当前位置:文档之家› 柴油加氢精制催化剂的研究

柴油加氢精制催化剂的研究

柴油加氢精制催化剂的研究
柴油加氢精制催化剂的研究

柴油加氢精制催化剂的研究

F q’!!u G!H*e"Q I P!J4L!

(!#中国石油大庆石化公司研究院,黑龙江大庆!$%&!’;

"#大庆石化总厂建设公司,黑龙江大庆!$%&!!)

摘要:介绍了柴油加氢精制催化剂载体的选择、扩孔及改性。利用研制的载体制备出了柴油加氢催化剂,并在!(()*小型加氢装置上进行了活性评价,其加氢生成油的硫含量+,("-.

-,总芳烃含量+!(/0。并在大庆石化公司炼油厂两套柴油加氢装置实现首次工业应用成功。

!前言

随着全球环保意识的提高,提供清洁燃料油已成为炼油加氢技术面向"!世纪的严峻任务。因此,对柴油的质量提出更高的要求,开发高活性的加氢精制催化剂来脱除馏分油中的硫、芳烃等杂质势在必行,国内比较好的柴油加氢精制催化剂,在加氢评价过程中都存在硫含量和芳烃含量偏高等问题。为此,我们研究院从载体研制入手,进行了载体的选择、扩孔、改性等几个方面的研究,经过大量试验研制出适合制备低硫低芳烃柴油催化剂的载体,利用该载体制备出的加氢精制催化剂,活性优于参比剂,加氢生成油的硫含量小于,(11)。在国内居领先水平,该催化剂在大庆石化公司炼油厂两套柴油加氢装置实现首次工业应用成功。

"试验部分

"#!K_C+^[h k Q

采用国产氧化铝干粉,在常温下与选择好的胶溶剂、助挤剂、粘和剂等配制成水溶液,然后捏和,在双镙杆挤条机上反复挤压,最后利用2!#,))的三叶草形孔板挤条成型,干燥、焙烧制备载体;在一定反应温度下,将几种提供活性组分的金属盐溶解,调34值后,浸渍到载体上,然后干燥、焙烧制成催化剂。

"#"+^[K_C+^[h-_il

将制备好的载体及催化剂利用567法分析载体的孔容、比表、孔半径、孔分布;同时测定载体的机械耐压强度。

"#$5D h o C[U0

采用!(()*小型加氢装置进行评价,原料油取自大庆石化公司炼油厂焦化车间。原料油的性质见表!。

"#%Vb0-_h X M

加氢生成油利用荧光指示计法测定油品芳烃;*89"微库仑测定仪测定油品中硫含量。

!韩志波(!:$,—),女,工程师,主要从事馏份油的加氢催化剂研究工作。电话(’,:9$&’%!,"。

:"!

表!

!!评价催化剂所用原料油的性质

!

!!!!!!性

焦化和重催混合柴油

质焦化和重催混合柴油

密度!("!#$%)&’()*(总硫!(!"!")+%,’(总芳烃!-.

%,’%实际胶质!($"!*&&$/)

*)&’)

馏程!01&.2,13&.%1*31.

%++

"

试验结果与讨论

"#!

@^B L h l Q

经过大量的实验和资料的调查发现,影响催化反应性能的主要因素,不是催化剂的总孔

容,而是催化剂的孔分布即有效孔容[*]。载体的性能影响催化剂的特性,其中最直接的影响

因素是载体的孔结构和机械强度。因此,根据加氢精制生产低硫、低芳柴油的原料要求,经过试验调整孔分布,使其有利于延长催化剂的运转周期。优化的孔分布对于提高表面积和防

止扩散限制是非常重要的[2]。国内具有代表性的两个催化剂厂生产的氧化铝粉进行物性分析

对比,结果见表2。从表2的结果可知,*4氧化铝的表面积、孔容和平均孔径高于24氧化铝。*4氧化铝在孔分布方面比24氧化铝相对集中,故选择*4氧化铝比较理想。另外,前者很容易粉碎,而后者较难。

表$

!!两种氧化铝粉的物性对比数据

分析项目*4氧化铝24氧化铝分析项目*4氧化铝24!

!!!!!!!!!氧化铝比表面积!($2!")%13%12孔容积!($5!")*’&*&’,,平均孔半径!6$1’*

)’)

孔分布!.*726$&&’+&27%6$

*’)&

*’(&

%7)6$1’++,’),)716$,’)*(’%+17*&6$%(’,)%1’,)*&72&6$%2’3)%%’++82&6$

*%’(1

*2’%,

"#$MN-}R K _-rh +,

在其他试验条件不变的情况下,考察不同的焙烧温度对载体物化性质的影响,其结果见

表%。从表%的结果可知,随着焙烧温度的提高,比表面积下降,孔容积和孔半径增大,但强度在!9*&&0时却出现一个峰值,即当焙烧温度为!9*&&0时,机械强度为*+:!$$,故选择!9*&&0为较佳焙烧温度。

表"

烧温度对载体性质的影响

焙烧温度!0

比表面积!($2!")

孔容积!($/!")

孔半径!6$

强度!(:!$$)

!2,3&’),%’&**!91&2,&&’)(%’2*)!9*&&2+(&’1&%’1*+!9*1&211&’1&)’&*2!92&&

2),

&’1*

)’,

*&

"#"K _EGR K _j -h +,

为了使催化剂的孔容增大,提高容纳胶质的能力,在载体成型的基础上,对载体进行扩

孔处理[%]

。分别采用活性炭和高聚物及物质;等进行扩孔处理。试验证明,物质;比较适合扩孔。因为物质;的分子量比较大,在挤条时加入,占据了一定的空间,在活化时该物

&

%*

质又逸出,使载体的孔容增大,堆积密度降低,达到了扩孔的目的。对加入不同含量物质!的载体进行成型试验,物性分析结果见表"。

表!扩孔剂"的不同含量对载体的影响

物质!含量#$%&’()*(&+&(&

比表面积#($,#-).,’.,+.+).+,

孔容积#($/#-)&(0’&(0*&(’+&(’,

孔分布#%

+1,2$’(*+’(+"’("&)(3,

,1.2$".(3""+()).*()+.*(,,

.1"2$,*(&’,3(3*.+(*&..()"

"1)2$3(0"+&(+.+&("0+&(&0

)1+&2$’(0&’(33*(.0*()3

+&1,&2$,(.0,()3,(*&.(&,

,&1.&2$&()*&(0,&(0’&(0)压碎强度#(4#$$)+"0+.’+,)3"

2$

从图!和图"中芳烃、硫含量可以看出,研制的柴油加氢精制催化剂的活性在"#$% "&$’明显好于参比!催化剂,而参比!的活性又优于参比(催化剂的活性,达到了指标要求的硫含量)*$!+,+,总芳烃含量)($-.。

