当前位置:文档之家› 气液旋流器旋流式分离器设计

气液旋流器旋流式分离器设计

气液旋流器旋流式分离器设计
气液旋流器旋流式分离器设计

摘要

本次毕业设计对分离器的各重要零部件的重要尺寸进行了详细的计算,并进行了强度分析,同时采用三维建模的方式对各个分零部件进行了设计。在总结前人的设计经验的同时提出了自己的设计理念改进了部分设计特点使我们设计的气液旋流器旋流式分离器更加趋于完善,可分离气泡小,分离的效率也较高,同时分离器所占用的空间体积相对较小,维修量小,工作稳定。旋流式分离器具有这些特点,气液旋流器的工作特点具有实用性和可靠性,并具有广阔的前景。

关键词:旋流分离器;气液分离;优化;三维建模

Abstract

An important dimension of the graduation design of separator of all major components are calculated in detail, and analyzes the strength, at the same time, the various sub components are designed using three-dimensional modeling method. The gas-liquid cyclone cyclone separator in summarizing the previous experience in the design and proposes own design idea the design features improved enable us to design a more perfect, separation bubble is small, the separation efficiency is higher, at the same time separator space occupied by volume is relatively small, small amount of repair, stable work. The cycloneseparator has these characteristics, working characteristics of gas-liquid cyclone has practicability and reliability, it has broad prospect.

Keywords: cyclone separator; separation; optimization; 3D modeling

目录

第1章概述 ........................................................................ 错误!未定义书签。

1.1 气液分离装置的发展与现状 (1)

1.2 气液分离装置的种类与研究 (3)

1.3 气液分离装置优缺点分析 (5)

1.4 研究任务目标与研究方法 (5)

第2章气液分离器工艺流程分析 (6)

2.1 气液分离装置主要结构与工作原理 (15)

2.2实验室工艺流程 (8)

第3章气液分离设备主参数确定 (15)

3.2 旋流单体结构形式及其参数优化 (15)

3.2.1 入口结构 (17)

3.2.2 大小锥段 (22)

3.2.3 溢流口 (26)

3.2.4 底流管 (17)

3.2.5 旋流腔 (22)

3.2.3 溢流口 (26)

3.3 气液分离器集合参数计算 (15)

3.4 分离能力的计算 (15)

第4章气液旋流分离器性能影响因素分析 (31)

4.1 入口设计分析 (39)

4.1.1 入口喷嘴分析 (17)

4.1.2 双入口分析 (22)

4.2入口位置 (17)

4.2.1 最佳外形比 (22)

4.2.2 旋流体锥度 (22)

4.3出口管分析 (22)

4.4溢流口直径分析 (22)

4.5底流口直径分析 (22)

4.6锥角影响 (22)

4.7入液口直径影响 (22)

4.8溢流管插入深度影响 (22)

第5章强度分析 (31)

5.1筒体校核计算 (22)

5.2封头校核 (22)

5.3法兰与螺栓校核 (22)

第6章气液旋流分离器三维设计 (31)

6.1软件介绍 (6)

6.2气液旋流器三维建模 (8)

6.3.1 中心旋流体 (17)

6.3.2 上罩设计 (22)

6.3.3中罩设计 (17)

6.3.4 底罩设计 (22)

6.3.5 蓄液箱体 (22)

6.3.6 支架设计 (22)

6.3标准件选取与应用 (12)

结论 (46)

参考文献 (47)

致谢 (48)

第一章概述

1.1气液分离装置的历史与发展现状

旋流分离是一种高效的多相流体分离技术,它是在离心力的作用下根据两相或多相之间的密度差来实现两相或多相分离的。人们对旋流器的研究由来以久,自从1886年Marse的第一台旋粉圆锥形旋风分离器问世以来,旋流分离技术已广泛应用于石油、化工、食品、造纸等行业。随着旋流器应用的日益广泛,国内外众多学者对旋流器的结构、尺寸、流场特性进行了大量的研究,并相继提出了各种分离理论,但多集中于气-固分离的旋风分离器和用于液-固、液-液分离的水力旋流分离器。许多研究者已相继提出各种各样的分离理论,已经有了比较完善的分离理论、设计方法和应用实践。

由于具有广阔的使用前景和显著的优点,人们对气-液旋流分离技术也开展了大量的实验和理论研究。但与气-固、液-固分离不同,气-液两相流动过程中颗粒(液滴或气泡)的碰撞、团聚和扩散机理更加复杂,由于不确定的因素较多,计算复杂,同时受气-液两相流发展的限制,使气-液旋流分离的研究远滞后于旋风分离器和水力旋流器。近年来气-液旋流分离技术已日益成为国内外争相研究的热点技术。目前,国内外对于气-液旋流分离的研究主要可分为4类,即:气-液旋流分离技术应用的试验研究、旋流分离器内部气-液两相三维强旋湍流流场测定的试验研究、建立能准确反映气-液两相旋流分离机

理模型的理论研究以及气-液两相旋流流场计算流体动力学(Computational Fluid Dynamic,简称CFD)模拟。

1.2 气液分离装置的种类与研究

1气-液旋流分离技术应用试验研究

由于受气-液两相流体力学发展的限制,对于气-液旋流分离技术,以前进行的大部分工作都是基于应用和试验研究。即根据不同的要求开发研制不同结构的气-液旋流分离器,并对其分离特性进行试验测量和性能分析。其类型主要介绍如下。

2.管柱式气-液旋流分离器(Gas-Liquid Cylindrical Cyclone简写GLCC)

