当前位置:文档之家› 二次函数检测题(WORD版含答案)

二次函数检测题(WORD版含答案)

二次函数检测题(WORD版含答案)
二次函数检测题(WORD版含答案)

二次函数检测题(

WORD版含答案)

一、初三数学二次函数易错题压轴题(难)

1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.

(1)分别求出抛物线和直线AB的函数表达式;

(2)设△PMN的面积为S1,△AEN的面积为S2,当1

236 25

S

S

=时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α

(0°<α<90°),连接E′A、E′B,求E'A+2

3

E'B的最小值.

【答案】(1)抛物线y=﹣3

4

x2+

9

4

x+3,直线AB解析式为y=﹣

3

4

x+3;(2)P(2,

3 2);(3

410

【解析】

【分析】

(1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;

(2)根据题意由△PNM∽△ANE,推出

6

5

PN

AN

=,以此列出方程求解即可解决问题;

(3)根据题意在y轴上取一点M使得OM′=4

3

,构造相似三角形,可以证明AM′就是

E′A+2

3

E′B的最小值.

【详解】

解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),

则有

3

30 n

m m n

?

?

?++

,解得4

3

3

m

n

?

?

?

?

-

?

∴抛物线2

39

3

44

y x x

=-++,

令y=0,得到2

39

3

44

x x

-++=0,

解得:x=4或﹣1,

∴A(4,0),B(0,3),

设直线AB解析式为y=kx+b,则

3

40

b

k b

+

?

?

?

解得

3

3

4

k

b

?

-

?

?

??

∴直线AB解析式为y=3

4

-x+3.

(2)如图1中,设P(m,2

39

3

44

m m

-++),则E(m,0),

∵PM⊥AB,PE⊥OA,

∴∠PMN=∠AEN,

∵∠PNM=∠ANE,

∴△PNM∽△ANE,

∵△PMN的面积为S1,△AEN的面积为S2,1

2

36

25

S

S

=,

∴6

5

PN

AN

=,

∵NE∥OB,

∴AN AE

AB OA

=,

∴AN=5

4

5

4

5

4

5

4

(4﹣m),

∵抛物线解析式为y =239

34

4

x x -++, ∴PN =239344m m -

++﹣(34-m+3)=3

4

-m 2+3m , ∴23

364

55(4)4

m m

m -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,

3

2

). (3)如图2中,在y 轴上 取一点M′使得OM′=4

3

,连接AM′,在AM′上取一点E′使得OE′=OE .

∵OE′=2,OM′?OB =4

3

×3=4, ∴OE′2=OM′?OB , ∴

OE OB

OM OE '=''

, ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,

M E OE BE OB '''='=2

3

, ∴M′E′=2

3BE′,

∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+2

3BE′最小(两点间线段最短,A 、M′、E′共线

时),

最小值=AM′2244()3

+410

. 【点睛】

本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+2

3

BE′的最小值,属于中考压轴题.

2.如图,抛物线()2

50y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点

C ,经过B C 、两点的直线为y x n =+.

(1)求抛物线的解析式.

(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线

AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求

点N 的横坐标.

【答案】(1)2

65y x x =-+- (2)2t =;2(3541-或4541

+ 【解析】 【分析】

(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;

(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为

)2

454d BP sin t =??=

-,则12PBE

S

BE d =??)()122244222

t t t =??-=-,再根据二次函数的性质即可确定最大值;

(3

)先求出4542

AM AB sin =??=?

=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ

是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角

形,求得4NH =

==;设()

2

,65N m m m -+-,则(),0G m ,

(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况

解答即可. 【详解】

解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -

∴抛物线2

5y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,

∴250505a b an bn n +-=??--=??-=?,解得51,6n a b =-??

=-??=?

所以抛物线的解析式为2

65y x x =-+-.

()2∵()()()1,05,0,0,,5,A B C -

∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=

由题意得4,2,02BP t BE t t =-=<≤点P 到BE

的距离()4542

d BP sin t =??=- 所以1

2

PBE

S

BE d =??