!结论

(()通过对氧化铝的选择、载体的扩孔、焙烧温度等的考察,研制具有适宜的孔容、较好的孔结构及孔径分布的柴油加氢精制催化剂。

(!)研制的催化剂经过加氢评价,结果表明,研制的催化剂性能优于国内的参比剂,且已实现了脱硫、脱芳烃的目的,柴油中的硫含量)*$!+,+,总芳烃含量)($-.。

参考文献

(李大东/石油化工,(0&0,(&(1):2&&

!董广明译/石油炼制译丛,(0&*,(&):!$

"李大东/石油化工,(0&1,(#(!):(!1

!"(

120万吨柴油加氢精制装置操作规程讲义

120万吨/年柴油加氢精制装置操作规程 第一章装置概况 第一节装置简介 一、装置概况: 装置由中国石化集团公司北京设计院设计,以重油催化裂化装置所产的催化裂化柴油、顶循油,常减压装置生产的直馏柴油和焦化装置所产的焦化汽油、焦化柴油为原料,经过加氢精制反应,使产品满足新的质量标准要求。 新《轻柴油》质量标准要求柴油硫含量控制在0.2%以内,部分大城市车用柴油硫含量要求小于0.03%。这将使我厂的柴油出厂面临严重困难,本装置可对催化柴油、直馏柴油、焦化汽柴油进行加氢精制,精制后的柴油硫含量降到0.03%以下,满足即将颁布的新《轻柴油》质量标准,缩小与国外柴油质量上的差距,增强市场竞争力。 2;装置建即22351m×/年延迟焦化装置共同占地面积为217m103m该项目与50万吨设在140万吨/年重油催化裂化装置东侧,与50万吨/年延迟焦化装置建在同一个界区内,共用一套公用工程系统和一个操作室。 本装置由反应(包括新氢压缩机、循环氢压缩机部分)、分馏两部分组成。 4t/a。×10 装置设计规模:120二、设计特点: 1、根据二次加工汽、柴油的烯烃含量较高,安定性差,胶质沉渣含量多的特点,本设计选用了三台十五组自动反冲洗过滤器,除去由上游装置带来的悬浮在原料油中的颗粒。 2、为防止原料油与空气接触氧化生成聚合物,减少原料油在换热器、加热炉炉管和反应器中结焦,原料缓冲罐采用氮气或燃料气保护。 3、反应器为热壁结构,内设两个催化剂床层,床层间设冷氢盘。 4、采用国内成熟的炉前混氢工艺,原料油与氢气在换热器前混合,可提高换热器的换热效果,减少进料加热炉炉管结焦,同时可避免流体分配不均,具有流速快、停留时间短的特点。 5、为防止铵盐析出堵塞管路与设备,在反应产物空冷器和反应产物/原料油换热器的上游均设有注水点。 6、分馏部分采用蒸汽直接汽提,脱除HS、NH,并切割出付产品石脑油。32 1 120万吨/年柴油加氢精制装置操作规程 7、反应进料加热炉采用双室水平管箱式炉,炉底共设有32台附墙式扁平焰气体燃烧器,工艺介质经对流室进入辐射室加热至工艺所需温度,并设有一套烟气余热回收系统,加热炉总体热效率可达90%。 8、本装置采用螺旋锁紧环双壳程换热器,换热方案安排合理,以温位高、热容量大与温位较低、热容量较小的物流进行换热,合理选择冷端温度,使热源量最大限度地得以利用,使总的传热过程在较高的平均传热温差下进行。 9、催化剂采用中石化集团公司石油化工研究院开发的RN-10B加氢精制催化剂。催化剂采用干法硫化方案;催化剂的再生采用器外再生。

柴油加氢精制工艺(工程科技)

柴油加氢精制工艺 定义:加氢精制是指在一定温度、压力、氢油比和空速条件下,原料油、氢气通过反应器内催化剂床层,在加氢精制催化剂的作用下,把油品中所含的硫、氮、氧等非烃类化合物转化成为相应的烃类及易于除去的硫化氢、氨和水。提高油品品质的过程。 石油馏分中各类含硫化合物的C—S键是比较容易断裂的,其键能比C—C或C—N键的键能小许多。在加氢过程中,一般含硫化合物中的C—S键先行断开而生成相应的烃类和H2S。但由于苯并噻吩的空间位阻效应,C-S键断键较困难,在反应苛刻度较低的情况下,加氢脱硫率在85%左右,能够满足目前产品柴油硫含量小于2000ppm 的要求。 柴油馏分中有机氮化物脱除较困难,主要是C-N键能较大,正常水平下,在目前的加氢精制技术中脱氮率一般维持在70%左右,提高反应压力对脱氮有利。 烯烃饱和反应在柴油加氢过程中进行的较完全,此反应可以提高柴油的安定性和十六烷值。 当然,在加氢精制过程中还有脱氧、芳烃饱和反应。加氢脱硫、脱氮、脱氧、烯烃饱和、芳烃饱和反应都会进行,只是反应转化率纯在差别,这些反应对加氢过程都是有利的反应。但同时还会发生烷烃加氢裂化反应,此种反应是不希望的反应类型,但在加氢精制的反应条件下,加氢裂化反应有不可避免。目前为了解决这个问题,主要是

调整反应温度和采用选择性更好的催化剂。 下面以我厂100万吨/年汽柴油加氢精制装置为例,简单介绍一下工艺流程: 60万吨柴油加氢精制 F101D201 D102 D101 SR101 P101P102E103E101 R101 K101 D106 E104 D103D104 D105 D107 P103 P201 E201A202 P202 A201 K101 E101E102E103A101 产品柴油 循环氢 低分气 C201 催化汽油选择性加氢脱硫醇技术(RSDS技术) 催化汽油加氢脱硫醇装置的主要目的是拖出催化汽油中的硫含量,目前我国大部分地区汽油执行国三标准,硫含量要求小于150ppm,烯烃含量不大于30%,苯含量小于1%。在汽油加氢脱硫的过程中,烯烃极易饱和,辛烷值损失较大,针对这一问题,石科院开发了RSDS技术。本技术的关键是将催化汽油轻重组分进行分离,重组分进行加氢脱硫,轻组分碱洗脱硫。采取轻重组分分离的理论基础是,轻组分中烯烃含量高,可达到50%以上,通过直接碱洗,辛烷值