1979年,Davies和Watson研制了管柱式气-液旋流分离器,是由垂直的筒形容器,安装了一个向下倾斜27°的切向进口管,上部出气管,下部排液管。切向进口给

混合物提供了一个涡旋运动,气-液两相由于重力和离心力的综合作用,液体被驱向筒壁并向下从底部流出,气体径向向旋流器的中心流动并从顶部排气管离开分离器。海上采油代替传统的分离器,在改善分离性能的同时降低了成本。1995年,Kouba等将GLCC用于多相流量计量,经过GLCC分离后的气液两相分别用单相流量计计量,然后再合并,避免了多相流测量中的问题;GLCC在地面和海上油气分离、井下分离、便携式钻井设备、油气泵、多相流量计、天然气输送以及火炬气洗涤等具有巨大的潜在应用[1]。1995年,Kouba等研究了GLCC的进口倾斜角度、操作压力、筒体和进口结构对于气相出流中液体夹带的影响,分析了GLCC 分离器操作范围和分离效率的机理。

1985年,Zikarev在靠近GLCC的底部开了一个矩形进口,理论分析和实验结果显示,这种结构操作时降低了液滴在气相出流中的夹带。

3.螺旋片导流式气液分离器(Cyclone Gas-liquid Separator简写CS)

1996年,Franca等研制了螺旋片导流式气-液旋流分离器,直接在井口将气液进行分离,增加了采油回收率,分离后的气体和液体用不同的管道输送各相,使石油和气体分别经过各自的管道进入储油罐和储气罐,降低了多相流输送时易出现的断续流、堵塞和沉积等典型问题。螺旋片导流式气-液分离器是一种结构简单、新型、高效、紧凑的气液分离装置,用于地面或井下天然气开采中的油气分离,石油开采中的油水分离,压缩空气的净化处理,航空宇宙中的氦气分离,还可用作水处理装置,其性能明显优于同类设备。尤其在海上、偏远地区油井及远距离油气输送方面具有较广泛的前景。目前国内外的井下油气分离基本都采用了螺旋式油气分离器。

4.轴流导叶式气液旋流分离器

2005年,中国石油大学多相流实验室研制了轴流导叶式气液旋流分离器,与切向进口的GLCC和CS相比其采用轴向进料,旋转流由导向叶片产生,从而使旋转流保持稳定,并有助于维持层流特性,而且其显著特点是阻力损失较小。当采用轴向进料时,结构更加紧凑,适宜于井下狭长空间环境的安装操作。

5.管道式气液旋流分离器

管道式气液旋流分离器,是用法兰将气液旋流分离器直接安装在石油或天然气的输送管道上,具有高效率、撬装化、可移动与小型化等优点。并且可以降低

输送成本,降低了气液两相流输送时容易产生的断续流、管道堵塞、沉积等多相流输送的典型问题。

6.旋流分离器内气-液两相流场的测量研究

旋流分离器内是复杂的三维强旋湍流场,一般都是用大量的实验来寻找它的流动规律,并用来验证和补充理论研究的描述流动特性的数学模型。由于起步相对较晚,研究者对于气-液两相涡旋流动性能的研究,主要是参照旋风器和水力旋流器的涡旋流动的研究理论和方法。流场分布规律也多引用旋风器和水力旋流器的测定结果。这一领域最早的研究之一是Nissan和Bres-san,1961年他们用2个切向入口将水注入管子,其切向动量与轴向动量之比为8,用探针对管内涡旋流场进行了测量,发现在管子核心区域有一个逆向流动区。1979年,Ito研究了切向进口产生的涡旋流动中涡旋衰减的情况,他用水作工质,切向动量与轴向动量之比为50,用多电级探针测量,发现其切向速度有2个区域:管中心的强制涡流区域和周围的自由涡流区域。1988年,Algifri等以空气为工质,用热敏探针对通过管道衰变的湍动涡流进行了测量研究,以径向导流的方法产生涡旋流动,发现在涡旋强度很大时,雷诺数对速度的影响也增强,他们建议除了管壁附近外,切向速度的分布应近似地看作Ran-kine涡,即准自由涡与强制涡的组合。对于气液旋流器内部三维流场的结构,由于测试手段限制,所以实测研究进展一直较慢。然而只有在清楚旋流分离器内连续相和液滴(气泡)的运动规律后,才能真正认识气液旋流分离器的分离机理,并为旋流分离器的工程设计和改善其分离性能提供理论基础。Erdal(2002)采用多普勒激光测速仪对GLCC内的重相气液两相旋流的流场进行了测量研究[4],他的测量显示对于单切向进口的旋流器,由于进口效应的影响,其流场是非轴对称的,中心强制涡流区绕旋流器中心线呈螺旋状。而双进口结构的流场比单进口结构呈现更好的对称性。

2007年,中国石油大学多相流实验室采用APV(Adaptive Phase/ Doppler Velocimeter)对轴流导叶式旋流分离器内轻相气-液两相流场进行了测定。所有测定结果都得到了相似的流场分布趋势,即旋流器内部切向速度呈准Rankine涡结构,且沿轴向衰减。轴向速度将流动区域分为向上的内旋流和向下的外旋流,当进口涡旋强度较高时,在中心会出现向下的流动区。湍流强度分布是涡旋核心湍流强度最大,外区趋于定值,而在边壁处升高。流场实验测定数据和CFD模拟研究都

证实,由于核心强制涡的影响,旋流器的湍流脉动是各相异性的。虽然在旋流器内部流场结构的实验研究方面,人们进行了大量的工作,并取得了很大的进展,但由于流场内流体运动的复杂性,并受多相流动力学和实验流体力学发展的限制,目前还有许多现象无法解释。尤其是气-液旋流分离过程中,气泡和液滴在运动过程中的碰撞黏结、团聚破碎和扩散的机理及其与流动特性的相互关系还不清楚。1.3 气液分离装置优缺点分析

在石油化工中装置中,有各种各样的分离器,其中以立式重力气液分离器最为常见,这种气液分离器具有结构简单、操作可靠等持点。立式重力式分离器的主体为一立式圆筒体,多相流一般从该筒体中段进入,顶部为气流出口,底部为液体出口

虽然旋流式气液分离技术在石油化工方面的应用要晚得多,但与常规的重力式分离相比较,它具有很多优点:

①分离效率高,由于分离原理的不同使得旋流式分离器具有很高的分离效率;

②成本低,占用空间较小、维护费用少、能耗低、不需要任何帮助分离的介质;

③安装灵活方便,旋流器可以任何角度安装;

④工作连续、可靠,操作维护方便,一旦设计、调试好, 就可自动、稳定地工作。

旋流式气液分离器有以上优点,但也有如下缺点:

①由于旋流器内流体的流动产生一定的剪切作用,如果参数设计不当,容易将液滴(油滴或水滴) 打碎乳化而恶化分离过程;

②通用性较差。不同的分离要求、不同的处理物料的性质往往需要不同结构尺寸或操作条件的旋流器,因此旋流器往往不能互换使用。在欠平衡钻井中,使用旋流式气液分离器分离钻井液中的气体,能充分发挥该离器优点,同时又能有效的避免它的缺点。因此,旋流式气液分离用于分离钻中的气体具有广阔前景。

1.4 研究任务目标与研究方法

1.对气液旋流器进行结构进行创新设计

2.对气液旋流器的主要参数进行设计计算

3.通过三维的设计进行造型完善设计内容

4.完成试验台设计与分离因素分析

第2章气液分离器工艺流程分析

2.1 气液分离装置主要结构与工作原理

旋流分离器,是一种利用离心沉降原理将非均相混合物中具有不同密度的相分离的机械分离设备。旋流分离器的基本构造为一个分离腔、一到两个入口和两个出口。分离腔主要有圆柱形、圆锥形、柱-锥形三种基本形式。入口有单入口和多入口几种,但在实践中,一般只有单入口和双入口两种。就入口与分离腔的连接形式来分,入口又有切向入口和渐开线入口两种。出口一般为两个,而且多为轴向出口,分布在旋流分离器的两端。靠近进料端的为溢流口,远离进料端的为底流口。在具有密度差的混合物以一定的方式及速度从入口进入旋流分离器后,在离心力场的作用下,密度大的相被甩向四周,并顺着壁面向下运动,作为底流排出;密度小的相向中间迁移,并向上运动,最后作为溢流排出。这样就达到了分离的目的。旋流分离技术可用于液液分离、气液分离、固液分离、气固分离等。本文设计的旋流分离器用于石油钻井中钻井液的气液分离。

2.2实验的主要步骤

1.检查分离器零部件,并按照技术要求进行检验并连接到试验台上。

2.进行气密性和安全检查,不添加水,连接后逐渐增压至0. 9 MPa ,并保持10 min 左右,若运转正常,再检验试验装置是否漏气。

3.检查完毕后,通气吹扫管道,清理管道内部存留的杂质,约3 h 。

4.通入气、液混合2 相流进行分离试验,测量并记录相关试验数据,如表1 。试验中含水量测量为相对质量测量,即每单位质量混合气体中所含水分的质量分数。

5.去掉溢流口出口处的专用分离装置后测量的数据值

6.测量并记录常规离心式分离器的测量数据

第三章气液分离设备主参数确定

气液旋流分离技术作为一种结构简单、新型、高效、紧凑的气液分离技术,具有阻力小,耗能少,分离效率高等优点,已成为工业新型气液分离技术的热点。正成为石油、天然气开采工业井口、井下油气分离的重要设备,并被广泛应用于压缩空气中的油水分离、航空宇宙中的氦气分离、生物发酵以及食品工业的尾气处理、工业废气的净化处理、化工生产以及环境工程中的气液分离等工艺中,显示了良好的工程应用前景。随着现代流场测定技术、气液两相流体力学、计算流体动力学(CFD)和计算机科学的发展,人们将逐步弄清气液旋流场的流动、碰撞、团

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

分离原理

分离器工作原理.闪蒸原理 核心提示:气液分离器的工作原理是什么?饱和气体在降温或者加压过程中。一部分可凝气体组分会形成小液滴·随气体一起流动。气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。一般气体由上部出口,液相由下部收集。汽液分离罐是利用丝网除沫。... 气液分离器的工作原理是什么?饱和气体在降温或者加压过程中。 一部分可凝气体组分会形成小液滴·随气体一起流动。气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。一般气体由上部出口,液相由下部收集。汽液分离罐是利用丝网除沫。 或折流挡板之类的内部构件。 将气体中夹带的液体进一步凝结。 排放,以去除液体的效果。基本原理是利用气液比重不同。 在一个忽然扩大的容器中。 流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被入口高速气流甩到器壁上。 碰撞后失去动能而与转向气体分离。分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体.气液分离器。 根据分离器的类型不同,有旋涡分离。 折留板分离,丝网除沫器。 旋涡分离主要是根据气体和液体的密度。 做离心运动时,液体遇到器壁冷凝分离。基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的.使用气液分离器一般跟后系统有关。 因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。工厂里常见的气液分离器是利用闪蒸的原理。 闪蒸就是介质入渗入渗出一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水。 而游离的水和比重大的液滴会由于重力作用分离出来。 另外分离器一般带捕雾网。 通过捕雾网可将气相中部分大的液滴脱除。气液分离器无非就是让互相混杂的气相液相各自聚合成股。 液滴碰撞聚结,气体除去液滴后上升。 从而达到分离的目的。原理是利用气液比重不同,在一个忽然扩大的容器中,流速降低后,在主流体转向的过程中。

