当前位置:文档之家› ANSYS耦合场分析指南

ANSYS耦合场分析指南

ANSYS耦合场分析指南
ANSYS耦合场分析指南

第五章声学

5.1什么是声学?

声学研究声压波在流体介质中的产生、传播、吸收和反射。声学有如下的应用:

·声纳—声学上雷达的对应物

·设计音乐厅,希望声压均匀分布。

·减小机器厂房内的噪音

·汽车中的噪声消除

·水下声学

·设计扬声器、音箱、声滤、消音器及其他类似装置。

·地球物理探测

5.1.1声场分析的类型

只有在ANSYS/Multiphysics 和 ANSYS/Mechanical中能进行声场分析,通常包括对流体介质及其周围结构的建模。典型感兴趣的是不同频率的声波在流体中的压力分布、压力梯度、粒子速度、声压级及声波的散射、衍射、传输、辐射、衰减和散射。耦合的声场分析将考虑流体-结构的相互作用。非耦合的声场分析模型只考虑流体而忽略任何流体-结构的相互作用。

ANSYS程序假定流体是可压的,但只允许压力与平均压力相比有较小的变化。而且,流体假定为非流动并且无粘的(即粘性不引起耗散作用)。假定平均密度和平均压力不变,压力求解偏离平均压力而不是绝对压力。

5.2求解声学问题

通过执行一个谐波响应分析可以解决许多声学问题。分析计算流体-结构界面上的谐波载荷(正弦变化)引起流体中的压力分布。通过指定载荷的频率范围,可以观察到在不同的频率时压力的分布。可以执行模态和瞬态的声学分析。(参见《ANSYS Structural Analysis Guide》中关于这种分析更详细的叙述。)

谐波声场分析的过程包括以下三个主要步骤:

·建立模型。

·施加边界条件和载荷并获得求解。

·查看结果。

5.3建立模型

在此步骤中,用户指定工作名称和分析标题,然后用PREP7前处理器定义单元类型,单元实常数,材料属性和模型几何尺寸。这些任务与多数分析相同,在《ANSYS Basic Analysis Guide》中有叙述。

5.3.1谐波声场分析准则

对一个谐波声场分析,考虑以下几点:

单元类型—ANSYS声场分析指定了四种单元类型:对二维和三维模型的流体部分分别使用Fluid29和Fluid30单元,Fluid129和Fluid130与FLUID29和FLUID30单元一起使用,用来构造包围Fluid29和Fluid30单元的无限外壳。利用这些单元类型可以构造流体部分的模型,然后利用相应的结构单元(PLANE42、SOLID45等)构造固体模型。只有Fluid29和Fluid30单元才能与结构单元相接触(在结构的内部或外部);Fluid129和Fluid130单元只能与Fluid29和Fluid30单元相接触,而不能直接与结构单元接触。

5.3.1.1 FLUID29与FLUID30单元

对与固体相接触的声单元,要确保使用KEYOPT(2)=0,缺省的设置允许流体-结构的相互作用。UX,UY,UZ和PRES作为自由度引起单元矩阵的不对称。对所有其它的声单元,设置KEYOPT(2)=1,致使带有PRES自由度的单元矩阵的对称。(见图5-1)对称矩阵需要的内存和计算时间更少,因此只要可能就应该使用它。关于流体-结构的相互作用的详细信息参见《ANSYS, Inc. Theory Reference》。

图5-1二维声模型的例子(流体在结构的内部)

5.3.1.2 FLUID129和FLUID130单元

对无限的吸收压力波的声单元,模拟在FLUID29和FLUID30单元之外无限延伸域的输出效果。FLUID129和FLUID130单元提供了第二级的吸收边界条件,所以输出的压力波到达模型的边界以最小的反射吸收到流体域内。

FLIUD129单元用来建立二维流体区域的边界和诸如线单元。FLIUD130单元用来建立三维流体区域的边界和诸如平面表面单元。

材料属性—声单元需要密度(DENS)和声速(SONC)作为材料属性(FLUID129和FLUID130只需要SONC)。如果在流体-结构界面存在声的吸收,利用标记MU 来指定边界导纳β(吸收系数)。值β通常由实验来测定。对结构单元,指定杨氏模量(EX)、密度(DENS)和泊松比(PRXY或NUXY)。

实常数—当用FLUID129和FLUID130单元时,里面的有限元网格边界必须是圆形的(二维及轴对称)或球形的(三维),而且圆形或球形边界的有限区域的半径必须指定为实常的RAD。(见图5-2)圆或球的中心也必须用实常数指定:

R,3,RAD,X0,Y0!REAL set 3 for FLUID129

R,3,RAD,X0,Y0,Z0!REAL set 3 for FLUID130

如果二维轴对称情况圆的中心坐标(X0,Y0)或三维情况球的中心坐标(X0,Y0,Z0)不是通过实常数指定的,ANSYS假定中心为总体坐标系的原点。

图5-2应用吸收单元的例子

图5-3浸在水中的圆筒

5.4对模型进行网格划分

下面为使用二维无限的声单元进行网格划分的典型程序。对三维单元的程序与此相同。如果还有结构部分,结构单元必须与FLUID29单元相邻,而不要与无限流体单元(FLUID129)相邻。

这个过程自动在有限区域的边界加入FLUID129单元。这里环形结构用PLANE42结构单元进行网格划分。与PLANE42单元接触的流体单元层用带有UX 和UY自由度的FLUID29单元划分网格同时打开流体-结构接触面。流体的外层用没有UX和UY自由度的FLUID29单元建模。在X0=Y0=0处放置FLUID129单元的半径为0.31242(参见§5.4.2节)。可用下列方法定义FLUID129单元:

命令:ESURF

GUI: Main Menu>Preprocessor>Create>Elements>Inf Acoustic

5.4.1步骤一:内部流体区域的网格划分

用FLUID29单元对圆形或球形边界(PLANE42)所包围的内部流体区域划分网格。

图5-4 对流体区域划分网格

5.4.2步骤二:生成无限的声单元

按以下步骤:

1.选择圆形或球形边界上的节点:

命令:NSEL

GUI: Utility Menu>Select>Entities

2.指定FLUID129单元作为与FLUID29单元相联系的无限流体单元。

命令:TYPE, REAL

GUI: Main Menu>Preprocessor>Attributes>Default Attribs

Main Menu>Preprocessor>Real Constants

无限单元对低频及高频激励都执行得很好。数值实验已确定吸收单元远离结构或振动源区域以外大约0.2λ放置能产生准确的结果。这里λ=c/f压力波的主波长。c是流体中的声速(SONC),f是压力波的主频。例如,对浸没在水中的圆盘或球壳的直径D,封闭边界的半径RAD至少应为D/2+0.2λ。而且,对一般的声分析,网格必须足够的细致以能分辨最小的主频。

3.在边界生成吸收单元(FLUID129)。

命令:ESURF

GUI: Main Menu>Preprocessor>Create>Elements>Inf Acoustic

图5-5 在边界加入吸收单元

5.4.3步骤三:指定流体-结构接触面

指定流体-结构接触面:

1.选择界面上的所有节点。

命令:NSEL

GUI: Utility Menu>Select Entities

2.选择附属于这些节点上的流体单元。

命令:ESEL

GUI: Utility Menu>Select>Entities

3.指定所选择的节点作为流体-结构接触面上的节点。

命令:SF

GUI: Main Menu>Preprocessor>Loads>Apply>Fluid-Struct>On Nodes 注意—在对分析进行求解前确保重选所有的节点。

图5-6 指定流体-结构界面

5.5施加载荷并获得求解

在这个步骤里,用户定义分析类型和选项,施加载荷,指定载荷步选项,并开始有限元求解。下面几节解释如何做这些工作。

5.5.1步骤一:进入SOLUTION求解器

通过选择GUI途径Main Menu>Solution或执行/SOLU命令进入SOLUTION求解器。

5.5.2步骤二:定义分析类型

利用GUI途径或命令集,定义分析类型和分析选项。

用下列方法定义分析类型:

命令:ANTYPE,HARMIC

GUI: Main Menu>Solution>New Analysis

必须选择新的分析NEW Analysis因为重启动对谐波响应分析无效。如果需要施加另外的谐波载荷,每次作一个新的分析(或用《ANSYS Basic Analysis Guide》中叙述的“部分求解”程序)。

5.5.3步骤三:定义分析选项

用下列方法指定求解方法:

命令:HROPT

GUI: Main Menu>Solution>Analysis Options

尽管全量、减缩或模态叠加方法都是可选的方法,选择全量方法因为它自己就可以处理非对称矩阵。

用下列方法定义求解列表格式:

命令:HROUT

GUI: Main Menu>Solution>Analysis Options

这个选项决定ANSYS如何在打印输出(Jobname.OUT)中对谐波自由度结果进行列表。

用下列方法指定方程求解器:

命令:EQSLV

GUI: Main Menu>Solution>Analysis Options

可以选择波前求解器(缺省),Jocobi共轭梯度(JCG)求解器,或不完全的Cholesky共轭梯度(ICCG)求解器。对大多数模型推荐使用JCG求解器。

5.5.4步骤四:在模型上施加载荷

由谐波分析的定义可知,假定任何施加的载荷随时间是简谐(正弦)变化的。在声学分析中完整地指定一个谐波载荷,通常需要两条信息:强迫力的频率和振幅。振幅是载荷的最大值,如表5-2所示用命令指定振幅。强迫力的频率是谐波载荷的频率(循环/时间)。可用HARFRQ命令或GUI途径Main Menu> Solution>Time/Frequenc>Freq & Substeps在随后的载荷步中指定它。参见

§5.5.5节步骤5。

表5-1列出了所有对谐波声分析可用的载荷及定义、列表和删除它们的命令。除了惯性载荷,用户既可以在实体模型(关键点、线和面)上也可以在有限元模型(节点和单元)上定义载荷。对实体模型载荷与有限元载荷综合的讨论参见ANSYS基本分析程序指南中加载与求解的有关章节。

表5-1声学分析中可用的载荷

在一个分析中,用户可以施加、移去、操作或列表载荷。

5.5.4.1用GUI施加载荷

通过一系列的层叠菜单可以得到除列表(见下面)以外的所有载荷操作。从求解菜单中选择操作(应用等),载荷类型(位移、力等),然后是施加载荷的目标(关键点等)。

例如,按以下GUI途径,给一条线施加位移载荷:

Main Menu>Solution>Apply>Displacement>On Lines

用GUI途径对载荷进行列表:

Utility Menu>List>Loads>load type

5.5.4.2利用命令施加载荷

表5-2列出在声分析中所有可用来加载的命令。

表5-2在声分析中施加载荷的命令

5.5.4.3载荷类型

位移(UX,UY,UZ)和压力(PRES)

这些是DOF(自由度)约束。例如,在刚性的流体-结构接触面上指定零位移。也可以指定非零位移,但应记住它们被假定为简谐的。在自由流面边界通常指定零压力(此处流体不封闭,诸如一个开口)。

力(FX,FY,FZ)和力矩(MX,MY,MZ)

通常在模型的固体部分指定载荷以激励流体。

当得知一个节点处的声载荷,可以通过指定FLOW力标记来指定流动载荷:

命令:F,,FLOW

GUI: Main Menu>Solution>Apply>-Structural-Force/Moment>On Nodes

压力(PRES)

可以在固体部分指定表面载荷来代替力和力矩。

阻抗(IMPD)

实际上显示不是载荷而是表面吸收声。指定声音的吸收度作为材料的属性MU (边界导纳或吸收系数)。

流体-结构交互作用标记(FSI)

这表示模型的流体-结构部分之间的接触表面。

5.5.5步骤五:指定载荷步选项

对谐波声分析有如下选项:

表5-3对谐波声分析的载荷步选项

5.5.5.1动力学选项

在此范畴内唯一有效的选项即强迫力的频率范围,在谐波分析中是必须定义的(循环/时间)。在此范围内,然后指定要求解的解的个数。(见“常规选项”)

5.5.5.2常规选项

可以请求任意数目的待计算谐波求解数(通过NSUBST命令或其相应的GUI 途径)。解(或子步)将在当前指定的频率范围内平均分布。例如,如果在30到40Hz内指定10个解,程序就会计算在31,32,33,…,39和40Hz处的响应。在低端频率处的响应将不进行计算。

载荷可以是阶梯式的或斜坡式的(通过KBC命令或其GUI途径)。缺省地,它们是斜坡式的;即载荷值在每一个子步逐渐地增加。通过阶跃载荷,可以得到在频率范围内的所有相同的载荷值。

5.5.5.3输出控制

如果在打印输出文件中要包括任何结果数据用OUTPR或其相应的GUI途径(Jobname.OUT)。OUTRES和其GUI途径控制结果文件(Jobname.RST)中的数据。ERESX及其GUI途径允许通过拷贝到节点来查看单元积分点的结果而不是通过外推得到(缺省)。

注意-缺省地程序只将每个载荷步的最后一个子步写到结果文件中。如果想要将所有子步(在所有频率处的解)写入结果文件,要保证用OUTRES将FREQ

选项设置为ALL(或1)。

5.5.6步骤六:备份数据库

用Utility Menu>File>Save as 或SAVE命令保存数据库的备份拷贝为一个命名的文件中。这样做使用户在求解失败时能恢复模型。(要恢复模型,重新进入ANSYS并执行RESUME命令或选择Utility Menu>File>Resume.)

