸B左行完成动作②;当缸B左 行至触动行程开关S 2使阀E失电时,缸A返回,实现动作③;其后,缸A触动S3使9断电, 缸B返回完成动作④;最后,缸月触动S4使泵卸荷或引起其它动作,完成一个工作循环。 2、压力控制顺序动作回路 图所示为使用顺序阀的压力控制顺序动作回路。

当换向阀左位接入回路且顺序阀D的调定压力大于缸A的最大前进工作压力时,压力油先进入缸A左腔,实现动作①;缸行至终点后压力上升,压力油打开顺序阀D进入缸B 的左腔,实现动作②;同样地,当换向阀右位接入回路且顺序阀C的调定压力大于缸B的最大返回工作压力时,两缸按③和④的顺序返回。 3、时间控制顺序动作回路 这种回路是利用延时元件(如延时阀、时间继电器等)使多个缸按时间完成先后动作的回路。图所示为用延时阀来实现缸3、4工作行程的顺序动作回路。

当阀1电磁铁通电,左位接通回路后,缸3实现动作①;同时,压力油进入延时阀2中的节流阀B,推动换向阀A缓慢左移,延续一定时间后,接通油路a、b,油液才进入缸4,实现动作②。通过调节节流阀开度,来调节缸3和4先后动作的时间差。当阀1电磁铁断电时,压力油同时进入缸3和缸4右腔,使两缸返向,实现动作③。由于通过节流阀的流量受负载和温度的影响,所以延时不易准确,一般都与行程控制方式配合使用。 二、同步回路(synchronizing circuit) 同步回路的功用是:保证系统中的两个或多个缸(马达)在运动中以相同的位移或相同的速度(或固定的速比)运动。在多缸系统中,影响同步精度的因素很多,如:缸的外负载、泄漏、摩擦阻力、制造精度、结构弹性变形以及油液中含气量,都会使运动不同步。为此,同步回路应尽量克服或减少上述因素的影响。 1、容积式同步回路 (1)、同步泵的同步回路:用两个同轴等排量的泵分别向两缸供油,实现两缸同步运动。正常工作时,两换向阀应同时动作;在需要消除端点误差时,两阀也可以单独动作。 (2)、同步马达的同步回路:用两个同轴等排量马达作配流环节,输出相同流量的油液来实现两缸同步运动。由单向阀和溢流阀组成交叉溢流补油回路,可在行程端点消除误差。 (3)、同步缸的同步回路:同步缸3由两个尺寸相同的双杆缸连接而成,当同步缸的活塞左移时,油腔a与b中的油液使缸1与缸2同步上升。若缸1的活塞先到达终点,则油腔a的余油经单向阀4和安全阀5排回油箱,油腔b的油继续进入缸2下腔,使之到达终点。同理,若缸2的活塞先达终点,也可使缸1的活塞相继到达终点。

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

现代控制理论实验指导书

实验1 用MATLAB 分析状态空间模型 1、实验设备 PC 计算机1台,MATLAB 软件1套。 2、实验目的 ① 学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; ② 通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。 3、实验原理说明 参考教材P56~59“2.7 用MA TLAB 分析状态空间模型” 4、实验步骤 ① 根据所给系统的传递函数或A 、B 、C 矩阵,依据系统的传递函数阵和状态空间表达式之间的关系式,采用MATLAB 编程。 ② 在MA TLAB 界面下调试程序,并检查是否运行正确。 题1.1 已知SISO 系统的传递函数为 243258()2639 s s g s s s s s ++=++++ (1)将其输入到MATLAB 工作空间; (2)获得系统的状态空间模型。 题1.2 已知SISO 系统的状态空间表达式为 112233010100134326x x x x u x x ????????????????=+????????????????----????????,[]123100x y x x ????=?????? (1)将其输入到MATLAB 工作空间; (2)求系统的传递函数。 实验2 利用MATLAB 求解系统的状态方程 1、实验设备 PC 计算机1台,MATLAB 软件1套。 2、实验目的 ① 学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; ② 通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制状态响应曲线; ③ 掌握利用MATLAB 导出连续状态空间模型的离散化模型的方法。 3、实验原理说明 参考教材P99~101“3.8 利用MATLAB 求解系统的状态方程” 4、实验步骤 (1)根据所给系统的状态方程,依据系统状态方程的解的表达式,采用MA TLAB 编程。 (2)在MATLAB 界面下调试程序,并检查是否运行正确。 题2.1 已知SISO 系统的状态方程为