气液分离技术

气液分离技术 气液分离技术是从气流中分离出雾滴或液滴的技术。该技术广泛的应用于石油、化工、( 如合成氨、硝酸、甲醇生产中原料气的净化分离及加氢装置重复使用的循环氢气脱硫), 天然气的开采、储运及深加工, 柴油加氢尾气回收, 湿法脱硫, 烟气余热利用, 湿法除尘及发酵工程等工艺过程, 用于分离清除有害物质或高效回收有用物质。气液分离技术的机理有重力沉降、惯性碰撞、离心分离、静电吸引、扩散等, 依据这些机理已经研制出许多实用的气液分离器, 如重力沉降器、惯性分离器、纤维过滤分离器、旋流分离器等。 一、重力沉降分离 气液重力沉降分离是利用气液两相的密度差实现两相的重力分离, 即液滴所受重力大于其气体的浮力时, 液滴将从气相中沉降出来, 而被分离。重力沉降分离器一般有立式和卧式两类,它结构简单、制造方便、操作弹性大,需要较长的停留时间,分离器体积大,笨重,投资高,分离效果差,只能分离较大液滴,其分离液滴的极限值通常为 100μm,主要用于地面天然气开采集输。经过几十年的发展,该项技术已基本成熟。当前研究的重点是研制高效的内部过滤介质以提高其分离效率。此类分离器的设计关键在于确定液滴的沉降速度,然后确定分离器的直径。气液重力沉降分离是利用气液两相的密度差实现两相的重力分离, 即液滴所受重力大于其气体的浮力时, 液滴将从气相中沉降出来, 而被分离。 二、惯性分离 气液惯性分离是运用气流急速转向或冲向档板后再急速转向,使液滴运动轨迹与气流不同而达到分离。此类分离器主要指波纹(折)板式除雾(沫)器,它结构简单、处理量大,气速度一般在 15~25 m/s,但阻力偏大,且在气体出口处有较大吸力造成二次夹带,对于粒径小于 25μm 的液滴分离效果较差,不适于一些要求较高的场合。其除液元件是一组金属波纹板,其性能指标主要有:液滴去除率、压降和最大允许气流量(不发生再夹带时),还要考虑是否易发生污垢堵塞。液滴去除的物理机理是惯性碰撞,液滴去除率主要受液滴自身惯性的影响。通常用于:(1)湿法烟气脱硫系统,设在烟气出口处,保证脱硫塔出口处的气流不夹带液滴;(2)塔设备中,去除离开精馏、吸收、解吸等塔设备的气相中的液滴,保证控制排放、溶剂回收、精制产品和保护设备。现在波纹板除雾器的分离理论和数学模型已经基本成熟,对其研究集中在结构优化及操作参数方面来提高脱液效率。国内学者杨柳等对除雾器叶片形式作了比较,发现弧形叶片与折板形叶片的除雾效率相近,弧形除雾器的压降明显小于折板形,故弧形叶片除雾器的综合性能比折板式除雾器要好。 三、介质过滤分离 通过过滤介质将气体中的液滴分离出来的分离方法即为过滤分离。由于过滤介质相对普通折流分离来说具有大得多的阻挡收集壁面积而且多次反复折流液体很容易着壁,所以其分离效率比普通的折流分离高而且结构简单只需制作一个过滤介质架,体积比普通的折流分离器要小但是它的分离负荷范围更窄超过气液混合物规定流速或者液气比后分离效率会急剧下降,过滤介质分离器的阻力比普通的折流分离器大而且还具有工作不稳定容易带液填料易碎易堵等缺点。过滤型气液分离器具有高效、可有效分离 0.1~10μm 范围小粒子等优点,当气速增大时,气体中液滴夹带量增加,甚至,使过滤介质起不到分离作用,无

旋流板式气液分离器的放大规律解读

第3卷第5期过程工程学报 Vol.3 No.5 2003年10 月 The Chinese Journal of Process Engineering Oct. 2003 收稿日期:2003–03–12, 修回日期:2003–05–06 基金项目:中国石油化工股份有限公司科技开发资助项目(编号: 300023 作者简介:魏伟胜(1962–, 男, 广东省五华县人, 硕士, 高级工程师, 主要研究催化反应工程, E-mail: weiws@https://www.doczj.com/doc/956100669.html,. 旋流板式气液分离器的放大规律 魏伟胜,樊建华,鲍晓军, 石冈 [石油大学(北京中国石油天然气集团公司催化重点实验室, 北京 102200] 摘要:对旋流板式气液分离器在3种规模、18种旋流板结构下进行了模型实验研究,考察了旋流板结构参数(径向角、仰角和叶片数量对分离效率和压降的影响,并建立了预测分离器压降的关联式,为旋流板结构参数的确定提供了依据. 工业应用的标定结果表明分离器压降预测式是准确的,它可用于工业气液分离器的放大设计. 关键词:气液分离;旋流板;分离效率;压降 中图分类号:TQ028.4 文献标识码:A 文章编号:1009–606X(200305–0390–06 1前言 旋流板式气液分离器是一种典型的基于离心分离原理的气液分离器[1,2]. 分离器的主体为一圆柱形筒体,上部和下部均有一段锥体,见图1. 在筒体中部放置的锥形旋流板是除雾的关键部件,其结构如图2所示(详细结构可参考文献[3]. 旋流板由许多按一定仰角倾斜的叶片放置一圈,当气流穿过叶片间隙时就成为旋转气流,气流中夹带的液滴在惯性的作用下以一定的仰角射出而被甩向外侧,汇集流到溢流槽内,从而达到气液分离的目的. 叶片在竖直方向的倾斜程度用仰角α表示,在径向的排列方式用径向角β表示. 叶片数量、仰角α和径向角β是旋流板的3个重要参数.