)()12442t t t =?-=-; ∵二次函数(

)()4f t t =-的函数图象开口向下,零点为0和4, ∴04

22

t +=

=时, ∴()(

)(

)2242max f t f ==?-=即2t =时,PBE △的面积最大,且最大值

()3

由题意得4542

AM AB sin =??=?

= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,

∴NQ AM ==

过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,

∴NQH 为等腰直角三角形,

∴4,NH =

==

设()

2

,65N m m m -+-, 则(),0G m ,(),5H m m -,

①点N 在x 轴上方时,此时()()2

655,NH m m m =-+---

∴()

()2

6554m m m -+---=,即()()140,m m --=

解得1m =(舍,因为此时点N 与点A 重合)或4m =;

②点N 在x 轴下方且5m >时,此时()()2

565,NH m m m =---+- ∴()(

)

2

5654m m m ---+-=,即2

540,m m --=

解得5m =

<(舍)或m =

③点N 在x 轴下方且1m <时,此时()()2

565,NH m m m =---+-

∴()(

)

2

5654m m m ---+-=,即2

540,m m --=解得52m =

或52

m +=(舍)

综上所述,4,m m ==

,m =符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,

点N 的横坐标为

52-或4或52

+.

【点睛】

本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键

3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2

0x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;

(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121

a 是线段AB 的垂

直平分线,求实数b 的取值范围.

【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣

2

4

≤b <0. 【解析】 【分析】

(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;

(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2

121

a +是线段AB 的垂

直平分线,从而可以求得b 的取值范围. 【详解】

解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,

即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,

∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,

即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),

∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣

b a

, ∵线段AB 中点坐标为(122x x +,122

x x

+), ∴该中点的坐标为(2b a -,2b a

-), ∵直线y =﹣x+2

121

a +是线段AB 的垂直平分线,

∴点(2b a -,2b

a -)在直线y =﹣x+2121

a +上, ∴2b

a -

=21221

b a a ++

∴﹣b =

2

2

21

22a a a ≤

+=

2,(当a =22

时取等号) ∴0<﹣b ≤

2

4

, ∴﹣

2

≤b <0, 即b 的取值范围是﹣2

4

≤b <0. 【点睛】

本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.

4.如图①是一张矩形纸片,按以下步骤进行操作:

(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;

(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;

(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)

(1)证明:OBC ≌OED ;

(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.

【答案】(1)见解析;(2)x=4,16 【解析】 【分析】

(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;

(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可. 【详解】

(1)证明:连接EF . ∵四边形ABCD 是矩形,

∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90° 由折叠得∠DEF =∠DAF ,AD =DE ∴∠DEF =90°

又∵∠ADE=∠DAF=90°,

∴四边形ADEF是矩形

又∵AD=DE,

∴四边形ADEF是正方形

∴AD=EF=DE,∠FDE=45°

∵AD=BC,

∴BC=DE

由折叠得∠BCO=∠DCO=45°

∴∠BCO=∠DCO=∠FDE.

∴OC=OD.

在△OBC与△OED中,

BC DE

BCO FDE

OC OD

=

?

?

∠=∠

?

?=

?

∴△OBC≌△OED(SAS);

(2)连接EF、BE.

∵四边形ABCD是矩形,

∴CD=AB=8.

由(1)知,BC=DE

∵BC=x,

∴DE=x

∴CE=8-x

由(1)知△OBC≌△OED

∴OB=OE,∠OED=∠OBC.

∵∠OED+∠OEC=180°,

∴∠OBC+∠OEC=180°.

在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.

在Rt△OBE中,OB2+OE2=BE2.

在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.

∵OB2=y,∴y+y=x2+(8-x)2.

∴y=x2-8x+32

∴当x=4时,y 有最小值是16.

【点睛】

本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.

5.二次函数22(0)63

m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .

(1)当m =1时,求顶点P 的坐标; (2)若点Q (a ,b )在二次函数22(0)63

m m

y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;

(3)在第一象限内,以AB 为边作正方形ABCD . ①求点D 的坐标(用含m 的代数式表示);

②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.

