当前位置:文档之家› 快切原理及备自投区别优点

快切原理及备自投区别优点

快切原理及备自投区别优点
快切原理及备自投区别优点

电源快速切换装置原理及

与备自投的区别

一、RCS-9655S电源快速切换装置原理

1、快切原理:

正常运行情况下,两段母线分别由各自供电电源支路供电,分支1开关CB1、分支2开关CB2均闭合,母联开关CB3分位。当任一供电支路故障时,PCS-9655S电源快速切换装置根据故障情况,跳开CB1(或CB2),合母联开关CB3,两段母线均由无故障的电源支路供电,保证两段母线不失电。也可手动控制CB1(或CB2)和CB3的分合,进行供电电源支路的切换。

2、快切方式

二、RCS-9655S电源快速切换装置与备自投的区别及快切的优点

1、从内部程序上有些区别:备自投逻辑上复杂,需要与自己的操作回路配合,执行切换时判断条件简单;电源快速切换装置逻辑上简单,没有复杂的操作回路,逻辑判断,但执行快速切换上判断条件复杂。

2、备自投判断条件简单,无故障、过流等闭锁接点,而是通过逻辑上躲过时间来判断一些开关误合闭锁等条件;而电源快速切换装置判断条件复杂,可直接从开关上引故障、过流等闭锁接点,无需通过逻辑上判断来等待时间,从而加快了切换的速度。

3、以I母失电为例;备投方式:检I母母线无压,进线1无流启动备投,经延时后,判断I母无压或检同期经延时合闸;电源快速切换方式:检I母低频,进线1无流启动电源快速切换,以快速切换方式合闸,无需等待延时;因此电源快速切换装置在切换上远快于备自投装置。

备自投工作原理

微机备自投装置的基本原理及应用 本文介绍了微机线路备自投保护装置特性和应用中的供电方式,阐述其应用于母联备自投工作和线路备自投的工作原理及备自投保护装置运行条件及动作条件。 备自投保护供电方式技术条件 1.引言 随着我国人民生产生活的现代化程度日益提高,人们对电力的需求和依赖程度也在倍增,对电能质量的要求也更加严格,供配电在各个领域也不断向自动化、无人值守、远程控制、不间断供电的目标迈进。有些电力用户尤其对不间断供电的要求显得更加突出。我国的电力供应主要还是依靠国家电网供电,电力缺口也在不断增大,尤其在用电高峰期缺电现象严重,为此很多大型企业便自建电厂或配备发电机,因此各种电源的相互切换,保证电源的不间断供电和供电的高可靠性成了现代配电工程中保护和控制回路的重要部分。在GB50062 《电力装置的继电保护和自动装置设计规范》中的第十一章也明确规定了备用电源和备用设备的自动投入的具体要求。 微机线路备自投保护装置使系统自动装置与继电保护装置相结合,是一种对用户提供不间断供电的经济而又有效的技术措施,它在现代供电系统中得到了广泛的应用。在此只对微机线路备自投保护装置在电力系统中两种备自投方式和基本原理进行探讨。

微机线路备自投保护装置(以下简称备自投)核心部分采用高性能单片机,包括CPU模块、继电器模块、交流电源模块、人机对话模块等构成,具有抗干扰性强、稳定可靠、使用方便等优点。其液晶数显屏和备自投面板上所带的按键使得操作简单方便,也可通过RS485通讯接口实现远程控制。装置采用交流不间断采样方式采集到信号后实时进行傅立叶法计算,能精确判断电源状态,并实施延时切换电源。备自投具有在线运行状态监视功能,可观察各输入电气量、开关量、定值等信息,其有可靠的软硬件看门狗功能和事件记录功能。 产品在不同的电压等级如110kV、10kV、0.4kV系统的供配电回路中使用时需要设定不同的电气参数,在订货时必须注明。在选择备自投功能时则一定不可以投入低电压保护,以免冲突引起拒动或误动。 变配电站备自投有两种基本的供电方式。第一种如图1所示母联分段供电方式,母联开关断开,两个工作电源分别供电,两个电源互为备用,此方式称为母联备自投方式。第二种如图2所示双进线向单母线供电方式,即由一个工作电源供电,另一个电源为备用,此方式称为线路备自投方式。

备自投、快切、无扰动装置三种设备的区别

1、对于厂矿企业的高压变电站来说,为保证重要负荷供电的可靠性,一般采用双回路供电。 双回路分为工作电源和备用电源,当工作电源由于某种原因失电时,启动备用电源自动投入装置,自动投入备用电源。 2、对于发电厂厂用电系统系统,也要求装设备用电源自动投入装置。但是其要求与厂矿企 业的高压变电站有所不同。因为随着大容量机组的迅速发展、高压电动机的增多、容量赠多,使得厂用电源的切换带来很多问 题,因为大容量电动机在断电后电压衰减较慢,残余电压的幅值也很大,若在残压较大时接通电源,电动机将受到冲击,同时对机炉运行热工参数的影响也很大。因此,对于发电厂的厂用电备用电源自投应采用“快切方式”。此类应用为“快切装置”。 3、对厂矿企业的低压系统来说,虽然不存在发电厂那样对于切换时机比较严格的要求,但 是由于电子控制系统和其它敏感设备中的供电电压不稳定会导致整个生产线的瘫痪和生产设备的损坏以及长时间停电,尤其某些重要的国防部门基本不允许的供电中断,备用电源“无扰动”切换成为了必不可少的选择此类应用为“无扰动切换装置”。 4、备自投装置主要应用于厂矿企业的变电站高压系统 5、快切装置主要应用于大容量发电厂厂用电系统.由于发电厂厂用母线上电动机的特性有 较大差异,合成的母线残压特性曲线与分类的电动机相角、残压曲线的差异也较大,因此安全区域的划定严格来说需根据各类电动机参数、特性、所带负荷等因素通过计算确定。实际运行中,可根据典型母线负荷的试验确定母线残压特性。试验表明,母线电压和频率衰减的时间、速度和达到最初反相的时间,主要取决于试验前该段母线的负载。 负载越多,电压、频率、下降得越慢,达到首次反相和再次同相的时间越长。而相同负载容量下,负荷电流越大,则电压、频率下降得越快,达到最初反相和同相的时间越短。 6、无扰动切换装置主要应用于厂矿企业的变电站低压系统:无扰动装置为不间断供电提供 了最佳的保证:装置是根据波形相关度理论和瞬时无功功率理论,采用逆止功率阀和和机械断路器相结合作控制,以监测电源侧和负载侧的电压和瞬时有功功率双重波形自动切换的装置,实现双馈线备用电源的可靠切换,保证不间断的供电。