低温分离器用于天然气井口气脱水脱烃装置选型和设计方案

高效低温分离器用于天然气井口气脱水脱烃装置选型和设计方案 诺卫能源技术(北京)有限公司 在井口天然气项目中,均建设有天然气脱水脱烃橇块装置。脱水脱烃橇块装置,主要作用是脱除原气携带的易凝析液,包括水和多碳烃。关于井口天然气脱水脱烃橇块装置原气分离核心设备,主要涉及到前冷分离器和后冷分离器,尤其是后冷分离器的选型和设计。设计院了解诺卫能源技术公司在国内外不少天然气项目上设计提供过诸多类型的天然气分离器,故而向诺卫能源技术公司请求提供技术方案。 这里,提供一套天然气处理厂脱水脱烃单元简易流程图,供大家一起分享,分 析和讨论。 附天然气脱水脱烃单元简易流程图: 从流程图可知,前冷分离器,即原料气分离器,主要用于脱除原料天然气中经 前冷器后形成的凝析油液滴液沫。后冷分离器,即低温分离器,主要用于脱除天然气经乙二醇喷淋脱水后气相挟带的乙二醇/水液滴液沫。 原料气分离器和低温分离器,均用于高效脱除气流中携带的液滴液沫。相对而言,原料气经前冷形成的液滴液沫量相对较少,而低温分离器则需要处理带液量高的乙二醇喷淋洗涤的天然气。从处理气流中不同带液量工况来看,原料气分离器宜采用立式结构,而低温分离器则宜采用卧式结构。 故建议设计院和天然气处理厂在今后的新项目中,将原来采用的立式结构的低 温分离器调整为卧式结构。卧式结构的分离器,在相同壳体尺寸的分离器储液能力要大不少。

由于天然气原气来自于集气单元,天然气不仅含有凝析油和水,还含有高粘性 凝胶质和颗粒物,脱水脱烃装置这种工况下的分离器内件,建议采用多因子旋流子母分离除沫器或羽叶高效除沫除雾分离器等高稳定分离效率和高抗堵塞性能的动 力学高效气液除沫分离技术设备,不宜采用传统的丝网式、滤网式、滤芯式除沫分离内件设备。后者的内件很容易堵塞,运行压降高,内件更换维护频繁,运行维护费用高,且还需设置备机以便在滤芯更换期间切换使用。 并且,由于上游集气单元及更前端工况变化,工况波动大。且工艺设计工况, 与设备实际运行工况差别较大。因而,必须选用操作弹性大、分离效率高、运行稳定性高的动力学高效气液除沫除雾分离器,如G50型羽叶除沫除雾分离内件或G54型多因子旋流子母分离除沫内件。上世纪中叶以来的第一代雪弗龙简易光板折流板、旋流板、大直径旋风分离器等,都不太适应大幅波动的工况。 大型特大型天然气处理厂往往采用TEG脱水工艺。TEG脱水工艺装置属于塔 系脱水,包含吸收塔、闪蒸塔、再生塔、汽提塔等塔系混成处理,适于大型、特大型天然气生产和集输处理,比如20亿立方以上规模项目,即采用TEG脱水方式,我们为客户在SNG项目提供的脱水技术即为TEG法。TEG脱水塔系,操作压力 不能太高,否则,塔体设备壁厚太大,投资太高。而乙二醇法脱水工艺适于井口高压超高压工况尤其是井口天然气脱水脱烃,装置易于小型橇块化,国内外不少井口气处理工艺均沿用该工艺。不排除未来的TEG改进工艺用于这类工况压力很高的 井口气项目。 关于动力学分离技术及其内件设计计算,需要提醒大家如下: 国内外有的厂家也开始模仿采用诺卫能源技术公司公司的羽叶除沫除雾分离内件。但是,羽叶除沫除雾分离技术,是基于其精准动力学分离系统平台设计技术获得的设计结果和组态形式。必须根据不同温度和压力工况下的气相组成和平均分子

气液旋流器的分离性能

收稿日期:2008-12-08 基金项目:国家/8630高技术研究发展计划项目(2006AA06Z224) 作者简介:金向红(1965-),男(汉族),河南驻马店人,副教授,博士,研究方向为多相流分离技术。 文章编号:1673-5005(2009)05-0124-06 气液旋流器的分离性能 金向红1,2 ,金有海1 ,王建军1 ,孙治谦1 ,陈新华 1 (1.中国石油大学多相流实验室,山东东营257061;2.安徽理工大学化工系,安徽淮南232001) 摘要:旋流器内气液两相的分离过程是液滴离心沉降和碰撞聚结、破碎的复合过程。对液滴的聚结、破碎机制进行分析,试验验证液相物性、流场强度对液滴聚结、破碎以及旋流器分离性能的影响。结果表明:液相黏度对涡流场中液滴的破碎影响很大,黏度增大分离效率上升;湍流强度是导致旋流场液滴破碎的主动力,当流量达到一定值时,高湍流强度导致液滴破碎,分离效率随流量上升开始急剧下降;液滴聚结、破碎过程对分离器压力降影响不大。关键词:气液旋流分离器;分离效率;液滴;团聚;破碎中图分类号:TQ 05118;TE 969 文献标识码:A Separation perfor m ance of gas -liqui d cycl one separator JI N X iang -hong 1,2 ,JI N You -ha i 1 ,WANG Jian -j u n 1 ,S UN Zh-i qian 1 ,C HEN X i n -hua 1 (1.Institute of M u ltiphase F low in China Universit y of P etro leu m,D ongy ing 257061,China ; 2.D e p ar t m ent of Che m ical Eng i neering ,A nhui U ni ver sity of Science and T echno logy,H uainan 232001,Ch i na)Abstrac t :T he separa ti on o f gas -li qu i d t w o -phase flo w i n t he cyc l one separator is a co m pound process of centr ifuga l sepa ra -ti on ,coa l escence and breakup of drop l e ts .The m echan i s m of drop l e ts coa l escence and breakup w ere discussed .The effects o f liqu i d v iscosity and t urbulence i n tensity on drop lets coa lescence ,breakup and separation perfor m ance we re proved by ex -per i m ents .The experi m enta l results s how t hat the li qu i d v iscosity has much eff ec t on drop l e ts breakup in vortex field ,and the separation effic i ency i ncreases w ith t he li quid v i sco sity i ncreasi ng .T he turbulence i ntensity is the m ai n f o rce w hich breaks up the drop l e ts .W hen the fl ow rate i s up to so m e extent ,the high t urbulence i ntensity breaks up t he droplets ,then t he sepa ra -ti on effic i ency w ill decrease sha rply .W h ile the coa l escence and breakup of droplets has little effect on pressure f a ll i n cy -clone separator . K ey word s :gas -li qui d cyc l one sepa rato r ;separa ti on efficiency ;li qui d drop l ets ;coa lescence ;breakup 传统上,旋流器内气液两相的分离过程只是从 离心沉降来理解,但研究者在试验研究和工程应用中发现,气液旋流分离器内流场是三维强旋湍流,在流场内分散液滴因气液两相的密度差而受到比较大的离心力,产生离心沉降,同时在湍流场内液滴之间又会产生剧烈的碰撞、团聚、破碎和扩散,两相的分离过程是旋流场中液滴离心沉降和碰撞聚结、破碎的复合过程。其分离性能不仅受液滴的离心沉降影响,还受湍流场中液滴间碰撞、团聚、破碎以及液相扩散的影响。试验表明,对于稀相气液两相流,液滴间的碰撞、团聚、破碎不仅与气液两相时 均流场有关,还与流场湍动强度、含液浓度以及分散 液相的密度、黏度、表面张力等物性密切相关[1-2] ,但受试验条件限制,目前对液滴聚结、破碎的机制认识还不透彻,单从试验和理论上还很难得出准确的解释[3-7] 。笔者通过试验考察稀相状态时液相黏度对气液旋流器分离性能的影响,并对三维强旋湍流中分散液滴的碰撞、团聚和破碎机制进行分析。 1 液滴在旋流场的聚结与破碎 111 液滴在旋流场的碰撞聚结 旋流器内部是三维强旋湍流场,其切向速度分 2009年 第33卷 中国石油大学学报(自然科学版) V o.l 33 N o .5 第5期 Journa l o f China U n i versity of Pe tro leum O ct .2009