【答案】(1)P (2,

1

3

);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4. 【解析】 【分析】

(1)把m =1代入二次函数22(0)63

m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;

(2)把点Q (a ,b )代入二次函数22(0)63

m m

y x x m m =

-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可;

(3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;

②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可. 【详解】

解:(1)当m =1时,二次函数为212

163

y x x =-+, ∴顶点P 的坐标为(2,

1

3

); (2)∵点Q (a ,b )在二次函数22(0)63

m m y x x m m =-+>的图象上, ∴2263

m m

b a a m =

-+, 即:2263

m m

b m a a -=

- ∵0b m ->,

2263m m a a ->0, ∵m >0,

∴2263

a a ->0, 解得:a <0或a >4,

∴a 的取值范围为:a <0或a >4;

(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,

∵二次函数的解析式为2263

m m y x x m =-+, ∴顶点P (2,

3

m

), 当x=0时,y=m , ∴点A (0,m ), ∴OA=m ;

设直线AP 的解析式为y=kx+b(k≠0), 把点A (0,m ),点P (2,

3

m

)代入,得: 23

m b m

k b =??

?=+??, 解得:3m k b m

?

=-?

??=?,

∴直线AP 的解析式为y=3

m

-x+m , 当y=0时,x=3, ∴点B (3,0); ∴OB=3;

∵四边形ABCD 是正方形, ∴AD=AB ,∠DAF+∠FAB=90°, 且∠OAB+∠FAB =90°, ∴∠DAF=∠OAB , 在△ADF 和△ABO 中,

DAF OAB AFD AOB AD AB ∠=∠??

∠=∠??=?

∴△ADF ≌△ABO (AAS ),

∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3, ∴点D 的坐标为:(m ,m+3); ②由①同理可得:C (m+3,3),

∵二次函数的图象与正方形ABCD 的边CD 有公共点,

∴当x =m 时,3y m ≤+,可得3

2

2363

m m

m m -+≤+,化简得:32418m m -≤.

∵0m >,∴2

184m m m -≤

,∴2

18(2)4m m

--≤, 显然:m =1,2,3,4是上述不等式的解,

当5m ≥时,2

(2)45m --≥,18 3.6m ≤,此时,218(2)4m m

-->, ∴符合条件的正整数m =1,2,3,4;

当x = m +3时,y ≥3,可得2

(3)2(3)

363

m m m m m ++-+≥,

∵0m >,∴2

1823m m m ++≥

,即2

18(1)2m m

++≥, 显然:m =1不是上述不等式的解,

当2m ≥时,2

(1)211m ++≥,189m ≤,此时,218(1)2m m

++>恒成立, ∴符合条件的正整数m =2,3,4;

综上:符合条件的整数m 的值为2,3,4. 【点睛】

本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.

6.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数

()0k

y x x

=

>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”

(1)当1n =时.

①求线段AB 所在直线的函数表达式.

②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.

(2)若小明的说法完全正确,求n 的取值范围. 【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当9

2

x =时,k 有最大值

8116

;当1x =时,k 有最小值2;(2)10

9n ≥;

【解析】 【分析】

(1)①直接利用待定系数法,即可求出函数的表达式; ②由①得直线AB 为1944y x =-+,则219

44

k x x =-+,利用二次函数的性质,即可求出答案;

(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,k

x

),则得到2210

44

n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52b

a -

≥,即可求出n 的取值范围. 【详解】

解:(1)当1n =时,点B 为(5,1), ①设直线AB 为y ax b =+,则

251a b a b +=??

+=?,解得:14

94a b ?=-????=??

, ∴19

44

y x =-

+; ②不完全同意小明的说法;理由如下: 由①得19

44

y x =-

+, 设点P 为(x ,

k

x

),由点P 在线段AB 上则 1944

k x x =-+,

∴22191981()444216

k x x x =-+=--+; ∵1

04

-

<, ∴当9

2x =

时,k 有最大值8116

; 当1x =时,k 有最小值2;

∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在9

2

x =

的位置时k 值最大. (2)∵()1,2A 、()5,B n , 设直线AB 为y ax b =+,则

25a b a b n +=??

+=?,解得:24

104n a n b -?=???-?=??

, ∴21044

n n

y x --=

+, 设点P 为(x ,

k

x

),由点P 在线段AB 上则 2210

44

n n k x x --=

-, 当

2

04

n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:10

10

42242

n n x n n --==--;

∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.