柴油加氢催化剂更换总体方案

柴油加氢催化剂更换检修总体方案 一、总体进度安排及物料需求 (1)装置停工:本次计划用时2天17小时,2011年大检修实际用时6天; (2)催化剂卸剂:本次计划用时4天7小时,2011年大检修实际用时7天; (3)催化剂装填:本次计划用时4天,2011年大检修实际用时7天, (4)装置开工:本次计划用时计划4天,2011年大检修用时7天; 本次检修计划用时合计:15天。 1、物料需求及对煤油加氢的影响: 柴油加氢降温降量、停工退油期间,需原料柴油约2000t,产生污油2500to 柴油加氢停工、氮气置换期间,需0. 7MPa氮气约12万立。 柴油加氢开工过程中,需常二线(开工柴油) 7000至8000to由于分懈系统热油运,由 于油品达不到硫化用油要求,因此硫化前开路外甩需时较长,需油量较大。期间,产生污油 约1200to初活稳定期间用油约6000t o 柴油加氢开工、氮气置换期间,需0. 7MPa氮气约12万立。 柴油加氢开工催化剂硫化需DMDS约50吨,2011年大检修实际用量49. 3t。 柴油加氢停工氮气置换期间,因新氢机无法为航煤加氢提供氢气,因此航煤加氢需停工 2天。柴油加氢氮气置换结束后,做好氢气流程隔离,新氢机继续为航煤加氢供氢,航煤加氢开工,期间柴油加氢分懈系统热油短循环,为航煤加氢提供汽提塔底重沸器热源。 柴油加氢开工氮气置换期间,因新氢机为柴油加氢系统氮气置换,无法为航煤加氢提供 氢气,因此航煤加氢需停工2天。柴油加氢氮气置换结束后,新氢机继续为航煤加氢供氢, 航煤加氢开工,柴油加氢分懈系统热油短循环,为航煤加氢提供汽提塔底重沸器热源。 需催化剂桶2000个,此项工作由设备专业联系釆购部落实。 卸出的催化剂应及时拉走,要求随卸随拉,否则新鲜催化剂到位后无存放地点。其中, FH-UDS共99. 4吨,不再回收利用,走报废流程;FH-UDS-6共177吨需存放至库房,备后 续使用。此项工作需生产技术部、机动工程部、加氢单元、仓库协同完成。而且,需要落实场内装、卸车责任方。 瓷球、新鲜催化剂、保护剂、捕硅剂要在催化剂卸剂完毕前一天到位。同时,落实帆布、托盘、叉车等事宜。

加氢裂化装置掺炼催化柴油技术工业应用实践

加氢裂化装置掺炼催化柴油技术工业应用实践 发表时间:2019-09-01T18:59:57.400Z 来源:《防护工程》2019年12期作者:薛晓阳 [导读] 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。 中国石油哈尔滨石化公司 150030 摘要:随着社会日益发展的需要和原油的日益劣质化、重质化,以及环境的污染,国家对干净、清洁的能源燃料越来越重视,而蜡油加氢裂化技术是原油深度加工生产清洁燃料的重要方式,所以在未来加氢裂化技术将会越来越普遍和推广。本文就以美国UOP公司的 Unicraking两段加氢裂化工艺技术为例进行实践论证。 关键词:加氢裂化;?催化柴油;?产品质量; 1 装置概况 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。设计加工来自国外的减压蜡油,经过加氢脱硫、加氢脱氮、加氢裂化等反应,生产优质的轻、重石脑油、航煤和柴油产品,加氢尾油作为催化裂化装置原料。本装置反应的部分流程如下: 图1 装置反应部分流程 2?催化剂分布及原料性质 2.1 催化剂分布 本装置一段反应器共六个床层,其中第一床层到第四床层为加氢精制床层,催化剂型号分别为CT-30、KF-542、KG-5、HYT-8109、HYT-8119、KF-848 (再生) 、HYT-6219,第五床层和第六床层为加氢裂化床层,催化剂型号为HC-115LT (再生) ,反应器底部后精制剂型号为KF-851 (再生) 。 表1 原料油性质分析对比表 2.2 原料性质及特点 本装置自开工正常运转一段时间后,为了维持全厂物料平衡和实现效益最大化,开始在原料油中掺入催化柴油,并逐步增加至60 t/h。如表1所示为在总进料量330 t/h不变的情况下,原料中未掺入以及掺入20 t/h、40 t/h及60 t/h数量催化柴油组成的滤后原料油的主要性质参数。在整个掺炼观察期间,装置正常运行,各产品质量合格。 通过表1原料油性质分析对比表可以看出随着催化柴油掺炼比例的提高,混合原料油的密度逐渐增大,氮含量、硫含量所占比例都有相应的升高,这与催化柴油高硫、高氮性质特点相吻合,但由于本装置氮含量设计要求不大于867 mg/kg,所以为保证本装置催化剂失活速率在正常范围内,建议在装置运行前期,当混合原料油中氮含量大于867mg/kg时,操作人员应密切关注原料油性质及反应器床层温度变化。随掺炼比例的增加,初馏点温度呈现下降趋势和350℃馏出量所占体积分数逐渐增大的情况来看,催柴中含有一定比例的小分子轻组分;根据混合原料终馏点温度的逐渐上升和500℃馏出量所占体积分数下降的情况,得出催化柴油中同时含有大量的单环和多环芳烃,使得混合后

载体预处理对柴油加氢催化剂催化性能的影响

载体预处理对柴油加氢催化剂催化性能的影响 采用微乳液法(O/W)制备了氧化铝载体,通过表面活性剂预处理的方式改善Mo-Ni双金属活性组分的负载方式。通过BET对催化剂表征表明,S1系列催化剂的最大孔容和比表面积分别为0.47cm3/g和158cm2/g。通过表面活性剂的修饰,提高了金属活性组分在载体中的均匀分散。通过加氢活化性能评价,在反应20小时后,S1系列催化剂在运行时间内活性稳定,脱硫率达到91%,脱氮率达到94%。 标签:氧化铝;催化剂;催化剂表征;催化剂评价 1 介绍 近年来,原油的品质日益变重、变劣,含有的硫、氮及芳烃化合物易造成大气污染,使得石油加工行业向加工高硫原油和生产超低硫的清洁燃料方向发展。因此,研制出具有深度脱硫和高加氢脱硫活性的催化剂具有十分重要的意义[1,2]。加氢催化剂通常由活性组分和载体两部分组成。活性组分在载体中的有效分布和两者之间的相互作用影响着催化剂的性能。现有负载型加氢催化剂大多采用钼镍、钼镍磷等溶液作为催化剂载体的金属浸渍液。载体的孔径和比表面积制约着活性组分的浸渍量。同时,活性组分的浸渍过程很难保证组分在载体中的均匀分布。如果活性组分团聚,并且与载体相互作用较强,往往会降低催化剂的活性[3,4]。因此,我们设想在载体和活性组分之间添加一层过渡层,起到良好分散活性组分的作用,防止其团聚。同时,增加了催化剂与油品的接触面积,有望提高催化活性。 文章采用微乳液法制备具有大孔道的载体。通过添加表面活性剂改善活性组分在载体中的浸渍过程。采用BET 方法对催化剂的孔性质进行表征。对劣质催化裂化柴油进行加氢评价,考察钼镍催化剂的催化活性。 2 实验部分 原料: 九水硝酸铝,六亚甲基四胺,均为分析纯;氧化钼,碱式碳酸镍,均为化学纯;润滑油基础油,工业品;油酸,油酸胺,均为分析纯。 实验仪器: 比表面及孔径分析仪JW-BK122W,用于测量样品孔容,比表面积和平均孔径;利用ANTEK-9000S测定反应前后柴油中硫、氮含量,利用SH/T 0806测定反应前后柴油中芳烃的含量。 样品制备:

适应用户需求的催化柴油加氢改质技术

适应用户需求的催化柴油加氢改质技术 摘要:针对国内炼油企业在柴油质量升级中所面临的问题,抚顺石油化工研究院开发了系列催化柴油加氢改质技术。工艺研究和工业应用结果表明抚顺石油化工研究院所开发的系列技术各具特点,用户可以根据自身不同的需求选择适宜的相关技术,生产满足清洁燃料标准的高品质油品。 关键词:催化柴油加氢清洁燃料 前言 催化裂化(FCC)技术是重油轻质化的主要工艺手段之一,在世界各国的炼油企业中都占有比较重要的地位。而催化裂化工艺技术的主要特点是对进料中的链烷烃和环烷烃进行裂解,对芳烃基本不具备破环的能力,因此在催化裂化柴油中通常富集了大量稠环芳烃。催化裂化柴油的硫含量和芳烃含量高,发动机点火性能差,属于劣质的柴油调和组分,在国外主要用于调和燃料油、非车用柴油和加热油等。而在我国,由于石油资源的紧缺,催化柴油还主要是加氢精制或加氢改质后用于调和柴油产品,统计资料表明中国石化所属炼油企业所生产的催化柴油中的85%用于普通柴油的生产。 近年来,随着国内所加工原油质量的日益重质化,催化裂化所加工的原料也日趋重质化和劣质化,加之许多企业为了达到改善汽油质量或增产丙烯的目的,对催化裂化装置进行了改造或提高了催化裂化装置的操作苛刻度,导致催化裂化柴油的质量更加恶化。目前,国内炼油企业所生产的催化柴油的芳烃含量通常会达到45%~80%,十六烷值在20~35左右,随着环保法规的日趋严格,企业所面对的产品质量升级压力日益增加。 中国石化是中国最大的一体化能源化工公司之一,也是国内最大的石油、石化产品生产商和供应商,为全社会提供高品质的清洁油品是中国石化所承担的重要任务和责任。抚顺石油化工研究院作为中国石化直属科研单位,多年来在加氢催化剂和工艺技术开发上开拓创新,研发了系列可以满足炼油企业实际生产需求的加氢催化剂和工艺技术,为企业产品质量升级提供助力。 1 催化柴油加工难点 对于炼油企业而言,柴油馏分主要是由常减压、催化裂化、延迟焦化和加氢裂化4 类装置生产的。如表1中国石化炼油事业部装置数据集统计数据显示,2008年催化柴油在中国石化所生产柴油构成中所占比例为17.8%。虽然从中国石化整体上看催化柴油所占比例并不大,但由于各炼油企业的规模、原油性质以及装置构成等方面的不同,这个比例在不同企业的差别较大,有的企业催柴所占比例超过了30%。目前,在中国石化所属企业催化柴油主要用于:加氢后作为普通柴油的调和组份,这种用途目前最为广泛,据统计有85%或更多的催化柴油用于普通柴油的生产;用于船舶燃料生产,需求量相对较小,市场流动性强,主要集中在沿海和沿江地区;作为工业燃料销售,用于陶瓷厂或者发电厂,主要集中于广东和浙江2 省,消耗量低于1.0 Mt/a。 表1 中国石化2008年柴油馏分构成及主要性质 产量/(Mt·a-1) 构成比例,(wt)% 十六烷值总芳烃,(wt)%

柴油加氢精制设计书

柴油加氢精制 一.物料平衡 1. 全装置物料平衡 本设计催化柴油处理量为100万吨/年,反应阶段为其末期,年开工时数为8000小时。 装置总物料平衡表 (年开工时数以8000小时/年) 注: 粗汽油包括0.03 的溶解气在内 由∑入方=∑出方,得设备漏损为0.01% < 1%. 2. 化学耗氢量 1) 杂质脱除率 a) 硫脱除率 = 1800 180 1800-×100% = 90%

b) 氮脱除率 = 261 58 261-×100% = 77.78% c) 氧脱除率(以酸度计算) 原料油含氧率 =8642.01005616 108.53????-×100% = 0.00192% 精制油含氧率 = 8595 .01005616 1014.03????-×100% = 0.0000463% 氧脱除率= 00192 .00000465 .000192.0-×100% = 97.58% d) 烯烃饱和率(以溴价计算) 烯烃饱和率=1 .45.20-×100% = 80% 2) 化学耗氢量 a) 脱硫耗氢 每脱掉1%的硫消耗12.5Nm 3H 2/m 3原料油 加氢脱硫耗氢量=8642 .0100 %901018005.126????- = 2.34 Nm 3/T 原料油 2.34×125000/22.4×1000 2 =26.152kg/hr b) 脱氮耗氢 每脱掉1%的氮消耗53.7Nm 3H 2/m 3原料油 加氢脱氮耗氢量=8642 .0100 %8.77102617.536????- = 1.26 Nm 3/ T 原料油 1.26×125000/2 2.4×1000 2 =14.078kg/hr c) 脱氧耗氢 每脱掉1%的氧消耗44.6Nm 3H 2/m 3原料油 加氢脱氧耗氢量=8642 .0100 %6.971092.16.445????- = 0.0966Nm 3/ T 原料油 0.0966×125000/22.4×1000 2 =1.078kg/hr d) 烯烃饱和耗氢量 烯烃饱和耗氢量=(20.5-4.1)×10×22.4/160 = 22.96 Nm 3/T 原料油

加氢精制的催化剂

加氢精制的催化剂 加氢精制催化剂一般以钨、镍等为活性组分,以硅、铝等为载体(或担体)。 担体有两大类: 1、中性担体,如活性氧化铝、活性碳、硅藻土等 2、酸性担体,如硅酸镁、硅酸铝、分子筛等。 一般来说担体本身没有活性,在选择担体时一般选择中性担体。因为中性担体本身的裂解活性不高,用它制备的催化剂表现出较强的加氢活性和较弱裂解活性。 担体的作用: 1、担体具有较大的比表面,能使活性组分很好的分散在其表面上,从而更有效地发挥活性组分的作用,节省活性组分的用量。 2、担体做为催化剂的骨架起到提高催化剂的稳定性和机械强度的作用,并保证催化剂具有一定的形状和大小,减少流体阻力。 3、担体能够改善催化剂的导热性,防止活性组分因局部过热而引起烧结失活。 加氢装置催化剂的装填很重要,如果催化剂装填质量差,疏密不均,不但会造成催化剂装填量减少,更重要的是会使物料走“短路”或床层下陷,造成反应器床层物料和温度不均,物料和催化剂接触时间不等,严重影响到催化剂的寿命和产品的质量。 为确保催化剂的运输和装填安全,目前绝大多数催化剂在运