5.5.7步骤七:施加另外的载荷步(可选择)

如果要施加另外的载荷步,重复步骤5和6。

5.5.8步骤8:完成求解

进行分析的求解然后结束。

命令:SOLVE

GUI: Main Menu>Solution>-Solve-Current LS

命令:FINISH

GUI: Main Menu>Finish

5.6查看结果

ANSYS程序将谐波声分析的结果写到结构的结果文件Jobname.RST中。结果包括下列数据,所有的结果在每一个的强迫频率处都按简谐变化:

?初始数据

- 节点压力

- 节点位移

?得出数据

- 节点和单元压力梯度

- 节点和单元应力

- 单元力

- 节点反力

可用POST1或POST26查看此信息。

5.7流体-结构相互作用

流体和结构在网格界面处的相互作用引起声压施加给结构一个强迫力,并且结构运动产生一个有效的“流体载荷”。有限元的控制矩阵方程变为:

(1)

(2)

[R]是一个耦合矩阵代表与流体-结构界面(FSI)上的节点相联系的有效表

面面积。耦合矩阵[R]也考虑进了组成接触表面的每一对重合的流体和结构单元面的法线矢量方向。ANSYS程序使用的法线矢量的正方向定义为由流体网格以外朝向结构的方向。结构和流体载荷量都是定义在流体-结构的界面处并为节点自由度的未知函数。将未知的载荷量放在方程的左边并且将两方程合并为一个方程,产生如下结果:

(3)方程(3)表明着流体-结构界面处的节点包括位移和压力自由度。

5.8应用示例

以下两个问题为声单元应用的例子。第一个例子说明声吸收单元在构造远场问题模型的应用,并通过GUI和批处理工具进行示范。第二个例子是近场问题,说明了在一个封闭空间中驻波预测的运用。

5.9例1:流体-结构耦合声场分析(命令方法)

在此例中,将确定一个浸没在水中延伸到无限远的环孔的第一阶弯曲模态(卵形模态)。使用谐波分析法通过对34Hz和38Hz频率之间进行频率扫描。环的中心到无限单元的距离至少应等于(D/2)+0.2l,这里D是环的外径。l=c/f 是压力波的主波长。用0.26035作为环的外径,声速为1460,主频率为36000/2p,给出(D/2)+0.2l=0.26035+(0.2)(1460)(2p)/36000=0.311。0.31242距离相应的结果频率为35.240Hz。

/BATCH,LIST

/VERIFY,EV129-1S

/PREP7

/TITLE,AMA,EV129-1S,FLUID129,HARMONIC ANALYSIS

ET,1,PLANE42! structural element

ET,2,FLUID29! acoustic fluid element with ux & uy

et,3,129! acoustic infinite line element

r,3,0.31242,0,0

ET,4,FLUID29,,1,0! acoustic fluid element without ux & uy

! material properties

MP,EX,1,2.068e11

MP,DENS,1,7929

MP,NUXY,1,0

MP,DENS,2,1030

MP,SONC,2,1460

! create inner and outer quarter circles

CYL4,0,0,0.254,0,0.26035,90

CYL4,0,0,0.26035,0,0.31242,90

! select, assign attribute to and mesh area 1 ASEL,S,AREA,,1

AATT,1,1,1,0

LESIZE,1,,,16,1

LESIZE,3,,,16,1

LESIZE,2,,,1,1

LESIZE,4,,,1,1

MSHKEY,1

MSHAPE,0,2D! mapped quad mesh

AMESH,1

! select, assign attribute to and mesh area 2 ASEL,S,AREA,,2

AATT,2,1,2,0

LESIZE,5,,,16,1

LESIZE,7,,,16,1

LESIZE,6,,,5

LESIZE,8,,,5

MSHKEY,0

MSHAPE,0,2D! mapped quad mesh

AMESH,2

! reflect quarter circle into semicircle about x-axis nsym,x,1000,all! offset node number by 1000

esym,,1000,all

! reflect semicircle into full circle about y-axis nsym,y,2000,all! offset node number by 2000

esym,,2000,all

NUMMRG,ALL! merge all quantities

! modify outer 2 layers of el29 into type 4

esel,s,type,,1

nsle,s

esln,s,0

nsle,s

esel,inve

nsle,s

emodif,all,type,4

esel,all

nsel,all

! define el129 line element

csys,1

nsel,s,loc,x,0.31242

type,3

real,3

mat,2

esurf

esel,all

nsel,all

! flag interface as fluid-structure interface nsel,s,loc,x,0.26035

esel,s,type,,2

sf,all,fsi,1

nsel,all

esel,all

FINISH

! enter solution module

/SOLU

ANTYPE,harmic! select harmonic analysis hropt,full

f,19,fx,1000.

f,1019,fx,-1000.

harfrq,34.,38.

nsubst,100

kbc,1

SOLVE

FINISH

/post26

plcplx,0

nsol,2,1,u,x,d1ux

store

conjug,3,2

prod,4,2,3

sqrt,5,4

*get,uxmx,vari,5,extrem,tmax

/COM -------------------------------------------------------------

/COMExpected Result:

/COM

/COM The following "uxmx" should equal 35.24 Hz.