快切装置替换低压备自投安装调试方法

快切装置替换低压备自投安装调试方法 摘要 文章简要说明了目前低压备自投装置存在的缺点及400V电源快速切换装置(以下简称“快切装置”)与备自投对比下的优点,根据炼化低压单母分段方式运行的情况,以金智MFC5101A工业企业快切装置为例,详细论述400V电源快切装置替换低压备自投装置的安装调试方法。 关键词:快切;备自投;接线;调试;方法 1、前言 石化、冶金等大中型工业企业,由于外部电网或部供电网络故障或异常的原因,造成非正常停电、电压大幅波动或短时断电(俗称“晃电”)的情况屡见不鲜。由于冶金、石化企业工艺流程的特殊性,供电的中断或异常往往会造成设备停运或空转、工艺流程中断或废品产生,有时甚至造成生产设备的报废等严重后果。 目前在石化、冶金等要求连续供电的企业,低压备自投使用效果并不理想。原因是备自投完成动作的过程持续时间长短1—2秒,甚至更长,一些重要装置的机泵跳停后,1秒左右就达到连锁条件,造成装置停车。主要原因一是备自投装置启动太迟,二是备自投装置启动后将备用电源投入的时间太长。工业企业电源快切装置的优点是①安全性,在切换过程中,装置实时跟踪开关两侧电源的电压、频率和相位,并提供了多种可靠的起动方式和切换方式,能够保证快速安全的投入备用电源,同时不会对电动机造成大的冲击。②灵活性,仅需更改部分定值即可满足多种现场工程实施需求。③快速性、准确性,高精度AD采样芯片,保证了数据的实时性以及切换的快速性。④可靠性,在

硬件和软件上均设计了专门的抗干扰措施,其抗干扰性能有充分的保证。 下面以金智MFC5101A快切装置为例,详细讲解快切装置替换低压备自投装置的过程。 2、快切装置参数及低压电力系统主接线方式 2.1、MFC5101A快切装置主要技术指标 MFC5101A有手动起动、保护起动、失压起动、误跳起动、无流起动、逆功率起动等多种起动方式;有并联、串联和同时切换方式;有快速切换、同期捕捉切换、残压切换、长延时切换等实现方式;切换闭锁功能,其主要技术指标如下表。 表一MFC5101A主要技术指标

电力备自投装置原理

《备自投装置》 备自投装置由主变备自投、母联备自投和进线备自投组成。 ①若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用主变备自投。 ②若正常运行时,每台主变各带一段母线,两主变互为暗备用,采用母联开关备自投。 ③若正常运行时,主变带母线运行,两路电源进线作为明备用,两段母线均失压投两路电源进线,采用进线备自投。 一、#2主变备自投 #1主变运行,#2主变备用,即1DL、2DL、5DL在合位,3DL、4DL在分位,当#1主变电源因故障或其它原因断开,2#变备用电源自动投入,且只允许动作一次。

1、充电条件:a. 66千伏Ⅰ母、Ⅱ母均三相有压; b. 2DL、5DL在合位,4DL在分位; c.当检备用主变高压侧控制字投入时,高压侧220kV母线任意侧有压。以上条件均满足,经备自投充电时间后充电完成。 2、放电条件:a.#2主变检修状态投入; b.4DL在合位; c.当检备用主变高压侧控制字投入时,220kV两段母线均无压, 经延时放电; d.手跳2DL或5DL; e. 5DL偷跳,母联5DL跳位未启动备自投时,且66kV Ⅱ母无压; f.其它外部闭锁信号(主变过流保护动作、母差保护动作); g.2DL、4DL位置异常; h.I母或II母TV异常,经10s延时放电; i.#1主变拒跳; j.#2主变自投动作; k.主变互投硬压板退出; l.主变互投软压板退出。 上述任一条件满足立即放电。 3、动作过程:充电完成后,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压,#1变低压侧无流,延时跳开#1变高、低压侧开关1DL和2DL,联切低压侧小电源线路。确认2DL跳开后,经延时合上#2变高压侧开关3DL,再经延时合#2变低压侧开4DL。

备自投试验方法

110kV备自投装置试验方法及试验记录 安装位置:装置型号: 测试人:测试日期: 电压加法 FREJIA测试仪三个电压分别加在IM电压并列端子上和IIM电压并列端子上,这样IM和IIM电压大少相等,相位相同。在FREJIA测试仪有电压输出时合上备自投单元IM电压小开关,应该能测量IM电压回路电压; 合上备自投IIM单元电压小开关,应该能测量IIM电压回路电压。 电流加法 FREJIA测试仪三个电流取两相(A/B相)分别加为#1进线A相电流Ia 和#2进线电流A相电流Ia;试验中也可以不加电流,这样,#1进线和#2进线任何时候都处于无流状态,是合乎备自投动作必要条件。本试验中因电压双不能跟位置继电器模拟的开关跳开后跟电流没有直接关系,所以不加电流。 1桥明备用方式试验: 1.1试验过程: 1.1.1调整断路器位置 手动调整双位置继电器模拟的断路器位置为:#1进线断路器合位、#2进线断路器合位、桥断路器分位。 1.1.2投入备自投功能 手动转换备自投投退转换开关至备自投“投入”位置,操作REF装置控制压板“COSW1”置“ON”位置,两步操作都完成,备自投投入。 1.1.3加电压 按本文前述的方法加电压。