输时是氧化态,活性较低。为了使催化剂具有更高的活性和稳定性,提高催化剂抗中毒能力,催化剂在使用前需要预硫化。预硫化一般使用CS2或其它硫化物,在氢气的存在下先反应生成硫化氢,然后再进一步反应将催化剂中的活性组分转化成较高活性的“硫化态”。 硫化反应方程 CS2+4H2=CH4+2H2S 3NiO+H2+2H2S =Ni3S2+3H2O WO3+H2+2H2S = WS2+3H2O 催化剂的初活稳定(钝化):硫化后的催化剂活性极高,直接进质量较差的焦化汽柴油会立即积炭,使催化剂活性大幅度下降,因此需要用航煤或直硫柴油进行初活稳定,以适当降低催化剂活性,延长催化剂的使用周期。用直馏航煤做稳定油,因直馏航煤中的烯烃含量很低,进入反应系统后基本不会在催化剂表面积炭,起不到初活稳定的作用或初活稳定的作用很小。而直馏柴油的质量介于航煤和焦化柴油之间,在初活稳定期间可以在催化剂表面形成一定的积炭而适当降低催化剂的活性,从而保证在正常生产期间的温度控制。 催化剂在长期运行中表面会逐步结焦,其活性会逐步降低,因此当催化剂活性降低到一定程度后需要对催化剂进行烧焦再生。目前一般采用器外再生技术。 空速对加氢精制的影响 空速是单位时间的进料量与催化剂藏量之比,有体积空速和重量空速两种表示方式。降低空速意味着原料与催化剂接触时间的增加,加氢深度增加,因此产品质量可提高,但是降低空速可促进加氢裂化反应,降低产品液收,增加氢耗,增加催化剂的积炭,降低空速也意味着在反应器内的催化剂数量不变时,降低了处理量;加大空速会导致反应深度的下降,此时需提高反应温度来提高反应深度。空速高低变化可用提高或降低反应温度来补偿对反应深度的影响。 氢油比对加氢精制的影响

催化柴油MCI工艺技术

催化柴油MCI工艺技术 ?催化柴油MCI工艺技术应用概况 ?催化柴油MCI工艺的理论基础 ?催化柴油MCI技术对催化剂的要求 ?催化柴油MCI技术对不同原料的适应性 ?催化柴油MCI工业应用效果 催化柴油MCI工艺技术应用概况 我国目前的柴汽比较低,柴油数量满足不了市场的需求。柴油中的三分之一是催化裂化柴油。催化柴油中含有较多的杂原子化合物、烯烃和芳烃,颜色不好,安定性较差,尤其是十六烷值很低。随着重油催化裂化技术的发展和掺渣量的增加,催化柴油的质量问题变得更为突出。 当前国内外普遍采用的劣质催化柴油改质手段是加氢精制和加氢裂化。催化柴油加氢精制,是在中、低压的条件下,进行烯烃加氢饱和、脱硫、脱氮及芳烃部分饱和反应,可改善其颜色和安定性,而十六烷值提高幅度较小,尤其是加工劣质原料的催化装置,其催化柴油通过加氢精制远不能满足产品对十六烷值的要求。 近几年开发的劣质柴油中压加氢改质工艺,是中压下的一种加氢裂化过程,转化率一般为40%~60%,虽然其柴油产品的十六烷值较原料可提高10~20个单位,但柴油收率低,化学氢耗高,不适应国内市场的需求。因此,开发一种既能最大限度提高柴油十六烷值,又能得到较高的柴油收率的劣质催化柴油改质技术,是人们普遍关注的课题。 抚顺石油化工研究院新开发的一种提高催化柴油十六烷值的加氢改质工艺技术(Maximum Cetane number Improvement,简称MCI)。该技术在吉林化学工业公司炼油厂20万吨/年加氢装置应用成功后,先后有7家炼厂采用该技术。该技术不仅能大幅度提高催柴的十六烷值,同时还能获得较高的柴油收率,获得2001年度国家科技发明二等奖,具有显著的经济效益和社会效益,有可观推广应用前景。 催化柴油MCI工艺的理论基础 众所周知,石油产品的烃类族组成直接影响产品的性质。十六烷值是柴油燃烧性能的重要指标。柴油馏分中,链烷烃的十六烷值最高,环烷烃次之,芳香烃的十六烷值最低。同类烃中,同碳数异构程度低的烃类化

加氢精制催化剂的组成、制备及其性能评价

加氢精制催化剂的组成、制备及其性能评价 前言: 加氢精制是石油加工的重要过程之一,它主要是通过催化加氢脱除原油和石油产品中的S、N、O以及金属有机化合物等杂质[1]。加氢精制主要包括加氢脱硫(HDS)、加氢脱氮(HDN)和加氢脱金属(HDM)等工艺,一般在催化加氢过程中是同时进行的。其具体流程图[1]如下所示: 近年来,由于原油的质量逐渐变差以及对重油的加工利用的比例逐渐增大,给加氢精制过程提出了更高的要求。出于对环保的重视,世界各国普遍制订了严格的环保法规,对汽油、柴油等燃料油中N和S含量作出了严格的限制。此外,又对汽油中的苯、芳烃、烯烃含量、含氧化合物的加入量以及柴油十六烷值和芳烃含量等也有严格的限制指标。这些清洁燃料的生产均与加氢技术的发展密切相关[2]。因而加氢精制技术已成为石油产品改质的一项重要技术,其核心又在于加氢精制催化剂的性能。 一、催化加氢催化剂的组成及其制备方法 1.加氢催化剂的组成 加氢精制催化剂一般都是负载型的,是有载体浸渍上活性金属组分而制成[3]。载体一般均是Al2O3。 (1)活性组分 其活性组分主要是由钼或钨以及钴或镍的硫化物相结合而成[4]。目前工业上常用的加氢精制催化剂是以钼或钨的硫化物为主催化剂,以钴或镍的硫化物为助催化剂所组成的。对于少数特定的较纯净的原料,以加氢饱和为主要目的时,也有选用含镍、铂或钯金属的加氢催化剂的。 钼或钴单独存在时其催化活性都不高,而两者同时存在时互相协合,表现出很高的催化活性。所以,目前加氢精制的催化剂几乎都是由一种VIB族金属与一种VIII族金属组合的二元活性组分所构成。 (2)载体 γ-Al2O3是加氢精制催化剂最常用的载体。一般加氢精制催化剂要求用比表面积较大的氧化铝,其比表面积达200~400m2/g,孔体积在0.5~1.0cm3/g之间。[1]氧化铝中包含着大小不同的孔。不同氧化铝的孔径分布是不同的,这取决于制备的方法和条件。此