顺序动作回路工作原理

顺序动作回路 顺序动作回路的作用是保证执行元件按照预定的先后次序完成各种动作。按照控制方式不同,可以分为行程控制和压力控制两种。 1.行程控制顺序动作回路 图7.32为行程阀控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。当推动手柄,使阀3左位工作,缸1的活塞右行,完成动作①;当缸1的活塞运动到终点后挡块压下行程阀4,缸2右行,完成动作②;手动换向阀C复位后,实现动作③;随着挡块的后移,阀4复位,缸2活塞退回,实现动作④。利用行程阀控制的优点是位置精度高、平稳可靠;缺点是行程和顺序不容易更改 图7. 33为行程开关控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。电磁阀1YA通电时使阀左位工作,缸I的活塞右行,完成动作①;当缸1的活塞运动到终点后触动行程开关2S,使电磁阀2YA通电换到左位,缸2的活塞右行,完成动作②;当缸2的活塞运动到终点后触动行程开关4S,电磁阀1Y A断电复位,实现动作③;油缸1的活塞运动到终点后触动行程开关15,电磁阀2Y A断电复位,缸2的活塞退回实现动作④。行程开关控制的顺序动作回路优点是位置精度高,调整方便,且可以更改顺序,所以应用较广,适合于工作循环经常要更改的场合。 2.压力控制顺序动作回路 利用液压系统中的工作压力变化控制各个执行元件的顺序动作是液压系统独具的控制特性。压力控制的优点是动作灵敏,安装布置比较方便;缺点是可靠性不高,位置精度低。 图7.34为顺序阀控制的动作回路。当换向阀左位接入回路且顺序阀4的调定压力大于液压缸活塞伸出最大工作压力时,顺序阀4关闭,压力油进入液压缸1的左腔,缸1的右腔经顺序阀3的单向阀回油,实现动作①;当缸1的伸出行程结束到达终点后,压力升高,压力油打开顺序阀4进人液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当换向阀右位接入回路且顺序阀3的调定压力大于液压缸活塞缩回最大供油压力时,顺序阀3关闭,压力油进入缸2的右腔,缸2的左腔经顺序阀2的单向阀回油,实现动作③;当液压缸2的缩回行程结束到达终点后,压力升高,压力油打开顺序阀3进入缸1的右腔,缸I的左腔回油,实现动作④。为了保证顺序动作的可靠性,顺序阀的压力调定值应比前一个动作的最大工作压力高出0. 8MPa-1.OMPa,以免系统中的压力波动使顺序阀出现误动作,所以这种回路只适应于油缸数目不多且阻力变化不大的场合。 图7. 35为压力继电器控制的顺序动作回路。其T作过程如下:当电磁铁1YA通电时,