1.1.4检查备自投充电灯 备自投投入后10s(可正定),若有符合桥备自投充电条件,备自投充电,指示灯1亮。 1.1.5模拟故障条件及保护动作 拉开备自投单元IM压变回路小开关。这时IM失压,#1进线无流,经失压保护动作延时后(可整定),失压保护跳开#1进线断路器,后经备自投动作延时后(可整定)合上桥断路器。 失压保护在三相电压都低于定值时动作。 备自投动作,指示灯2亮。 1.2试验记录 试验结果( 2进线1明备用方式试验: 2.1试验过程: 2.1.1调整断路器位置 手动调整双位置继电器模拟的断路器位置为:#1进线断路器分位、#2进线断路器合位、桥断路器合位。 2.1.2投入备自投功能 手动转换备自投投退转换开关至备自投“投入”位置,操作REF装置控

备用电源自投快切装置技术规定

附件1: 变电站备用电源自投快切装置技术规定 1、范围 本规定规范统一了110kV~35kV变电站备用电源自投快切装置(以下简称备自投快切装置)的技术要求,设计、制造、施工、试验和检修等有关部门应共同遵守本技术规定。 2、规范性引用文件: 下列标准、规范所包含的条文,通过引用而成为本方案的条文。 DL/T 995-2006继电保护和电网安全自动装置检验规程DL/T 587-2007 微机继电保护装置运行管理规程 GB/T 14285-2006继电保护和安全自动装置技术规程 Q/GDW267-2009继电保护和电网安全自动装置现场工作的保安规定 江苏省电力公司《国家电网公司十八项电网重大反事故措施》实施细则 国家电网公司电力安全工作规程(变电部分) 3、细则 3.1随着电网结构的发展,分层分区供电已成为趋势,110kV~35kV等低级电网的合环必须通过500kV系统构成回路,有可能造成穿越功率增加,超过继电保护整定允许的限

值。针对该类情况,备自投快切装置进行自动合解环操作,代替传统的手工操作方式,以控制自投合解环时间小于继电保护动作时间,防止合环时由于潮流太大引起的继电保护动作。 3.2备自投快切装置可成独立装置,也采用和备自投装置合一方式。 3.3备自投快切装置在可能出现的各种运行方式下,均能实现自动判别,并正确合解环操作。 3.4如备自投快切装置与备自投装置合一,自投快切功能与备自投功能相互独立,具备分别停用的功能。单独退出某一功能,不影响另一功能投入运行。 3.5对侧距离III段动作时间应躲过备用电源自投快切装置合环失败再跳时间。 3.6动作按钮长期开入,应有告警信号。 3.7操作时,备自投快切装置应具备允许操作及完成操作的判据,合解环操作过程结束后有是否成功的判据,在自动合解环操作失败或造成失电时,采取补救措施。 3.8备自投快切装置应具备TV断线辅助判据,TV断线时不应引起装置的误动作。 3.9备自投快切装置应具备现场与远方遥控的操作功能,操作前应将电压并列把手置自适应位置。 3.10备自投快切装置应经实跳试验,方可投入运行。

继电保护--备自投的几种方式

1、基本备投方式: 变压器备自投方式 桥备自投方式 分段备自投方式 进线备自投方式 2、备用电源自动投入的基本原理 备用电源自动投入(以下简称备自投)装置一次接线方式较多,但备自投原理比较简单。下面介绍几种变电站中典型的备自投方式原理。对更复杂的备自投方式,都可以看成是这些典型方式的组合。 投入备自投充电过程时:装置上电后,15秒内均满足所有正常运行条件,则备自投充电完毕,备自投功能投入,可以进行启动和动作过程判断;当满足任一退出条件时,备自投立即放电,备自投功能退出。 退出备自投充电过程时:装置上电后,满足启动条件后备自投进行动作过程判断。在正常运行条件或退出条件下,备自投可靠不动作。 2.1、分段备自投 分段备自投接线示意图 a)正常运行条件 1)分段断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置 2)母线均有电压 3)备自投投入开关处于投入位置 b)启动条件 1)II段备用I段:I段母线无压,1DL进线1无流,II段母线有压 2)I段备用II段:II段母线无压,2DL进线2无流,I段母线有压 c)动作过程 1)对启动条件1: 若1DL处于合位置,则经延时跳开1DL,确认跳开后合上3DL 若1DL处于分位置,则经延时合上3DL 2)对启动条件2: 若2DL处于合位置,则经延时跳开2DL,确认跳开后合上3DL 若2DL处于分位置,则经延时合上3DL d)退出条件

1)3DL处于合位置 2)备自投一次动作完毕 3)有备自投闭锁输入信号 4)备自投投入开关处于退出位置 2.2 桥备自投 桥备自接线投示意图 a)正常运行条件 1)桥断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置 2)进线1、进线2均有电压 3)备自投投入开关处于投入位置 b)启动条件 1)进线2有电压,进线1无电压且无电流 2)进线1有电压,进线2无电压且无电 c)动作过程 1)对启动条件1 若1DL处于合位置,则经过延时跳开1DL,确认跳开后,合上3DL 若1DL处于分位置,则经延时后合上3DL 2)对启动条件2 若2DL处于合位置,则经过延时跳开2DL,确认跳开后,合上3DL 若2DL处于分位置,则经延时后合上3DL d)退出条件 1)3DL处于合位置 2)备自投一次动作完毕 3)有备自投闭锁输入信号 4)备自投投入开关处于退出位置 2.3 变压器备自投 变压器备自投接线示意图(一台变压器为主变压器,另一台变压器为辅变压器)a)正常运行条件 1)主变压器各侧断路器处于合位置,辅变压器各侧断路器处于分位置