/COM -------------------------------------------------------------

*status,uxmx

finish

5.10 例2:室内声场分析(命令方法)

此例的问题示例了利用FLUID30单元预测一个典型盒子表示房间的声学驻波模式。吸声材料放在盒子的下表面,圆筒表面的振动结构放在盒子的右上角。此问题将确定结构在激励频率为80Hz时振动的声压波模式。

/batch,list

/com, Harmonic Analysis - Room Acoustics

/PREP7

/TITLE,Room Acoustic Analysis

ANTYPE,HARM

ET,1,30! Acoustic elements in contact with walls and vibrating surface

ET,2,30,,1Acoustic elements in interior (not in contact with walls)

! Set parameters for mesh generation

XDIV=29! Number of divisions along x-axis

YDIV=19! Number of divisions along y-axis

ZDIV=1! Number of divisions along z-axis

CDIV=2! Number of divisions along radius

! Dimensions of the room

LEN=27

HGT=20

RAD=0.9

! Mesh generation

K,1

K,2,LEN

K,3,LEN,HGT

K,4,,HGT

K,5,,,-1

K,6,LEN,,-1

K,7,LEN,HGT,-1

K,8,,HGT,-1

L,1,5,1

L,2,6,1

L,3,7,1

L,4,8,1

CIRC,3,RAD,7,2,90,2 ADRAG,5,6,,,,, 3 PIO4=ATAN(1)

LENC=COS(PIO4) LENC=LENC*RAD HGTC=HGT-LENC LENC=LEN-LENC

K,15,,HGTC

K,16,,HGTC,-1

K,17,LENC

K,18,LENC,,-1

L,1 ,17,XDIV

L,10,15,XDIV

L,11,4 ,XDIV

L,17,10,YDIV

L,15, 1,YDIV

L,2 ,9 ,YDIV

L,5 ,18,XDIV

L,13,16,XDIV

L,14,8 ,XDIV

L,18,13,YDIV

L,16,5 ,YDIV

L,6 ,12,YDIV

ESIZE,,CDIV

V,1 ,17,10,15, 5,18,13,16

V,15,10,11,4 ,16,13,14,8

V,17,2 ,9 ,10,18,6 ,12,13

VMESH,ALL

! Material properties

MP,DENS,1,2.35E-3! (Rho) density of air (lb/ft**3)

MP,SONC,1,1100.0! (C) speed of sound in air (ft/sec)

MP,MU,1,0.04! (Beta) absorption coefficient of the walls

! ("Beta" should be between 0 - 1)

MP,DENS,2,2.35E-3

MP,SONC,2,1100.0

MP,MU,2,0.70! (Beta) absorption coefficient of

! the absorbing material on the floor

! ("Beta" should be between 0 -1)

MP,DENS,3,2.35E-3

MP,SONC,3,1100.0

MP,MU,3,0.0! (Beta) zero absorption coefficient for interior elements

NSEL,S,LOC,Y,0.0

NSEL,R,LOC,X,12,15

ESLN

MAT,2

ANSYS电磁场分析指南 第六章 3-D静态磁场分析(棱边元方法

第六章3-D静态磁场分析(棱边单元方法) 6.1何时使用棱边元方法 在理论上,当存在非均匀介质时,用基于节点的连续矢量位A来进行有限元计算会产生不精确的解,这种理论上的缺陷可通过使用棱边元方法予以消除。这种方法不但适用于静态分析,还适用于谐波和瞬态磁场分析。在大多数实际3-D 分析中,推荐使用这种方法。在棱边元方法中,电流源是整个网格的一个部分,虽然建模比较困难,但对导体的形状没有控制,更少约束。另外也正因为对电流源也要划分网格,所以可以计算焦耳热和洛伦兹力。 用棱边元方法分析的典型使用情况有: ·电机 ·变压器 ·感应加热 ·螺线管电磁铁 ·强场磁体 ·非破坏性试验 ·磁搅动 ·电解装置 ·粒子加速器 ·医疗和地球物理仪器 《ANSYS理论手册》不同章节中讨论了棱边单元的公式。这些章节包括棱边分析方法的概述、矩阵列式的讨论、棱边方法型函数的信息。 对于ANSYS的SOLID117棱边单元,自由度是矢量位A沿单元边切向分量的积分。物理解释为:沿闭合环路对边自由度(通量)求和,得到通过封闭环路的磁通量。正的通量值表示单元边矢量是由较低节点号指向较高节点号(由单元边连接)。磁通量方向由封闭环路的方向根据右手法则来判定。 在ANSYS中,AZ表示边通量自由度,它在MKS单位制中的单位是韦伯(Volt·Secs),SOLID117是20节点六面体单元,它的12个边节点(每条边