95万吨每年催化裂化柴油加氢精制计算书

一、全装置物料平衡 1、物料平衡 本设计的处理量为95万吨/年,反应阶段为其末期,每年开工时数按8000小时计算。 入方:①原料油=8000 % 10010109534???=118750公斤/小时 = 248000 % 10010954???=2850吨/天 ②重整氢=8000 % 70.210109534???=3206公斤/小时 = 248000 % 70.210954???=77吨/天 出方:①精制柴油=118750×96.95%=115128公斤/小时 = 2850×96.95%=2763吨/天 ②粗汽油=118750×1.52%=1805公斤/小时 =2850×1.52%=43吨/天 ③高分排放气=118750×1.78%=2114公斤/小时 =2850×1.78%=51吨/天 ④低分排放气=118750×0.31%=368公斤/小时 =2850×0.31%=8.8吨/天 ⑤回流罐排放气=118750×2.084%=2475公斤/小时 =2850×2.084%=59吨/天 ⑥溶于水中的硫化氢=118750×0.022%=26公斤/小时 =2850×0.022%=0.6吨/天 ⑦溶于水中的氨气=118750×0.024%=28.5公斤/小时 =2850×0.024%=0.7吨/天 ⑧设备漏损=118750×0.01%=12公斤/小时 =2850×0.01%=0.3吨/天 2、化学耗氢量计算 ①计算杂质脱除率 a) 硫脱除率 = 1800180 1800-×100% = 90% b) 氮脱除率 = 26158 261-×100% = 77.8% c) 硫醇硫脱除率 = 15 1 15-×100% = 93.3% d) 氧脱除率(以酸度计算)

加氢精制催化剂安全生产要点(2021新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 加氢精制催化剂安全生产要点 (2021新版)

加氢精制催化剂安全生产要点(2021新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1工艺简述 用于油品精制的加氢精制催化剂品种很多,性能各异,基质均为氧化铝,浸渍不同金属做活性组分。RN—1加氢精制催化剂是加工成形为三叶草条状的r—Al2O3担体,分别浸渍氟和钨镍金属制成。简要生产工艺过程是将高纯氢氧化铝粉与胶溶剂,助挤剂等混捏后挤成三叶形条状,经干燥和活炉焙烧脱水成为担体。担体经含氟盐溶液浸渍、干燥焙烧、再经含镍、钨的溶液浸渍、干燥焙烧即制成RN—1加氢精制催化剂。 生产中使用的原料有硝酸、氟盐等强氧化剂和腐蚀性物质,炼厂干气做为燃料,系易燃易爆物质。 2重点部位 2.1浸渍工序此工序有前氟盐浸渍工序和后镍、钨浸渍工序。浸渍液制备和浸渍作业均与多种有毒、有害及腐蚀性物质接触,如果设备腐蚀可靠性不足或操作防护等失误将造成严重的伤害事故。

2.2成品焙烧炉该炉系用瓦斯加热空气进行浸渍金属后的催化剂成品干燥活化的高温设备。在此设备中,如果活化温度控制不当和物料太湿或粉状物太多,可能造成局部超温而烧料;燃料系统可因泄漏、带水等原因发生着火或其他事故;还可因防护用品等操作失误造成灼烫、伤害等危害。 3安全要点 3.1浸渍定期对浸渍液制备、浸渍罐等易被腐蚀的设备进行检查鉴定,防止物料因设备腐蚀而泄漏造成事故;经常对有毒、有害作业岗位作业人员的防护措施的正确实施进行检查,纠正冒险或违章作业,防止中毒和化学灼伤。 3.2成品焙烧炉对每批进行活化的催化剂进炉前,应检查控制粉状物不能太多和太湿;检查并严格控制活化温度在480?20℃和料层超温的紧急放料措施及操作机构应灵活好用;经常对燃料系统运行情况进行严格检查,随时督促消除发现的隐患;焙烧作业中特别是活化炉放料时,应督促作业人员佩戴防烫护具,防止烫伤。 3.3其他部位 3.3.1混捏挤条机的孔板和螺栓,在运转挤条前要经仔细检查,不能有裂纹等缺陷,防止挤条时折断伤人。

柴油加氢精制说明书..

目录 1.总论1 1.1.加氢的目的、意义1 1.1.1.原油重质化、劣质化1 1.1. 2.环保要求越来越高1 1.1.3.特殊产品1 1.2.加氢精制的原理1 1.3.加氢精制催化剂2 1.4.加氢精制的工艺条件及影响因素2 1.4.1.加氢精制压力2 1.4. 2.加氢精制温度3 1.4.3.空速的影响3 1.4.4.氢油比的影响4 1.5.加氢精制的优缺点4 2.工艺流程说明5 2.1.技术路线选择5 2.2.流程叙述5 2.3.本装置流程特点6 3.原料和产品7 4.油品性质9 5.工艺操作条件10 6.装置物料平衡11 7.工艺计算结果汇总13 8.自控方案说明16 9.平面布置说明17 10.生产控制分析项目18 11.人员定编19 12.装置对外协作关系20 13.环境保护及消防安全21 13.1.排除“三废”数量和处理21 13.1.1.废气21 13.1.2.废水21 13.1.3.废渣21 13.2.噪音处理21 13.3.安全生产和劳动保护21

1.总论 1.1.加氢精制的目的、意义 1.1.1.原油重质化、劣质化 20世纪90年代中期,全球炼油厂加工原油的平均相对密度为0.8514,平均硫含量(质量分数,下同)为0.9%。进人21世纪后,原油平均相对密度升至0.8633,含硫量升至1.6%。原油密度升高,硫含量增大是21世纪原油质量变化的总体趋势。很多由这些重质、劣质原油生产出来的油品都需要加氢精制以提高质量【1】。 1.1. 2.环保要求越来越高 虽然原油质量不断劣质化,但世界各国对车用燃料油的质量要求仍然在不断提高。以柴油硫含量为例,美国已经开始要求l0ppm的超低硫柴油,欧洲也开始执行硫含量<50ppm的标准。国内而言,在北京,2005年已参照欧Ⅲ排放标准执行,硫含量控制在350ppm以内,2007年参照欧Ⅳ排放标准执行,硫含量控制在50ppm以内。可以预期,国内燃油质量指标必将进一步升级与国际标准接轨【2】。 1.1.3.特殊产品 某些特殊产品,如食品级的石蜡,对其中的重金属杂质含量、硫含量以及不饱和程度的要求非常苛刻,而加氢精制可以使其达到质量要求。 1.2.加氢精制的原理 加氢精制(也称加氢处理),是指在氢压和催化剂存在下,使油品中的硫、氧、氮等有害杂质转变为相应的硫化氢、水、氨而除去,并使烯烃和二烯烃加氢饱和、芳烃部分加氢饱和,以改善油品的质量。有时,加氢精制指轻质油品的精制改质,而加氢处理指重质油品的精制脱硫。 加氢精制可用于各种来源的汽油、煤油、柴油的精制,催化重整原料的精制,润滑油、石油蜡的精制,喷气燃料中芳烃的部分加氢饱和,燃料油的加氢脱硫,渣油脱重金属及脱沥青预处理等。氢分压一般分1~10MPa,温度300~450℃。催化剂中的活性金属组分常为钼、钨、钴、镍中的两种(称为二元金属组分),催化剂载体主要为氧化铝,或加入少量的氧化硅、分子筛和氧化硼,有时还加入磷作为助催化剂。 在加氢精制过程中,各类物质加氢反应活性总体趋势为:脱金属>二烯烃饱和>脱氧>单烯烃饱和>脱硫>脱氮>芳烃饱和。加氢精制中还存在加氢裂解副反应,可以从催化剂等途径控制副反应的发生。