备自投原理

主所33KV自投原理 批准: 审核: 初核: 编制: 广州地铁四号线供变电 2012年02月

主要内容 1、什么是备用电源自动投入装置? 2、备自投装置应满足哪些基本要求? 3、分段自投原理。 4、备用电源自动投入条件。 5、运行中应注意的几个问题。 一.什么是备用电源自动投入装置? 备用电源自动投入装置是当工作电源因故障断开以后,能自动而迅速地将备用电源投入到工作或将用户切换到备用电源上去,从而使用户不至于被停电的一种自动装置,简称备自投装置。 二、备自投装置应满足哪些基本要求? 1、工作电源断开后,备用电源才能投入; 2、备自投装置投入备用电源断路器必须经过延时,延时时限应大于最长的外部故障切除时间. 3、在手动跳开工作电源时,备自投不应动作。 4、应具备闭锁备自投装置的逻辑功能,以防止备用电源投到故障的元件上,造成事故扩大的严重后果。 5、备用电源无压时,BZT不应动作; 6、BZT在电压互感器(PT)二次熔断器熔断时不应误动,故应设置PT短线告警; 7、BZT只能动作一次,防止系统受到多次冲击而扩大事故; 三、备自投原理 备自投的主要形式有: 桥备投、分段备投、母联备投、线路备投、变压器备投。

单母线分段 1、备自投的主要形式有: (1)若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用进线(变压器)备自投;若正常运行时,两段母线分列运行,每台主变各带一段母线,两段母线互为暗备用,采用分段备自投。 (2)若正常运行时,一条进线带两段母线并列运行,另一条进线作为明备用。采用进线备自投;若正常运行时,每条进线各带一段母线,两条进线互为暗备用,采用分段备自投。 2、模拟量输入 外部电流及电压输入经隔离互感器隔离变换后,由低通滤波器输入模数变换器。

备自投装置的要求

对备自投装置的要求 功能比较完善的BZT,应满足以下基本要求。 (1)工作母线突然失压,BZT应能动作 工作母线突然失去电压,主要原因有:①工作变压器发生故障,继电保护动作,使两侧断路器跳闸;②工作母线上的馈电线发生短路,没有被线路保护瞬时切断;③工作母线本身故障,继电保护使电源断路器跳闸;④工作电源断路器操作回路故障误跳闸;⑤工作电源突然停止供电;⑥误操作造成工作变压器退出。这些原因都不是正常跳闸的失压,都应使BZT动作,使备用电源迅速投入恢复供电。 (2)工作电源先切,备用电源后投 为了防止把备用电源投到故障变压器上,必须在工作电源确已断开之后,才能使备用电源投入。另外,备用电源与工作电源不是取自同一点,往往存在电压差或相位差,只有工作电源先切,备用电源后投才能避免发生非同期并列。 (3)BZT只动作一次 工作母线突然失压,可能是由于母线本身故障或其馈电线发生持续性故障,如备用电源多次动作,就可能造成事故扩大化。 (4)BZT动作过程中断供电的时间尽可能短些 从工作母线失压到备用电源投入,这段时间为中断供电的时间。停电时间短些,电动机未完全制动,则在BZT动作,恢复供电时,电动机自起动容易一些;对于其他用电户,影响也小一些,甚至没有影响。 但中断供电的时间也不能过短,必须大于故障点绝缘恢复的时间,BZT动作使备用电源投入到发生瞬时性故障的工作母线才能成功。不过对于一般的油断路器,其合闸时间大于故障点反游离时间,不需特别考虑,在使用快速断路器的场合,才必须进行校核。 中断供电的时间还必须满足馈电线外部故障时,由线路保护切除故障,避免越级跳闸。 (5)工作母线电压互感器熔断器熔断时BZT不误动 监视工作母线电压的电压互感器,一相熔断器熔断时可能造成低电压继电器动作,这时并不是母线失压,BZT应予闭锁。 (6)下列情况BZT不应起动 正常停电操作,BZT不起动。备用电源无电压时,BZT也不起动。

快切装置原理说明

快切装置原理说明 一快切的作用:火力发电厂厂用电系统一般都具有两个电源:即厂用工作电源和备用(启动)电源,其典型接线如图1所示。目前绝大多数大型机组火力发电厂都采用单元接线,正常运行时机组厂用电由单元机组供电,停机状态由备用电源供电,机组在启动和停机过程都必须带负荷进行厂用电切换。另外,当机组或厂用工作电源发生故障时,为了保证厂用电不中断及机组安全有序地停机,不扩大事故,必须尽快把厂用电电源从工作电源切换到备用电源。

二启动快切的模式 1 正常手动切换功能 手动切换是指电厂正常工况时,手动切换工作电源与备用电源。这种方式可由工作电源切换至备用电源,也可由备用电源切换至工作电源。它主要用于发电机起、停机时的厂用电切换。该功能由手动起动,在 控制台或装置面板上均可操作。手动切换可分为并联切换及串联切换。 1.1 手动并联切换(切换逻辑示意图见附图3) A 并联自动 并联自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,经一定延时后再自动跳开工作(备用)开关。如果在该段延时内,刚合上的备用(工作)开关被跳开,则装置不再自动跳开工作(备用)开关。如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。 b 并联半自动 并联半自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,而跳开工作(备用)开关的操作则由人工完成。如果在规定的时间内,操作人员仍未跳开工作(备用)开关,装置将发告 警信号。如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。 注意: 1:手动并联切换只有在两电源并联条件满足时才能实现,并联条件可在装置中整定。 2:两电源并联条件满足是指: ⑴两电源电压幅值差小于整定值。