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

以溢流锥降液旋流板技术原理及应用简况

一、旋流板技术的原理及应用简况 1970年代我们为浙江松门盐场海水提溴装置的设计、开车而进行Φ300湍球塔试验时,发现空塔气速大于3m/s后,雾沫夹带愈来愈严重,以至无法坚持实验。我们分析:一般的除雾方法不能适应或结构复杂,另一方面,气速高,正好利用离心原理除雾。于是制作了形状像风车叶轮的旋流除雾板(参看图2顶部),放在塔的近顶部,它本身不动,而是使气流通过它以后发生旋转,其中夹带的雾滴在离心力的作用下甩向塔壁,能得到分离。试用下来效果良好,保证了湍球塔试验的进行。 72年初对旋流板除雾器的性能及结构作了进一步的试验和改进,在空塔气速3~5m/s下,测得其除雾效率在99%以上,压降约10~30mm水柱【1】。对应于板的开孔率约30%,穿孔气速约10~17m/s,相当于旋风分离器内的中、低速。它比旋风器简单,阻力也较小。试验中还观察到:由于旋流叶片的折流作用,一小部分雾滴直接碰撞到叶片上而被分离。 在除雾试验取得成功的基础上,考虑到旋流板负荷高(空速大)、压降低的特点,如用于气液接触,有可能突破一般塔板的负荷上限: (1)雾沫夹带。从旋流板良好的除雾性能,可以估计到它的夹带限应比一般塔板高很多。 (2)淹塔或液泛。气、液在塔板上接触以后,由于离心力的作用,不仅气流内的液滴易于分离,而且液流内的气泡也易于分离,应能提高溢流管的通过能力 及淹塔限。 (3)压降。旋流板因开孔率大而自身的阻力压降相当小,作塔板使用时属喷射型,液层薄,湿板压降也应当比较小。 从传质、传热的角度看,喷射型塔板的效率一般较低,而且旋流板现为片型结构,片与片间的距离较大,这是不利的因素;但在离心力场内,液滴与气流间有附加的相对运动,这是有利因素。板效率究竟有多大?有关因素的影响如何?是它能否实际应用的关键之一,需通过试验考察。 还考虑到用作塔板时,有利于除雾板的主要特征是: (1)通过塔板的液滴负荷要大得多。 (2)不仅要求除雾,更主要的是提供尽可能良好的气液接触机会。 1975年仍在Φ300塔中,对不同结构的旋流塔板用空气—水系统进行了流体力学及传

旋流分离器在石油化工中的应用.

Equipment Manufactring Technology No.12, 2008 旋流分离器常用于选别、分离、分级等目的, 是工业生产中广泛使用的一种流体机械。根据其工作介质的不同, 可分为旋风分离器和旋液分离器。 前者工作介质为气体, 由于结构简单, 造价低廉, 性能比较稳定, 故在超细粉体制备中常用做专用分级机和收尘捕集器; 后者工作介质为液体, 已有一个多世纪的发展历史, 使用也很广泛, 如选煤厂洗煤、造纸厂洗浆、石油开采业油水分离等[1]。由于旋流分离器内的流型比较复杂, 加之影响旋流分离过程的某些现象仍未完全清楚,为使选用或设计的旋流器的性能满足工艺要求, 使用者必须根据自身的生产实际进行适当的换算, 以选择适当的设备。同时, 目前对旋流分离器的理论和实验研究还无法做到深入和全面, 理论研究与实验测试的结果难于统一,很多理论还需要实践的不断检验。 1旋流分离器的工作原理与特点 1.1旋流分离器的工作原理 旋流分离器, 简称旋流器, 是一种利用离心沉降原理, 将非均相混合物中具有不同密度的相分离的机械分离设备。旋流分离器的基本构造为 1个分离腔、 1~2个入口、 2个出口。分离腔主要有圆柱形、圆锥形、柱 -锥形三种基本形式。柱-锥形又有单锥形和双锥形两种。入口有单入口和多入口数种。但在实践中, 一般只有单入口和双入口两种。就入口与分离腔的连接形式来分, 入口又有切向入口和渐开线入口两种。出口一般为两个, 而且多为轴向出口, 分布在旋流分离器的两端。靠近进料端的为溢流口, 远离进料端的为底流口。旋流分离技术可用于液液分离、气液分离、固液分离、气固分离等。工作时, 混合物料由入口切向送入旋流器圆筒部旋流腔内, 在圆筒中形成高速回转运动, 产生离心力场, 在离心力作用下, 混合物内质量较大的部分,发生离心沉降,被抛向器壁而失去动能, 在重力作用下向下旋动, 沉降到圆筒壁上并滑向圆锥体, 经由底流出口排出; 其他质量较小的部分, 由于受离心力作用