加氢裂化柴油回炼技术探讨

龙源期刊网 https://www.doczj.com/doc/946095183.html, 加氢裂化柴油回炼技术探讨 作者:臧晖 来源:《科学大众》2019年第12期 摘; ;要:文章在分析加氢裂化柴油回炼技术的基础上,进行了小型回炼实验。实验结果表明,通过对比加氢柴油、加氢蜡油的单独反应情况,在运用混合原料进行实验后,低价值产物产率会下降,总液体收率会有所增加。分别选择了两种工况进行工业生产验证,实践证明该技术路线是可行的。 关键词:加氢裂化柴油;加氢;回炼技术 加氢裂化工艺技术对原料油适应性强,具有可大量生产优质中间馏分油产品、液体产品收率高并且灵活调整产品结构等优点,是炼油企业提高柴汽比的最有效的重油加工技术和清洁生产技术。因此,加氢裂化及加氢精制工艺和技术越来越受到世界各大石油公司的重视,加氢装置的建设和技术的开发得以更快地发展。近年来,我国加氢裂化及加氢精制技术的开发和应用得到快速发展,在低利润、高竞争性的炼油行业中,如何提高产品收率成为工艺流程研究的重点,这就需要应用新技术进行柴油的回炼,可使炼油企业在减少投入和操作成本的情况下,改善产品结构,提高目的产品收率。 1; ; 加氢回炼技术原理 一般情况下,催化柴油的转化有两种方式,一种是催化裂化,另一种是加氢裂化。无论是采用哪种技术,其技术开发点都是以催化柴油组成特点为基础的。其技术路线可分为4种:第一种是加氢精制。要么直接加工催化柴油,要么在直馏柴油中加入10%左右的催化柴油,这样就可有效增加十六烷值单元。第二种是加氢改质。主要就是指运用加氢裂化剂、加氢精制剂,实现烯烃、芳烃等的饱和加氢,以此达到增加十六烷值单元的目的。比如催化柴油深度加强处理技术、提高催化柴油十六烷值的加氢改质工艺技术就是以此为原理的。第三种是利用加氢装置掺入部分催化柴油,并进行回炼,主要就是实现柴油的深度转化。第四种是加氢-催化裂化组合技术,即在加氢装置的基础上,进行柴油加氢或蜡油加氢,然后将其与精制蜡油进行混合,作为装置原料,接下来利用加氢装置进行催化柴油的转化。在具体选择中,企业必须要根据实际生产流程、柴油质量升级要求、柴油组成等,选择性价比较高的技术路线。 另外,还需注意加氢柴油黏度低、沸点低,正有利于加氢柴油、高黏度新鲜原料的混合原料黏度。比如对比常压渣油、加氢柴油的密度和蒸馏曲线,并利用软件模拟混合不同比例加氢柴油,且基准温度为180 ℃,210 ℃的原料黏度。可以明显地发现在混合加氢柴油后,混合原料黏度会下降,且随着温度的降低,其黏度下降数值越大。这主要就是因为混合原料运动黏度可以改变原料油的性质,使其能经受住高温的催化。

柴油调和原料添加剂办法看懂了你也会调和柴油

柴油调和原料添加剂办法看懂了你也会调和柴 油 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

柴油调和原料,添加剂,方案(看懂了你也会调和柴油) 一、柴油调和的原料1.直馏柴油直馏柴油是指原油预处理之后,通过常压蒸馏得到的沸程范围为180℃~360℃的中间馏分。根据其从常压塔侧线出来的顺序又可分为常一线、常二线、常三线。直馏柴油十六烷值较高,含有较多环烷酸,必须对其进行脱酸精制后才可作为柴油调合组分。2. 焦化柴油焦化柴油是指延迟焦化得到的沸程范围为180℃~360℃的馏分产品。焦化柴油的十六烷值较高,含有一定量的硫、氮和金属杂质;含有一定量的烯烃,氧化安定性差,胶质含量过高,色度偏高,必须进行精制脱除硫、氮杂质,使烯烃、芳烃饱和才能作为合格的柴油馏分。3. 减粘柴油减粘柴油即减粘裂化得到的中间馏分产品,减粘柴油含有烯烃和双烯烃,故安定性差,需加氢处理才能用作柴油调合组分。4. 催化裂化柴油催化裂化柴油俗称催柴,是催化裂化得到的中间馏分产品。因含有较多的芳烃,所以十六烷值较直馏柴油低,由重油催化裂化得到的柴油的十六烷值更低,只有25~35,而且安定性很差,这类柴油需经过加氢处理,或与质量好的直馏柴油调合后才能符合轻柴油的质量要求。5. 加氢裂化柴油加氢裂化柴油是指加氢裂化得到的中间馏分油,其硫含量很低,小于0.01%,芳烃含量也较低,十六烷值大于60,着火性能好,安定性高,是调合低硫车用柴油的理想组分。6. 减一线油减一线油指原油预处理后,通过减压蒸馏从减压塔侧一线出来的最轻馏分。因其密度、粘度等理化性质与柴油相近,也用作柴油调合组分。7.航空煤油航空煤油一般指3号喷气燃料,标密775~830kg/m,馏程范围在160~300℃;低温流动性好,冰点在-47℃以下,馏程又与柴油接近,

加氢精制催化剂安全生产要点正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.加氢精制催化剂安全生产 要点正式版

加氢精制催化剂安全生产要点正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加 施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事 项。文档可以直接使用,也可根据实际需要修订后使用。 1工艺简述 用于油品精制的加氢精制催化剂品种很多,性能各异,基质均为氧化铝,浸渍不同金属做活性组分。RN—1加氢精制催化剂是加工成形为三叶草条状的r—Al2O3担体,分别浸渍氟和钨镍金属制成。简要生产工艺过程是将高纯氢氧化铝粉与胶溶剂,助挤剂等混捏后挤成三叶形条状,经干燥和活炉焙烧脱水成为担体。担体经含氟盐溶液浸渍、干燥焙烧、再经含镍、钨的溶液浸渍、干燥焙烧即制成RN—1加氢精制催化剂。

生产中使用的原料有硝酸、氟盐等强氧化剂和腐蚀性物质,炼厂干气做为燃料,系易燃易爆物质。 2重点部位 2.1浸渍工序此工序有前氟盐浸渍工序和后镍、钨浸渍工序。浸渍液制备和浸渍作业均与多种有毒、有害及腐蚀性物质接触,如果设备腐蚀可靠性不足或操作防护等失误将造成严重的伤害事故。 2.2成品焙烧炉该炉系用瓦斯加热空气进行浸渍金属后的催化剂成品干燥活化的高温设备。在此设备中,如果活化温度控制不当和物料太湿或粉状物太多,可能造成局部超温而烧料;燃料系统可因泄漏、带水等原因发生着火或其他事故;还

柴油加氢精制说明书..