备自投工作原理之令狐文艳创作

微机备自投装置的基本原理及应用 令狐文艳 本文介绍了微机线路备自投保护装置特性和应用中的供电方式,阐述其应用于母联备自投工作和线路备自投的工作原理及备自投保护装置运行条件及动作条件。 备自投保护供电方式技术条件 1.引言 随着我国人民生产生活的现代化程度日益提高,人们对电力的需求和依赖程度也在倍增,对电能质量的要求也更加严格,供配电在各个领域也不断向自动化、无人值守、远程控制、不间断供电的目标迈进。有些电力用户尤其对不间断供电的要求显得更加突出。我国的电力供应主要还是依靠国家电网供电,电力缺口也在不断增大,尤其在用电高峰期缺电现象严重,为此很多大型企业便自建电厂或配备发电机,因此各种电源的相互切换,保证电源的不间断供电和供电的高可靠性成了现代配电工程中保护和控制回路的重要部分。在GB50062 《电力装置的继电保护和自动装置设计规范》中的第十一章也明确规定了备用电源和备用设备的自动投入的具体要求。

微机线路备自投保护装置使系统自动装置与继电保护装置相结合,是一种对用户提供不间断供电的经济而又有效的技术措施,它在现代供电系统中得到了广泛的应用。在此只对微机线路备自投保护装置在电力系统中两种备自投方式和基本原理进行探讨。 微机线路备自投保护装置(以下简称备自投)核心部分采用高性能单片机,包括CPU模块、继电器模块、交流电源模块、人机对话模块等构成,具有抗干扰性强、稳定可靠、使用方便等优点。其液晶数显屏和备自投面板上所带的按键使得操作简单方便,也可通过RS485通讯接口实现远程控制。装置采用交流不间断采样方式采集到信号后实时进行傅立叶法计算,能精确判断电源状态,并实施延时切换电源。备自投具有在线运行状态监视功能,可观察各输入电气量、开关量、定值等信息,其有可靠的软硬件看门狗功能和事件记录功能。 产品在不同的电压等级如110kV、10kV、0.4kV系统的供配电回路中使用时需要设定不同的电气参数,在订货时必须注明。在选择备自投功能时则一定不可以投入低电压保护,以免冲突引起拒动或误动。 变配电站备自投有两种基本的供电方式。第一种如图1所示母联分段供电方式,母联开关断开,两个工作电源分别供电,两个电源互为备用,此方式称为母联备自投方

电力备自投装置原理

电力备自投装置原理

————————————————————————————————作者:————————————————————————————————日期:

《备自投装置》 备自投装置由主变备自投、母联备自投和进线备自投组成。 ①若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用主变备自投。 ②若正常运行时,每台主变各带一段母线,两主变互为暗备用,采用母联开关备自投。 ③若正常运行时,主变带母线运行,两路电源进线作为明备用,两段母线均失压投两路电源进线,采用进线备自投。 一、#2主变备自投 #1主变运行,#2主变备用,即1DL、2DL、5DL在合位,3DL、4DL在分位,当#1主变电源因故障或其它原因断开,2#变备用电源自动投入,且只允许动作一次。

1、充电条件:a. 66千伏Ⅰ母、Ⅱ母均三相有压; b. 2DL、5DL在合位,4DL在分位; c.当检备用主变高压侧控制字投入时,高压侧220kV母线任意侧有压。以上条件均满足,经备自投充电时间后充电完成。 2、放电条件:a.#2主变检修状态投入; b.4DL在合位; c.当检备用主变高压侧控制字投入时,220kV两段母线均无压, 经延时放电; d.手跳2DL或5DL; e. 5DL偷跳,母联5DL跳位未启动备自投时,且66kV Ⅱ母无压; f.其它外部闭锁信号(主变过流保护动作、母差保护动作); g.2DL、4DL位置异常; h.I母或II母TV异常,经10s延时放电; i.#1主变拒跳; j.#2主变自投动作; k.主变互投硬压板退出; l.主变互投软压板退出。 上述任一条件满足立即放电。 3、动作过程:充电完成后,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压,#1变

备自投及快切装置技术协议

电源备自投及快切装置 技术协议书 二一一年一月 目录

总则 技术要求 设备协议 供货范围 5技术资料和交付进度 6监造、检验试验和性能验收试验7技术服务和设计联络 8差异表

总则 本招标文件适用于工程厂用快切装置及备用电源自投装置的功能设计、结构、性能、安装和试验等方面的技术要求。 本设备技术协议书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和协议的条文,卖方应提供符合本协议书和工业标准的优质产品。 如果卖方没有以书面形式对本协议书的条文提出异议,则意味着卖方提供的设备完全符合本协议书的要求。如有异议,不管是多么微小,都应在应标书中以“对协议书的意见和同协议书的差异”为标题的专门章节中加以详细描述。 本设备技术协议书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。 本设备技术协议书经买、卖双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 本设备技术协议书未尽事宜,由买卖双方协商确定。 . 技术要求 标准和协议 供货商提供的产品应符合以下规程协议: 微机型电动机保护装置通用技术条件 计算站场地技术条件 继电器及继电保护装置基本试验方法 计算站场站安全要求 量度继电器和保护装置的冲击和碰撞试验 电气继电器 电气继电器

量度继电器和保护装置的电气干扰试验 量度继电器和保护装置的电气干扰试验 电工电子产品基本环境试验规程试验:低温试验方法 电工电子产品基本环境试验规程试验:高温试验方法 电工电子产品基本环境试验规程试验:恒定湿热试验方法电气装置安装工作盘柜及二次回路接线施工及协议 火力发电厂电子计算机监控系统设计技术规定火力发电厂、变电所二次接线设计技术规定 电力系统调度自动化设计技术协议 绝缘电压冲击耐压测试 高频干扰电压测试 防护等级 静电放电试验 快速瞬变干扰试验 —电站电气部分集中控制装置通用技术条件 —低压电器电控设备 使用环境条件 主要气象特征如下: ) 温度 年平均气温 13℃ 绝对最高气温 39.9℃ 绝对最低气温 -18.3℃