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

羽叶分离器用于加氢脱硫单元循环氢脱硫塔严重带液问题解决方案

羽叶分离器用于加氢脱硫单元循环氢脱硫塔严重带液问题解决方案 诺卫能源技术(北京)有限公司罗力 最近,有企业咨询其加氢脱硫单元循环氢脱硫塔严重带液,寻求解决之道。其实,塔顶气相带液严重的问题,不仅在石化行业加氢装置胺法脱硫塔上存在,在低温甲醇洗脱硫塔、焦炉气钛箐钴湿法脱硫塔、LNG项目MDEA脱碳塔、天然气TEG 脱水塔、粉煤气化水洗塔、硫酸磷酸尾气洗涤塔、化工蒸馏塔、闪蒸塔等装置均不同程度存在,严重者塔内跑液超过300升/小时,企业运行成本居高不下。大家一起来从工艺原因和设备原因进行分析。 先从工艺上看,塔内操作温度波动、压力波动和气体流量波动因素,可以从显示仪表上查证。温度升高、压力降低,即便压缩机显示的流量不变,塔内实际工况气体体积流速、线速度已经增大,这可是仪表无法直接显示的。实际上,工况波动往往难免,则需要从设备技术上对症下药加以预防。 再从技术设备工装上分析。目前,不少行业技术革新很慢,还在沿用上世纪中叶技术,只有近年发展起来的一些新兴行业试图挑战传统行业而采用新技术设备。多数传统行业企业前述塔系气相采出口气液分离内件,仍然在采用十分简陋的丝网除沫器、筛网除沫器、鲍尔环填料除沫器等分离介质搭桥形成的“孔格”阻挡拦截式分离。先不说这些内件本身易于腐蚀断碎堵塞过流通道,单就入口原料气携带的包括催化剂破碎颗粒物和反应形成的凝胶质也会堵塞过流通道。其次,这类传统阻挡拦截式气流除沫分离技术内件,其操作弹性上限为额定负荷110%;而实际运行工况中,由于温度升高、压力降低、气流增速,以及前述因素导致的气流带液量增

加,往往会突破110%额定负荷上限,造成分离内件间或“液涌”,塔内液随气流逃出塔系。再者,如果塔系出口管线下游设备还设置有分离器,再如果分离器内件与塔内除沫分离内件同属一代设备,分离器只能起到缓冲罐储存段塞流作用,而较难实现对气相中液沫拦截捕集。 我们把视线切换到国内近年新兴行业上,如煤制烯烃、煤制油等新型煤化工项目,其气液分离多采用羽叶式分离技术,又如国外甲醇合成四大工艺包戴维、鲁奇、卡萨利、拓普索,均被推荐或指定采用。羽叶气液分离技术及设备,较上述传统 分离技术设备体现出的技术经济优势有:1、羽叶分离器属于动力学分离技术,不 是象传统分离技术通过介质表面孔径阻挡拦截方式实现分离,从而其抗堵塞能力很优秀、定量分离能力和效率也很强。2、不需要备机,分离内件可以在大修期间简 易维护,不需更换新内件,运行成本极低。3、羽叶气液分离技术,其操作弹性区 间为10%~125%,G50型羽叶叶片专利技术内件操作弹性上限超过额定负荷140%,较上述传统分离技术大幅提升。4、从内件组态结构上看,气流通过内件组时,分 离下来的液体与分离纯化后的气流分别处于两个独立的流道、且分离后的液体和气体在独立的两个流道中以相互垂直的方向流动,两者不见面、不在形成“二次挟带和返混”;不像传统丝网分离内件分离出来的液滴又如下暴雨般落回上升的气流,被气流重新带回丝网内件进行分离,如此反复。羽叶叶片专利技术内件结构,决定其性能远优于传统分离技术。我方已为国内外诸多项目直接或间接提供分离技术方案设计和核心设备制造供货,该设备在中国大型项目上的应用,如中石化中天合创煤制烯烃项目、GE承包的邯钢焦化厂焦炉气改造项目、神华宁煤煤制油项目等, 已有十分成功应用。 国内传统项目数量多、规模也不小,在当下经济技术转型时期,建议国内类似项目业主和设计院,可抓住机会实现技术升级换代,形成我国类似项目新的技术升

气液两相流的分离

气液两相流的分离方法综述 摘要:本文从气液两相流分离方法出发,分析了6种最常见的气液分离方法。研究了各种气液两相流分离方法的原理,介绍了各方法的优缺点及利用这些方法制造出的气液分离器的结构,并介绍了各种分离方法适用的领域,并针对部分方法提出了可能的改进方法。 关键字:气液两相流分离机理气液分离器 引言 气液两相流的分离主要在气液分离器中进行,而气液分离器采用的分离结构很多,其分离方法主要有6种,分别是:1、重力沉降;2、折流分离;3、离心分离;4、丝网分离;5、超滤分离;6、填料分离等。但综合起来分离原理只有两种:一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 下面就每种方法的原理进行介绍。