目录 1. 总论1 1.1. 加氢的目的、意义 1 1.1.1. 原油重质化、劣质化 1 1.1. 2. 环保要求越来越高 1 1.1.3. 特殊产品 1 1.2. 加氢精制的原理 1 1.3. 加氢精制催化剂 2 1.4. 加氢精制的工艺条件及影响因素 2 1.4.1. 加氢精制压力 2 1.4. 2. 加氢精制温度 3 1.4.3. 空速的影响 3 1.4.4. 氢油比的影响 4 1.5. 加氢精制的优缺点 4 2. 工艺流程说明 5 2.1. 技术路线选择 5 2.2. 流程叙述 5 2.3. 本装置流程特点 6 3. 原料和产品7 4. 油品性质9 5. 工艺操作条件10 6. 装置物料平衡11 7. 工艺计算结果汇总13 8. 自控方案说明16 9. 平面布置说明17 10 . 生产控制分析项目18 11人员定编19 12 . 装置对外协作关系20 13 . 环境保护及消防安全21 13.1. 排除“三废”数量和处理21 13.1.1. 废气21 13.1.2. 废水21 13.1.3. 废渣21 13.2. 噪音处理21

1. 总论 1.1. 加氢精制的目的、意义 1.1.1.原油重质化、劣质化 20 世纪90年代中期,全球炼油厂加工原油的平均相对密度为0.8514,平均硫含量(质量分数,下同)为0.9%。进人21世纪后,原油平均相对密度升至0.8633,含硫量升至1.6%。原油密度升高,硫含量增大是21世纪原油质量变化的总体趋势。很多由这些重质、劣质原油生产出来的油品都需要加氢精制以提高质量【1】。 1.1. 2.环保要求越来越高 虽然原油质量不断劣质化,但世界各国对车用燃料油的质量要求仍然在不断提高。以柴油硫含量为例,美国已经开始要求l0ppm的超低硫柴油,欧洲也开始执行硫含量<50ppm 的标准。国内而言,在北京,2005 年已参照欧Ⅲ排放标准执行,硫含量控制在350ppm 以内,2007 年参照欧Ⅳ排放标准执行,硫含量控制在50ppm 以内。可以预期,国内燃油质量指标必将进一步升级与国际标准接轨【2】 1.1.3.特殊产品 某些特殊产品,如食品级的石蜡,对其中的重金属杂质含量、硫含量以及不饱和程度的要求非常苛刻,而加氢精制可以使其达到质量要求。 1.2. 加氢精制的原理 加氢精制(也称加氢处理),是指在氢压和催化剂存在下,使油品中的硫、氧、氮等有害杂质转变为相应的硫化氢、水、氨而除去,并使烯烃和二烯烃加氢饱和、芳烃部分加氢饱和,以改善油品的质量。有时,加氢精制指轻质油品的精制改质,而加氢处理指重质油品的精制脱硫。 加氢精制可用于各种来源的汽油、煤油、柴油的精制,催化重整原料的精制,润滑油、石油蜡的精制,喷气燃料中芳烃的部分加氢饱和,燃料油的加氢脱硫,渣油脱重金属及脱沥青预处理等。氢分压一般分1~10MPa,温度300~450℃。催化剂中的活性金属组分常为钼、钨、钴、镍中的两种(称为二元金属组分),催化剂载体主要为氧化铝,或加入少量的氧化硅、分子筛和氧化硼,有时还加入磷作为助催化剂。 在加氢精制过程中,各类物质加氢反应活性总体趋势为:脱金属>二烯烃饱和>脱氧>单烯烃饱和>脱硫>脱氮>芳烃饱和。加氢精制中还存

加氢精制催化剂安全生产要点

编号:CZ-GC-02679 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 加氢精制催化剂安全生产要点 Key points for safe production of hydrofining catalyst

加氢精制催化剂安全生产要点 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 1工艺简述 用于油品精制的加氢精制催化剂品种很多,性能各异,基质均为氧化铝,浸渍不同金属做活性组分。RN—1加氢精制催化剂是加工成形为三叶草条状的r—Al2O3担体,分别浸渍氟和钨镍金属制成。简要生产工艺过程是将高纯氢氧化铝粉与胶溶剂,助挤剂等混捏后挤成三叶形条状,经干燥和活炉焙烧脱水成为担体。担体经含氟盐溶液浸渍、干燥焙烧、再经含镍、钨的溶液浸渍、干燥焙烧即制成RN—1加氢精制催化剂。 生产中使用的原料有硝酸、氟盐等强氧化剂和腐蚀性物质,炼厂干气做为燃料,系易燃易爆物质。 2重点部位 2.1浸渍工序此工序有前氟盐浸渍工序和后镍、钨浸渍工序。浸渍液制备和浸渍作业均与多种有毒、有害及腐蚀性物质接触,如果

设备腐蚀可靠性不足或操作防护等失误将造成严重的伤害事故。 2.2成品焙烧炉该炉系用瓦斯加热空气进行浸渍金属后的催化剂成品干燥活化的高温设备。在此设备中,如果活化温度控制不当和物料太湿或粉状物太多,可能造成局部超温而烧料;燃料系统可因泄漏、带水等原因发生着火或其他事故;还可因防护用品等操作失误造成灼烫、伤害等危害。 3安全要点 3.1浸渍定期对浸渍液制备、浸渍罐等易被腐蚀的设备进行检查鉴定,防止物料因设备腐蚀而泄漏造成事故;经常对有毒、有害作业岗位作业人员的防护措施的正确实施进行检查,纠正冒险或违章作业,防止中毒和化学灼伤。 3.2成品焙烧炉对每批进行活化的催化剂进炉前,应检查控制粉状物不能太多和太湿;检查并严格控制活化温度在480?20℃和料层超温的紧急放料措施及操作机构应灵活好用;经常对燃料系统运行情况进行严格检查,随时督促消除发现的隐患;焙烧作业中特别是活化炉放料时,应督促作业人员佩戴防烫护具,防止烫伤。

相关主题
文本预览
相关文档 最新文档