最新加工中心演示实验指导书

加工中心演示实验指 导书

加工中心演示实验指导书 一、实验目的 1.熟悉加工中心的安全操作规程。 2.熟悉加工中心的工作原理和结构。 3.掌握加工中心的常规操作方法,重点学习加工中心回零操作、自动换刀操作、手动对刀操作、工件坐标系设定、程序输入与编辑、自动加工等操作。 二、实验仪器和设备 1.XH714D 加工中心1台 2.FANUC 0i-MD 数控系统 3.气泵 三、准备材料和工具 铣刀、圆柱蜡(毛坯)、夹具(台虎钳)、毛刷、扳手、游标卡尺 四、加工中心安全操作规程 1.未经指导老师同意不得私自开机。 2.工作时要穿好工作服、女生操作机床必须戴好帽子,衣服袖口穿戴整齐。不允许戴手套操作机床,一台机床只能一个人操作。 3.请勿更改CNC系统参数或进行任何参数设定。 4.在进行数控加工中心机床操作前,应检查电压、气压、冷却、油量、润滑是否正常,油泵、油管、刀具、工装夹具等是否完好,安全保护装置是否可靠有效。 5.开机时,首先打开总电源,然后按下CNC 电源中的开启按钮,把急停按钮顺时针旋转,按下铣床复位按钮,使处于待命状态。

6.机床启动后,先进行机械回零操作,确认机械、刀具、夹具、工件、数控参数无误,方能开始正常工作。 7.回参考点前,必须检查各轴向位置,并保证全部在参考点负向50mm以上,回零时先Z向,后X、Y向操作。 8.认真查验程序编制、参数设置、动作排序、刀具干涉、工件装夹、开关保护等环节是否完全无误,以免自动加工时造成事故,损坏刀具及相关部件。 9.要保证预设的每把加工刀具类型及编号与刀库中的一一对应。每把刀具都要确保进行了正确的对刀操作及刀径、刀长设置。 10.在手动操作时,必须时刻注意,在进行X、Y方向移动前,必须使Z轴处于抬刀位置。移动过程中,不能只看CRT屏幕中坐标位置的变化,而要观察刀具的移动。 11.在换刀中,若发现刀库即将进入主轴,而其位置不在准停位置,可迅速按“复位”键或“急停”按钮。停止刀库试运行,刀库返回。 12.在换刀中,若发现刀库已进入主轴,绝对不允许按“复位”键或“急停”按钮,不能断电,否则将损坏刀库和机床主轴。可以按“进给保持”键暂停运行,观察刀库运行情况。 13.加工中心出现报警时,要根据报警号查找原因,及时解除报警,不可关机了事,否则开机后仍处于报警状态。 14.加工过程中,关上机床防护门,谨防意外发生。若出现意外,应及时按下急停键或迅速断电,保护现场并及时上报。 15.清理切屑时应用气枪或停下主轴后用毛刷清除,不能用其它方式清理切屑。

201306车辆工程专业自动控制原理实验指导书[tian]

《自动控制原理》课程实验指导书 主编田玉冬 适用专业:车辆工程 上海电机学院 2013年06月

目录 前言 (2) 实验规则 (3) 实验一典型环节的时域响应实验 (4) 实验二典型系统瞬态响应和稳定性分析实验 (6) 实验三控制系统的频率特性分析实验 (9)

前言 《自动控制原理》是车辆工程专业的一门重要的专业基础课,也是国内各院校相应专业的主干课程。 当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高的实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。21世纪要求培养“创造型、开发型、应用型”人才,这就对我们实验教学提出了新的考验。自动控制原理课程的理论性较强,因此在学习本课程时,开设必要的实验,对学生加深理解深入掌握基本理论和分析方法,培养学生分析问题、解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。 自动控制原理实验系统是为《自动控制原理》的教学实验专门研制的,是师生科研的有利工具。它具有直观、操作灵活等便于培养学生实验技能的优点,为充分发挥学生独立思考能力和主观能动性。实验指导书明确要求实验前做好有关理论计算或分析,而实验步骤通常是原则性的。实验中可能碰到的主要问题则列在思考题内以引起学生的注意。 《自动控制原理实验》是该课程的课内实验,总计6学时。本课程实验主要完成线性连续系统方面的实验共三个。实验主要以计算机为平台、以操作观察检测为主,在实验中应主要熟悉自动控制系统的时频分析,熟悉各部件的安装位置,掌握工作的原理及检测方法。在完成实验后,需写出详细的实验报告,包括实验方法、实验过程和结果、心得和体会等。