的中间节点)上持有边通量自由度AZ。单元边矢量是由较低节点号指向较高节点号。在动态问题中,8个角节点上持有时间积分电势自由度VOLT。 ANSYS程序可用棱边元方法分析3-D静态、谐波和瞬态磁场问题。(实体模型与其它分析类型一样,只是边界条件不同),具体参见第7章,第8章。 6.2单元边方法中用到的单元 表 1三维实体单元 6.3物理模型区域的特性与设置 对于包括空气、铁、永磁体、源电流的静态磁场分析模型,可以通过设置不同区域不同材料特性来完成。参见下表,详情在后面部分叙述。

基于ANSYS软件的电机电磁场有限元分析解读

基于ANSYS软件的电机电磁场有限元分析 发表时间:2007-9-11 作者: 黄劭刚夏永洪张景明来源: 万方数据 关键字: APDL语言同步发电机电磁场有限元 介绍了应用ANSYS自带的APDL编程语言进行软件开发,将该软件应用于同步发电机空载磁场分析中,在电机的电磁场计算中实现了电机的自动旋转、自动施加载荷的功能,使用、修改方便,并且计算速度快。通过对电磁场计算结果的后处理,得出了同步发电机的旋转磁场波形和电压波形。样机测试结果验证了分析结果的正确。 1 前言 ANSYS软件是一个功能强大、灵活的,融结构、热、流体、电磁、声学于一体的大型通用有限元分析软件。广泛用于核工业、石油化工、航空航天、机械制造、土木工程等一般工业及科学研究领域的设计分析。 在实际的电机电磁场分析中,电机的转子磁极形状、定子齿槽形状、气隙大小以及铁磁材料均已确定,但是当转子相对十定子齿槽的位置不同时一,其计算结果也不相同。为了分析电机电磁场问题,若把定、转子相对位置固定不变进行求解,再对电磁场计算结果进行傅立叶级数分解来计算电机绕组的电势则误差太大。为此,需要对定、转子不同位置时一分别进行计算,然后通过电磁场的计算结果求出电机何个定子齿部磁通随转角变化的关系,然后根据磁通的变化率求出电机基波绕组的电势。ANSYS软件是目前应用最为广泛、使用最方便的通用有限元分析软件之一,应用ANSYS软件来分析电机电磁场是非常有效的。但是当采用ANSYS软件的图形用户界面( GUI)操作方式时,每次定、转子之间的旋转、网格剖分、施加载荷进行求解、查看计算结果等都需要人工进行重复操作,使用起来非常繁琐,并且效率低。为此,木文采用ANSYS软件的APDL语言编写的软件对同步发电机的空载磁场进行研究,实现了电机定、转子之间的自动旋转,自动网格剖分,自动施加载荷以及自动求解的功能。整个电磁场分析过程无需人工进行干预,使用方便,便于修改,并且大大提高了计算速度。通过对同步发电机电磁场计算结果进行后处理,得出了同步发电机的旋转磁场波形和电压波形。 2 软件实现 ANSYS软件提供了图形用户界面与命令流两种方式来分析电机电磁场问题。在电机电磁场计算中,命令流方式和图形用户界面方式相比,具有以下优点:(1)通用性好,对于同系列、同型号的电机电磁场计算只要对电机的尺寸参数进行修改即可,而采用ANSYS的图形用户界面方式进行电机电磁场计算,每次计算都要重新输入图形,没有通用性;(2)通过合理应用ANSYS的APDL语言编写一个两重循环程序就可实现转子自动旋转和自动施加励磁电流的功能,与ANSYS 的图形用户界面方式相比,减少了人机交互的次数,缩短了计算时间。 2.1软件编写