备自投和快切装置

厂用电快切装置与备自投装置区别 2010-01-01 17:04
快切和备自投最大的区别就是快切是双向的——具有正常工况下备用电源与 工作电源间的双向切换,及事故或非正常工况下工作电源向备用电源的单向切 换;而备自投是单向的——只能有工作切至备用。
另外有一点就是快切在手动和并联切换是要考虑频率差、电压差、相角差小于一定的值 等等。具备正常手动切换功能,该功能由手动起动,在 DCS 或装置面板上均可操作。本方式 是双向的,既可由工作电源切换至备用电源,也可由备用电源切换至工作电源。 (1) 并联自动手动起动切换,如并联切换条件满足要求,装置先合备用(工作)电源开 关,经一定延时后再自动跳开工作(备用)电源开关。如果在该段延时内,刚合上的备用(工 作)电源开关被跳开,则装置不再自动跳开工作(备用)电源开关。如果手动起动后并联切 换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。 (2) 并联半自动手动起动切换,如并联切换条件满足要求,装置先合备用(工作)电源 开关,而跳开工作(备用)电源开关的操作由人工完成。如果在规定的时间内,操作人员仍 未断开工作(备用)电源开关,装置将发告警信号。如果手动起动后并联切换条件不满足, 装置将立即闭锁且发闭锁信号,等待复归。注意: a. 手动并联切换只有在两电源并联条件满足时才能实现,并联条件可在装置中整定。 b. 两电源并联条件满足是指: ① 两电源电压差小于整定值; ② 两电源频率差小于 整定值; ③ 两电源相角差小于整定值; ④ 工作、备用电源开关任意一路在合位,另一路 在分位; ⑤ 目标电源电压大于所设定的电压值; ⑥ 6KV 母线 TV 正常。 2. 手动串联切换:手动起动切换,先发跳备用(工作)电源开关指令,不等开关辅助 接点返回,在切换条件满足时,发合工作(备用)电源开关命令。如开关合闸时间小于开关 跳闸时间,自动在发合闸命令前加所整定的延时,以保证开关先分后合。 事故切换功能。该功能由跳开工作电源开关的保护接点起动。本方式是单向的,只能由 工作电源切向备用电源。 1. 事故串联切换由保护接点起动,先跳开工作电源开关,在确认 工作电源开关已跳开且切换条件满足时,合上备用电源开关。切换条件:快速、同期判别、 残压及长延时切换。快速切换不成功时自动转入同期判别、残压及长延时切换。 2. 事故同 时切换由保护接点起动,先发跳工作电源开关指令,在切换条件满足时(或经用户延时)发 合备用电源开关指令。切换条件:快速、同期判别、残压及长延时切换。快速切换不成功时 自动转入同期判别、残压及长延时切换。 非正常工况切换功能。该功能下装置检测到不正常运行情况时自行起动。本方式是单向 的,只能由工作电源切向备用电源。 1. 6KV 厂用母线低电压当6KV 厂用母线三线电压均低 于整定值且时间大于所整定延时定值时, 装置根据选定方式进行串联或同时切换。 切换条件:

备自投(BZT)和自动转换开关(ATS)的区别

备自投(BZT)和自动转换开关(ATS)的区别 BZT装置(备用电源自动投入装置)是电力系统中非常重要的电气装置,在较低电压等级的用户供电系统中,特别是6~35KV系统,常采用BZT装置,以保证自动化生产供电不中断和避免生产装置因失电而引起停车的严重后果。 根据《电力装置的继电保护和自动装置设计规范》,BZT装置应满足以下技术要求:(1)应保证在工作电源或设备断开后BZT装置才动作;(2)工作母线和设备上的电压不论因何原因消失时BZT装置均应动作;(3)BZT装置应保证只动作一次;(4)BZT装置的动作时间以使负荷的停电时间尽可能短为原则;(5)工作母线和备用母线同时失去电压时,BZT 装置不应起动;(6)当BZT装置动作时,如备用电源或设备投于故障,应使其保护加速动作;(7)手动断开工作回路时,BZT装置不应动作。 从BZT装置在电力系统的大量实际应用和动作结果中可以看到,各种工作电源发生故障时,BZT装置的正确动作对确保生产装置连续稳定运行起着重要作用。一旦BZT装置不能正确动作,将会影响生产装置的安全运行。工厂里几乎每年都会发生数起BZT装置故障而影响生产的事故。因此除按以上技术要求在设计上合理配置外,解决BZT装置在实际应用中的问题具有重要意义。 1. 与自动重合闸装置的配合 自动重合闸装置(ZCH装置)与BZT装置一样,也是电力系统保证可靠供电的重要自动装置。在电力系统单侧电源线路中,通常在线路电源侧装设ZCH装置,ZCH装置是根据输电线路故障大多为瞬时性故障而设置的(据统计,架空线路的瞬时性故障次数约占总故障次数的80%~90%以上),一旦线路因瞬时性故障被保护断开后,由ZCH装置进行一次重合,往往就能够恢复原工作电源向负荷供电。可见,BZT装置是在工作电源永久性故障跳闸(或瞬时性故障跳闸无重合)后投入另一路备用电源,ZCH装置是在线路瞬时性故障跳闸后,再次投入工作电源。两者的正确

进线备自投装置

浅析进线备自投装置 【摘要】本文分析了进线备自投装置的原理,介绍了进线备自投装置的选择方法。 【关键词】主接线;明备用;lbzt输入/输出;lbzt动作逻辑 1.概述 备用电源自动投入装置是在工作电源因故障被断开后,能迅速自动地将备用电源投入工作或将用户切换到备用电源上,使用户不致停电的一种自动装置。进线备自投装置(lbzt)主接线示意图如图1所示,进线1和进线2互为明备用,即1dl和2dl互为明备用。 2.lbzt输入/输出量 为了实现lbzt逻辑,需接入8个交流量和10个开入量,如表1所示。 lbzt需引出的出口回路如下: 1dl的跳闸接点(同时引出一副空接点,可用于联切ⅰ母线电容器); 1dl的合闸接点; 2dl的跳闸接点(同时引出一副空接点,可用于联切ⅱ母线电容器); 2dl的合闸接点; 联切负荷接点(2组)。 3.lbzt动作逻辑 lbzt可分为进线1明备用(lbzt1)和进线2明备用(lbzt2)