论顺序动作回路

论顺序动作回路 在由多缸组成的液压系统中,往往需要安照一定的要求实现各缸之间的顺序动作。例如,自动车床中车刀的纵横向运动,夹紧机构的定位和夹紧等。按其控制方式不同,顺序动作回路可分为:压力控制,行程控制和时间控制三类。其中前两类较多。下面我们就着重研究一下压力控制和行程控制阀的顺序动作回路 1 液压控制的顺序动作回路。 压力控制就是利用油路本身的压力变化来控制液压缸的先后动作顺序,它主要压力继电器或顺序控制阀来实现。 如图6——33,是采用两个单项顺序阀的顺序动作回路,其中单项顺序阀3控制两液压缸进给时的先后动作,单项顺序阀7控制两液压缸退回时的先后动作。该回路中,如果电磁铁2YA得电,则三项四通阀8右位接入系统,压力油先经单向阀6进入缸1的无杆腔,缸1的有杆腔油液则经阀7中的单向阀再经过阀8的右端,流回油箱。此时由于系统压力较低,阀3中顺序阀关闭,缸1的活塞先动作,进行夹紧。当缸1的活塞运动到终点后使系统油压升高,从而达到单项顺序阀3的调定压力则顺序阀开启,压力油过阀3进入缸2的无杆腔,缸2的活塞动作,缸2的有杆腔中的油液经调速阀4在经过阀8右位,流回油箱。缸2的活塞向左移动,开始镗孔。当缸2活塞左移到终点后让2YA失电1YA得电,

此时三项四通阀8左位接入系统,压力油先经阀5中的单向阀进入缸2的有杆腔而缸2的无杆腔中的油液经过阀3的单向阀再经过阀8流回油箱缸2活塞先缩回动作。当缸2活塞缩回到终点系统油压升高达到单项顺序阀7的调定压力,则顺序阀开启,压力油过阀7进入缸1的有杆腔,缸1的无杆腔中油液则经过阀6的单向阀再经过阀8流回油箱,从而缸1活塞返回,完成一次顺序动作循环。 需要注意的: 在液压控制的顺序动作回路中顺序阀的位置很关键,应加在后运动的液压缸上,这样才能实现液压缸的顺序动作,完成想要的工作顺序。 在设置顺序阀的开启压力时,应注意设定其开启压力大于前动作缸的工作压力0.8——1Mpa 2 行程控制阀的顺序动作回路。 行程控制顺序动作回路是利用运动部件到达一定位置时,通过发出信号来控制各液压缸的先后动作顺序。它可以采用行程开关,行程阀等来实现。 如图6——34,是采用电气行程开关控制电磁换向阀通断实现顺序动作的回路。该回路中,当电磁铁1YA得电,缸A活塞右行动作直至行程终点了,由挡铁触动行程开关2ST 得电,发出信号使电磁铁1YA失电,3YA得电,缸B活塞杆右行进给。当缸B右行至终点,由挡铁触动4ST得电,发