ANSYS电磁场分析指南第九章3D静态、谐波和瞬态分析节点法

第九章3-D静态、谐波和瞬态分析(节点法) 9.1节点法(MPV)进行3D静态磁场分析 3-D节点法磁场分析的具体步骤与2-D静态分析类似,选择GUI参数路径Main Menu>Preferences> Magnetic-Nodal,便于使用相应的单元和加载。与2-D静态分析同样的方式定义物理环境,但要注意下面讨论的存在区别的地方。 9.1.1 选择单元类型和定义实常数 对于节点法3 –D静磁分析,可选的单元为3D 矢量位SOLID97单元,与2D单元不同。自由度为:AX,AY,AZ。3D矢量位方程中,用INFIN111远场单元(AX、AY、AZ三个自由度)来为无限边界建模。 对于载压和载流绞线圈(只有SOLID97单元),必须定义如下实常数:

速度效应 可求解运动物体在特定情况下的电磁场,2-D静磁分析讨论了运动体的应用和限制,在3-D中,只有SOLID97单元类型能通过设置单元KEYOPT选项来考虑速度效应。 9.1.2 定义分析类型 用与2D静态磁场分析相同的方式定义3D静态磁场分析,即,可以通过菜单路径Main Menu>Solution>New Analysis、或者用命令ANTYPE,STATIC,NEW来定义一个新的静态磁场分析;或者用ANTYPE,STATIC,REST 命令来重启动一个3-D分析。 如果使用了速度效应,不能在3D静态分析(ANTYPE,STATIC)中直接求解具有速度效应的静态直流激励场,而要用具有很低频率的时谐分析(ANTYPE,HARMIC)来完成。 9.1.3 选择方程求解器 命令:EQSLV GUI:Main Menu>Solution>Analysis Options 3D模型建议使用JCG或PCG法进行求解。而对于载压模型、载流模型、或有速度效应的具有非对称矩阵的模型,只能使用波前法、JCG法、或ICCG法求解。电路激励模型只能用稀疏矩阵法或波前法求解器。 9.1.4 加载和求解 进入求解器: 命令:/SOLU GUI:Main Menu>Solution 3-D 静态MVP分析的载荷与2-D静态分析稍有些不同,但其菜单路径是一样的。下面是关于3-D静态磁场分析的一些加载: 该载荷用以定义磁力线垂直、磁力线平行、远场、周期边界条件、以及强加外磁场等载荷和边界条件,下表描述了各种边界条件相应的磁矢量势值:

ANSYS电磁场分析指南解读

回旋加速器 在一般电磁场分析中关心的典型的物理量为: -磁通密度?能量损耗 -磁场强度?磁漏 ?磁力及磁矩? S-参数 ?阻抗?品质因子Q ?电感?回波损耗 ?涡流?本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场 1.2ANSYS 如何完成电磁场分析计算 ANSYSU Maxwell 方程组作为电磁场分析的出发点。有限元方法计算的未知 量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根 ANSY 电磁场分析指南第一章 发表时间: 2007-9-20 作者 : 安世亚太 来源 : e-works 关键字 : ANSYS 电磁场分析 CAE 教程 第一章磁场分析概述 1.1 磁场分析对象 利用ANSYS/Ema 或ANSYS/Multiphysics 模块中的电磁场分析功能,ANSYS 可分析计算下列的设备中的电磁场,如: 电力发电机 磁带及磁盘驱动器 变压器 波导 螺线管传动器 谐振腔 电动机 连接器 磁成像系统 天线辐射 图像显示设备传感器 滤波器

据用户所选择的单元类型和单元选项的不同, ANSYS+算的自由度可以是标量磁 位、矢量磁位或边界通量。 1.3 静态、谐波、瞬态磁场分析 利用ANSY 测以完成下列磁场分析: ?2-D 静态磁场分析,分析直流电(DC )或永磁体所产生的磁场,用矢量位方 程。参见本书“二维静态磁场分析” ?2-D 谐波磁场分析,分析低频交流电流(AC )或交流电压所产生的磁场,用 矢量位方程。参见本书“二维谐波磁场分析” ?2 -D 瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包 含永磁体的效应,用矢量位方程。参见本书“二维瞬态磁场分析” ?3-D 静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。 参见本书“三维静态磁场分析(标量位方法)” ?3-D 静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。 参见本书“三维静态磁场分析(棱边元方法)” ?3-D 谐波磁场分析,分析低频交流电所产生的磁场,用棱边单元法。建议 尽量用这种方法求解谐波磁场分析。参见本书“三维谐波磁场分析(棱边元方法) ?3-D 瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,用 棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维瞬态磁场 分析(棱边元方法)” 3-D 静态磁场分析,用矢量位方法。参见“基于节点方法 ?基于节点方法的3-D 谐波磁场分析,用矢量位方法。参见“基于节点方法 的 3-D 谐波磁场分析” 1.4 关于棱边单元、标量位、矢量位方法的比较 什么时候选择2-D 模型,什么时候选择3-D 模型?标量位方法和矢量位方 法有何不同?棱边元方法和基于节点的方法求解 3-D 问题又有什么区别?在下面 将进行详细比较。 1.4.12-D 分析和 3-D 分析比较 3-D 分析就是用 3-D 模型模拟被分析的结构。现实生活中大多数结构需要 3- D 模型来进行模拟。然而3-D 模型对建模的复杂度和计算的时间都有较高要求。 所以,若 ?基于节点方法的 的 3-D 静态磁场分析” ?基于节点方法的 的 3-D 瞬态磁场分析” 3-D 瞬态磁场分析, 用矢量位方法。参见“基于节点方法