两种逻辑,动作过程如图2所示。说明如下。 3.1进线1明备用,进线2运行(lbzt1)。 lbzt1充电完成后,ⅰ、ⅱ母线无电压(d088)、ul1有电压(d148,当d128=off时无该条件)且ia2无电流(d091)(当d299=on时,还需判2dl跳位),延时d085(如有加速lbzt1开入,则不经延时)跳2dl,2dl跳闸出口继电器的另一副接点可用于联切ⅱ母线电容器,同时发联切ⅰ母线电容器脉冲命令(100 ms)。确认2dl跳开且联切ⅰ母线电容器的100 ms脉冲消失后,收回2dl跳闸命令,再经延时d297发1dl合闸脉冲。确认1dl合上后,发“f010 进线1明备用”信号;若是加速动作,则发“f010 进线1明备用加速”信号。lbzt1逻辑完成。 如2dl跳闸命令发生5 s后2dl仍未跳开,则收回2dl跳闸命令,并终止lbzt1逻辑。如1dl合闸脉冲发出5 s后1dl仍未合上,则终止lbzt1逻辑。上述情况下,lbzt1均放电,如d099=on,装置将发出“f045 2dl拒跳”或“f045 1dl拒合”信号。 3.2进线2明备用,进线1运行(lbzt2)。 lbzt2充电完成后,ⅰ、ⅱ母线无压(d088)、ul2有电压(d148,当d128=off时无该条件)且ia1无流(d091)(当d299=on时,还需判1dl跳位),延时d086(如有加速lbzt2开入,则不经延时)跳1dl,1dl跳闸出口继电器的另一副接点可用于联切ⅰ母线电容器,同时发联切ⅱ母线电容器脉冲命令(100 ms)。确认1dl跳开且联切ⅱ母线电容器的100 ms脉冲消失后,收回1dl跳闸命令,

10kV快切装置

ZYKCQ-70型高压双电源互投装置(以下简称装置)是由一台高压真空断路器和智能控制器两部分组成。应用于交流50赫兹、额定电压12KV、额定电流至630A的双路电源供电系统中,当一路电源发生停电或欠压时自动切换到另一路正常电源供电,可靠保证供电的连续性。同时具有短路及过流等保护互锁功能,有效避免了负载故障时不必要的再次供电冲击。在常用电源发生故障停电时,切换装置可以完成与备用电源的自动切换,以保证可靠性和安全性。也可根据负载的需要进行两路电源之间的选择切换。特别适用于不允许断电的重要场所,作为保证连续供电的重要电气控制装置。为新一代设计新颖、性能完善、安全可靠、自动化程度高、使用范围广的自投自复型双路电源自动切换产品。产品在设计上保证了两路高压电源的完全隔离,同时采用完善可靠的机械和电气连锁,因此具有非常高的安全性和可靠性。该产品适用于对供电可靠性和安全性要求较高的双电源电力用户,作为双电源供电系统的控制和保护设置。 产品广泛使用于油田、矿山、冶金、化工、铁路、通讯、机械等10kV配电线路,工矿企业10kV线路。 10kV微机备用电源快速切换装置 10kV厂用电快切装置功能有:检测显示、切换、数字录波、安全管理、通讯等,正常情况下工作电源和备用电源间的双向切换,事故或不正常情况下工作电源切至备用电源单向切换。 切换必备条件: 1)装置不处于闭锁状态。 2)切换目标电源电压处于正常值以上。 正常切换:由手动启动,为双向,既可由工作切至备用也可由备用切至工作。 分串联切换和并联切换,装置内部设置为并联切换。 1)工作切换备用:在10kV厂用电正常运行方式下,在DCS上或者快切屏上启动某段快切,则装置启动先合上10kV母联开关,

备自投BZT和自动转换开关ATS的区别

备自投(B Z T)和自动转换开关(A T S)的区别BZT装置(备用电源自动投入装置)是电力系统中非常重要的电气装置,在较低电压等级的用户供电系统中,特别是6~35KV系统,常采用BZT装置,以保证自动化生产供电不中断和避免生产装置因失电而引起停车的严重后果。 根据《电力装置的继电保护和自动装置设计规范》,BZT装置应满足以下技术要求:(1)应保证在工作电源或设备断开后BZT装置才动作;(2)工作母线和设备上的电压不论因何原因消失时BZT装置均应动作;(3)BZT装置应保证只动作一次;(4)BZT装置的动作时间以使负荷的停电时间尽可能短为原则;(5)工作母线和备用母线同时失去电压时,BZT装置不应起动;(6)当BZT装置动作时,如备用电源或设备投于故障,应使其保护加速动作;(7)手动断开工作回路时,BZT装置不应动作。 从BZT装置在电力系统的大量实际应用和动作结果中可以看到,各种工作电源发生故障时,BZT装置的正确动作对确保生产装置连续稳定运行起着重要作用。一旦BZT装置不能正确动作,将会影响生产装置的安全运行。工厂里几乎每年都会发生数起BZT装置故障而影响生产的事故。因此除按以上技术要求在设计上合理配置外,解决BZT装置在实际应用中的问题具有重要意义。 1.与自动重合闸装置的配合 自动重合闸装置(ZCH装置)与BZT装置一样,也是电力系统保证可靠供电的重要自动装置。在电力系统单侧电源线路中,通常在线路电源侧装设ZCH装置,ZCH装置是根据输电线路故障大多为瞬时性故障而设置的(据统计,架空线路的瞬时性故障次数约占总故障次数的80%~90%以上),一旦线路因瞬时性故障被保护断开后,由ZCH装置进行一次重合,往往就能够恢复原工作电源向负荷供电。可见,BZT装置是在工作电源永久性故障跳闸(或瞬时性故障跳闸无重合)后投入另一路备用电源,