PLC对三台电动机可逆顺序启动控制实验

PL C对三台电动机可逆顺序启动控制实验 吕以全 赵 勇 (天津理工学院自动化工程系 天津:300191)Ξ 摘 要 介绍PL C专用指令——可逆寄存器微分@SFTR指令及可逆寄存器SFTR指令,完成对3台电动机可逆顺序启动带负载控制的电工技术实验。 关键词 PL C 可逆顺序启动 指令 0 引 言 PL C在电工技术实验中的一项内容是利用可逆寄存器微分@SFTR指令和可逆寄存器SFTR指令,分别完成对3台电动机可逆顺序启动控制带负载实验。通过该实验使同学们深刻了解所使用的可逆寄存器微分@SFTR指令和可逆寄存器SFTR指令的共同点都是具有控制数据左、右移动功能;而其不同处是应该注意到使用可逆寄存器SFTR指令时,要加前沿微分D IFU(013)指令而可逆寄存器微分@SFTR是不需要的。 实验所用的电动机容量为0125k W,采用直接启动。3台电动机每台可逆顺序启动的时间间隔为2秒。3台电动机首先正转顺序启动,启动结束转为正常运行。正常运行的时间定为10秒,停止时间定为5秒。3台电动机再反转顺序启动,启动结束转为正常运行。正常运行的时间定为10秒,停止时间定为5秒。实验要求按照上述顺序反复运行。 实验所使用的PL C为OM RON-CPM2A-CDR-A型机。 1 @SFTR(084)指令可逆顺序控制 111 PL C I O口设置 1)在PL C输入端00通道中设定00000为总启动按钮,00001为总停止按钮,且均为点动按钮。 2)在PL C输出端的10通道中的01000控制1#电动机;01001控制2#电动机;01002控制3#电动机。 3)按动00000总启动按钮,3台电动机可逆顺序启动;按动停止按钮00001,三台电机全部停转。112 软件程序 11211 正向电机顺序启动 (1)利用可逆寄存器指令@SFTR(084)完成对三台电动机延时顺序启动控制程序,如图1所示 。 图1 @SFTR(084)指令对三台电动机 可逆顺序启动控制梯形图 (2)按动总启动点动按钮,锁存指令KEEP (011)将I R中的04000的逻辑线圈通电并锁存。 (3)可逆寄存器微分指令@SFTR(084)利用I R 中的030CH的12逻辑线圈的通断状态,使得03012逻辑触点O FF ON,从而控制3台电动机可逆方向,即03012逻辑线圈通过计数器CN T002的逻辑常闭触点,使得03012逻辑线圈接通,03012逻辑常开触点闭合,可逆寄存器微分指令@SFTR(084)左移,三台电动机为正向顺序启动控制。 第23卷第4期2001年8月 电气电子教学学报 JOU RNAL O F EEEE V o l.23N o.4 A ug.2001 Ξ收稿日期:2001年4月4日

pLC实验指导书

可编程序控制器 实验指导书 四川工程职业技术学院 数控教研室 2010.08

目录 目录 (1) 绪论 (3) 实验一编程系统使用实验 (4) 实验二电机的启停控制 (5) 实验三彩灯循环控制 (7) 实验四气动装置的控制 (9) 实验五十字路口交通灯控制 (11) 实验六步进电机控制(演示实验) (13) 实验七正、次品分拣控制 (15)

绪论 可编程控制器(PLC)是一种以微电子技术、自动化技术、计算机技术和通讯技术为一体,以工业自动化控制为目标的新型控制装置。 我国大量使用的PLC产品主要有德国西门子公司的S7系列、日本三菱公司的F系列、立石公司的C系列、松下电工FP1系列和美国GE公司的GE系列等;其中,西门子公司的S7-200小型PLC以其结构紧凑、可靠性高、功能全等优点在自动控制领域占有非常重要的地位。 为配合高职高专教育的特点,增强学生的实践动手能力,适应社会和企业的需要,可编程控制器(PLC)的实践性教学环节(实验和专用周)就显得尤为重要。 可编程控制器(PLC)的实验一般遵循循序渐进的原则,由浅入深的分为上机练习实验(熟悉编程软件的使用方法)、应用练习实验和PLC控制系统设计的综合实验等部分。PLC的实验方法通常有两种,一种是用PLC实验装置进行实验和应用程序的开发;另一种是用普通的PLC外加若干导线进行简易的开发和实验。PLC实验装置具有直观、使用方便的优点,通常配有各种工业控制模板,可以形象的模拟工业现场,特别是导线的插拔连接形式,很适用于在教学过程中重复使用。如果没有PLC实验装置,也可以直接使用PLC配以外部连接导线,给出必要的输入信号进行实验,还可以利用PLC 自身的输出指示来观察PLC运行的结果。

相关主题
文本预览
相关文档 最新文档