1.重力沉降 1.1 重力沉降原理 气液重力沉降分离是利用气液两相的密度差实现两相的重力分离,即液滴所受重力大于其气体的浮力时,液滴将从气相中沉降出来,被分离。由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇聚在一起通过排放管排出。 1.2 重力沉降式气液分离器 图1 立式和卧式重力沉降气液分离器简图 重力沉降分离器一般有立式和卧式(图1)两类,它结构简单、制造方便、操作弹性大,但操作需要较长的停留时间,分离器体积大,笨重,投资高,分离效果差,只能分离较大液滴,其分离液滴的极限值通常为100μm,主要用于地面天然气开采集输。

旋流分离器

目前管线常使用的分离设备 1、旋风分离器-效果一般、范围小 2、多管干式分离器-排尘效果差 3、循环分离器-效果一般 4、过滤分离器-效果较好 5、卧式气液分离器-效果好 6、立式重力分离器-使用量大、范围大 旋流分离器 简介:XL旋流分离器是在常用旋风分离器的基础上发展起来的,广泛适合于气、液和气、固混合物分离的高效分离技术。在旋流分离器内部有机地将离心分离,过滤分离等技术集合起来,形成全新的高效分离,真正实现了过程容器根据生产需要“全非标”设计. 符号及含义 L E XL ×/ 温度范围(C常温) 设计压力,MPa 筒体高度,mm 筒体公称直径,mm ,S三相分离) 、W卧式) 注释: ①温度范围与使用条件有关,不同的温度范围要选用不同的材质 目前用C表示工作介质温度为常温(-29~200℃),D表示低温(小于-30℃),Z表示中

Ⅰ型:单级XL旋流分离器 L E XL Ⅰ D × H — P / C Ⅱ型:单级XL旋流过滤分离器 L E XL Ⅱ D × H — P / C Ⅲ型:两级XL旋流分离器 L E XL Ⅲ D × H — P / C

旋流式分离器的核心部件是旋流筒,旋流筒有多种结构形式以满足不同的工况和不同的介质分离要求 需净化的气体进入螺旋形轨道后,在螺旋形轨道中向上旋转运动,旋转上升进入筒体上部,在离心力的作用下,大量液体或固体颗粒被甩向筒体下部的壁面,气体进入筒体上部后,旋转分离的颗粒甩向筒体上部的内壁面,并向下进入集液室中,从而达到了净化气体的作用。由于气体的旋转直径很小,在较小的气体流量和较低的气速下仍有较强的离心力场,确保了分离的效果。 XL漩流分离器的特点 (1)对液体颗粒与固体颗粒有较高的分离效率 XL漩流分离器在原则上采用在螺旋形轨道中低速旋流初步分离,并在第二次风的作用下旋流分离细小颗粒的设计思想消除了诸如液体夹带、剪切破碎、气流雾化、卷吸等因素的影响,保证了设备的分离效率,可以分离3-5um的固体颗粒和10um以上的液体颗粒。 由于固体与液体的密度差较大,所以旋流分离气对于气固分离同样有很高的效率,实验及实践都证明气具有较高的气液和气固分离效率。 (2)弹性大,波动范围40-120% 传统分离器设备对处理量的变化范围要求的比较严格,但是实际生产中要求处理量往往变化

机械毕业设计1708柱式气液旋流分离器设计

柱式气液旋流分离器结构设计 柱式气液旋流分离器设计 【摘要】平衡钻井技术有利于防止钻井液漏失、能及时发现和保护油气层,并能提高机械钻速等。但是由于欠平衡装备价格昂贵,制约着这一技术的发展。鉴于这种现状,自行设计了台应用于欠平衡钻井的管柱式气液旋流分离器。管柱式气液旋流分离器是一种带有倾斜切向入口及气体、液体出口的垂直管。它依靠旋流离心力实现气、液两相分离,与传统的重力式分离器相比,具有结构紧凑、重量轻、投资节省成本等优点,是代替传统容积式分离器的新型分离装置。在气液两相旋流分析的基础上,建立了预测分离性能的机理模型,该模型包括了入口分离模型、旋涡模型、气泡及液滴轨迹模型;依据机理模型,提出了管柱式旋流分离器工艺设计技术指标和工艺步骤.设计根据管柱式旋流分离器的机理模型以及设计工况,完成了管柱式旋流分离器的结构设计、强度分析、理论校核、焊接工艺设计以及分离器内气液两相流的数值模拟,为工程设计和理论设计提供一定的理论依据。 【关键词】欠平衡钻井技术旋流分离器气液两相流动分离机理 模型设计

Gas-liqulid Cylindrical Cyclone Author: Wang maohui(School of Mechanical Engineering, Yangtze University) Tutor: Feng Jin (School of Mechanical Engineering, Yangtze University) 【Abstract】The balanced well drilling technology is advantageous in preventing loss of circulation, can promptly discover and protect hydrocarbon zone ,also can enhance the penetration rate. But the expensive under balance equipment has restricted this technology’s s development. In view of the situation,I designed a gas-liqulid cylindrical cyclone independently for the balance under drilling .The GLCC is one kind has leans the bevelling to the entrance and the gas, the liquid exportation hangs the ascending pipe. It can realize the gas-lip fluid separation depends upon the cyclone centrifugal force. compared with the traditional gravity type separator, which has the compact structure, the lighter weight, the smaller investment and so on.It’s a new disengaging equipment which replace the traditional volume type separator. On the basis of the gas-liquid two-phase cyclone analyses , has established the forecast separation performance mechanism model, this model include the entrance separation model, the whirlpool model, the air bubble and the bubble path model; Based on the mechanism model, proposed the tube column type cyclone separator technological design technical specification and the craft step.The design basis tube column type cyclone separator mechanism model as well as the design operating mode, has completed the tube column type cyclone separator structural design, the intensity analysis, the theory examination, in the welding technological design as well as the numerical simulation of the gas-liquid two phase floe in the separator simulations, provide the certain theory basis for the engineering design and the theoretical design. 【Key words】:Under balanced drilling technology ,cyclone separator, Gas-Liquid two-phase flow, separation mechanism odel ,Design

相关主题
文本预览
相关文档 最新文档