备自投工作原理之欧阳歌谷创作

微机备自投装置的基本原理及应用 欧阳歌谷(2021.02.01) 本文介绍了微机线路备自投保护装置特性和应用中的供电方式,阐述其应用于母联备自投工作和线路备自投的工作原理及备自投保护装置运行条件及动作条件。 备自投保护供电方式技术条件 1.引言 随着我国人民生产生活的现代化程度日益提高,人们对电力的需求和依赖程度也在倍增,对电能质量的要求也更加严格,供配电在各个领域也不断向自动化、无人值守、远程控制、不间断供电的目标迈进。有些电力用户尤其对不间断供电的要求显得更加突出。我国的电力供应主要还是依靠国家电网供电,电力缺口也在不断增大,尤其在用电高峰期缺电现象严重,为此很多大型企业便自建电厂或配备发电机,因此各种电源的相互切换,保证电源的不间断供电和供电的高可靠性成了现代配电工程中保护和控制回路的重要部分。在GB50062 《电力装置的继电保护和自动装置设计规范》中的第十一章也明确规定了备用电源和备用设备的自动投入的具体要求。 微机线路备自投保护装置使系统自动装置与继电保护装置相结合,是一种对用户提供不间断供电的经济而又有效的技术措

施,它在现代供电系统中得到了广泛的应用。在此只对微机线路备自投保护装置在电力系统中两种备自投方式和基本原理进行探讨。 微机线路备自投保护装置(以下简称备自投)核心部分采用高性能单片机,包括CPU模块、继电器模块、交流电源模块、人机对话模块等构成,具有抗干扰性强、稳定可靠、使用方便等优点。其液晶数显屏和备自投面板上所带的按键使得操作简单方便,也可通过RS485通讯接口实现远程控制。装置采用交流不间断采样方式采集到信号后实时进行傅立叶法计算,能精确判断电源状态,并实施延时切换电源。备自投具有在线运行状态监视功能,可观察各输入电气量、开关量、定值等信息,其有可靠的软硬件看门狗功能和事件记录功能。 产品在不同的电压等级如110kV、10kV、0.4kV系统的供配电回路中使用时需要设定不同的电气参数,在订货时必须注明。在选择备自投功能时则一定不可以投入低电压保护,以免冲突引起拒动或误动。 变配电站备自投有两种基本的供电方式。第一种如图1所示母联分段供电方式,母联开关断开,两个工作电源分别供电,两个电源互为备用,此方式称为母联备自投方式。第二种如图2所示双进线向单母线供电方式,即由一个工作电源供电,另一个电源为备用,此方式称为线路备自投方式。 2.母联备自投工作原理

快切和过去备自投的根本区别

快切和过去备自投的根本区别 电源快切 残压为高压时快动、同期、低残压多组 合合闸~: q1 `* g! [2 @" w 检同期合' ` t# y- R9 V3 Z备自投 只能低压慢速合 不检同期合 用于主开关(一般为成组6000伏高压单负荷(小负荷残压衰减太快难能实现负荷)快切) 用快切主要避免成组大负荷同时复启 单负荷危险小,不影响整体所以用备自动因电流过大而造成启动失败的危 投1 f# c- D 险,P/ _+ {( X% S 包刮备自投功能. G4 y 可先合后跳(正常切换)和先跳后合(事 故切换)等" L+ _* `% ]5 K 动作最快时间十几毫秒不能快切- a) D( h0 g% U一般为先跳后合(事故切换)最快在300毫秒以后- w$ Z' I3 M关于快切装置6kV厂用母线快切装置说明 关于快切装置6kV厂用母线快切装置说明 1 6kV厂用单元母线快切装置有哪几种切换方式? 正常切换是指正常情况下进行的厂用切换。通过控制台开关手动起动装置,完成从工作电源到备用电源,或由备用电源到工作电源的双向切换。事故

切换是指由于工作电源故障而引起的切换。它是单向的,只能由工作电源切至备用电源。不正常切换是由母线非故障性低压引起的切换,它是单向的,只能由工作电源切换至备用电源。不正常切换分为以下两种情况:1)、母线三相电压持续低于设置值的时间超过所设定的延时,装置自动跳开工作电源,投入备用电源。2)、由于工作电源断路器误跳,装置自动投入备用电源。2. 6kV厂用快切装置正常切换中的并联切换有哪两种方式?自动:即将选择开关置于"自动"位置。手动起动装置,经同期鉴定后,先合上备用(工作)开关,确认合闸成功后,再自动跳开工作(备用)开关。半自动:即将选择开关置于"半自动"位置。手动起动装置,经同期鉴定后,只合上备用(工作)开关,而跳开工作(备用)开关的操作要由人工来完成。3.6kV厂用快切装置正常切换中,串联切换的过程是怎样的?方式选择置于串联位置。手动起动装置,先跳开工作(备用)开关,如果同期条件满足,则合上备用(工作)开关。4. 6kV厂用快切装置事故切换中,并联切换的过程是怎样的?由反映工作电源故障的保护出口启动,经同期检定后,装置发工作开关跳闸命令,延时3ms后发备用电源开关合闸命令。5. 6kV厂用快切装置事故切换中,串联切换的过程是怎样的?反映工作电源故障的保护出口启动,跳开工作开关后,经同期检定后,合上备用电源开关。6.何谓 6kV快切的事故切换?事故切换是指工作电源开关因故障跳闸而引起的切换,它是单向的,只能由工作电源切换至备用电源。7.何谓慢速切换?6kV厂用切换过程中,若同期条件不合格,装置自动转入慢速切换,经检定母线残压,合上备用电源开关完成切换过程。8.何谓厂用电源快切装置的去耦合?快切装置在并联情况下切换,如果由于某种原因使应跳闸的开关未跳开,装置判断两电源并联时间超过100ms自动跳开后合上的开关,这一过程叫耦合。9.何谓快切装置的耦合闭锁?厂用电源快切装置发生去耦合,快切装置关闭所有跳合闸回路,显示并输出"闭锁"报警信号,这一过程叫耦合闭锁

相关主题
文本预览
相关文档 最新文档