即k 在15x ≤≤中,k 随x 的增大而增大; 当

2

04

n ->时,有 ∴2

04

10124

n n n -?>???-?≤?-?,解得:26n n >??≥-?,

∴不等式组的解集为:2n >;

2

04

n -<时,有 ∴2

0410524

n n n -?

10

29n ≤<, ∴综合上述,n 的取值范围为:10

9

n ≥. 【点睛】

本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.

7.如图,已知抛物线y=ax 2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y 轴交于点C(0,3),与x 轴交于A ,B 两点(点A 在点B 的右侧),点P 是该抛物线上的一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;

(2)当△ADP 是直角三角形时,求点P 的坐标;

(3)在题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.

【答案】(1) y=x 2﹣4x +3;(2) P 1(1,0),P 2(2,﹣1);(3) F 1(22,1),F 2(22,1). 【解析】 【分析】

(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C 点坐标代入上式中,即可求出抛物线的解析式;

(2)由于PD ∥y 轴,所以∠ADP≠90°,若△ADP 是直角三角形,可考虑两种情况: ①以点P 为直角顶点,此时AP⊥DP,此时P 点位于x 轴上(即与B 点重合),由此可求出P 点的坐标;

②以点A 为直角顶点,易知OA=OC ,则∠OAC=45°,所以OA 平分∠CAP,那么此时D 、P 关

于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;

(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.

【详解】

(1)∵抛物线的顶点为Q(2,﹣1),

∴设抛物线的解析式为y=a(x﹣2)2﹣1,

将C(0,3)代入上式,得:

3=a(0﹣2)2﹣1,a=1;

∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;

(2)分两种情况:

①当点P1为直角顶点时,点P1与点B重合;

令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;

∵点A在点B的右边,

∴B(1,0),A(3,0);

∴P1(1,0);

②当点A为△AP2D2的直角顶点时;

∵OA=OC,∠AOC=90°,

∴∠OAD2=45°;

当∠D2AP2=90°时,∠OAP2=45°,

∴AO平分∠D2AP2;

又∵P2D2∥y轴,

∴P2D2⊥AO,

∴P2、D2关于x轴对称;

设直线AC的函数关系式为y=kx+b(k≠0).

将A(3,0),C(0,3)代入上式得:

30

3k b b +=??

=?

, 解得13k b =-??=?

∴y=﹣x+3;

设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3), 则有:(﹣x+3)+(x 2﹣4x+3)=0, 即x 2﹣5x+6=0;

解得x 1=2,x 2=3(舍去);

∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1; ∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点). ∴P 点坐标为P 1(1,0),P 2(2,﹣1);

(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形; 当点P 的坐标为P 2(2,﹣1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于F ; ∵P (2,﹣1), ∴可设F (x ,1); ∴x 2﹣4x+3=1,

解得x 1=2﹣2,x 2=2+2; ∴符合条件的F 点有两个,

即F 1(2﹣2,1),F 2(2+2,1).

【点睛】

此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.

8.如图1,在平面直角坐标系中,O 为原点,抛物线2

y ax bx c =++经过、、A B C 三点,且其对称轴为1,x =其中点(3C ,点()3,0B .

(1)求抛物线的解析式;

(2)①如图(1),点D 是直线CB 上方抛物线上的动点,当四边形DCAB 的面积取最大值时,求点D 的坐标;

②如图(2),连接,CA 在抛物线上有一点,M 满足1

2

MCB ACO ∠=

∠,请直接写出点M 的横坐标.

【答案】(1)23233

=y x ;(2)①D 3532,,②233+2 【解析】 【分析】

(1)根据点(3C ,点()3,0B ,利用待定系数法,可得函数解析式;

(2)①先求出直线BC 的解析式,当直线m 与抛物线只有一个交点时,点D 到BC 的距离最远,此时△BCD 取最大值,故四边形DCAB 有最大值,求出b 的值代入原式即可得到答案; ②根据题干条件抛物线上有一点,M 满足1

2

MCB ACO ∠=∠,通过利用待定系数法利用方程组求出直线BE 的解析式,可得答案. 【详解】

解:(1)由题意得:

相关主题
文本预览
相关文档 最新文档