ANSYS电磁场分析指南第十六章电路分析

第十六章电路分析 16.1 什么是电路分析 电路分析可以计算源电压和源电流在电路中引起的电压和电流分布。分析方法由源的类型来决定: 源的类型分析方法 交流(AC)谐波分析 直流(DC)静态分析 随时间变化瞬态分析 要在电磁学分析中用有限元来模拟全部电势,就必须提供足够的灵活性来模拟载流电磁设备。ANSYS程序对于电路分析有如下性能: ·用经过改进的基于节点的分析方法来模拟电路分析 ·可以将电路与绕线圈和块状导体直接耦合 ·2-D和3-D模型都可以进行耦合分析 ·支持直流、交流和时间瞬态模拟 ANSYS程序中先进的电路耦合模拟功能精确地模拟多种电子设备,: ·螺线管线圈 ·变压器 ·交流机械 16.2 使用CIRCU124单元 ANSYS提供一种通用电路单元CIRCU124对线性电路进行模拟,该单元求解未知的节点电压(在有些情况下为电流)。电路由各种部件组成,如电阻、电感、互感、电容、独立电压源和电流源、受控电压源和电流源等,这些元件都可以用CIRCU124单元来模拟。 注:本章只描述CIRCU124单元的某些最重要的特性,对该单元的详细描述参见《ANSYS 单元手册》。 16.2.1 可用CIRCU124单元模拟的电路元件

对CIRCU124单元通过设置KEYOPT(1)来确定该单元模拟的电路元件,如下表所示。例如,把KEYOPT(1)设置为2,就可用CIRCU124来模拟电容。对所有的电路元件,正向电流都是从节点I流向节点J。 表1CIRCU124单元能模拟的电路元件 注意:全部的电路选项如上表和下图图1所示,ANSYS的电路建模程序自动生成下列实常数:R15(图形偏置,GOFFST)和R16(单元识别号,ID)。本章下一节将详细讨论电路建模程序。 下图显示了利用不同的KEYOPT(1)设置建立的不同电路元件,那些靠近元件标志的节点是“浮动”节点(即它们并不直接连接到电路中)。 16.2.2 CIRCU124单元的载荷类型 对于独立电流源和独立电压源可用CIRCU124单元KEYOPT(2)选项来设置激励形式,可以定义电流或电压的正弦、脉冲、指数或分段线性激励。详细的载荷函数图和相应的实常数请参见《ANSYS单元手册》。 16.2.3 将FEA(有限元)区耦合到电路区 可将电路分析的三种元件耦合到FEA区,图2所示的这三种元件直接连接到有限元模型的导体上(耦合是在矩阵中进行耦合的,因此只能为线性的):

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较要点

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

ansys分析电磁场

三维螺线管静态磁场分析 要求计算螺线管,如下图所示,衔铁所受磁力,线圈为直流激励,产生力驱动衔铁。线圈电流为6A,500匝。由于对称性,只分析1/4的模型,如图1所示: 图1螺线管制动器 在仿真分析时,空气相对磁导系数为1.0;使用智能网格划分(LVL=8);设定全部面为通量平行,这是自然边界条件,自动得到满足。因为是采用的1/4对称模型,所以磁力的计算结果要乘以4。

施加边界条件: ! /SOLU D,2,MAG,0 ! !SOLVE ! ALLSEL,ALL MAGSOLV,3,,,,,1 FINISH ! 建立的模型如下图所示:

对模型进行智能网格划分,如下图所示: 仿真分析所得磁场强度分布图为:

衔铁所受磁力分布图为: 衔铁所受磁力分布图为:

计算所得衔铁所受磁力为: SUMMARY OF FORCES BY VIRTUAL WORK Load Step Number: 2. Substep Number: 1. Time: 0.2000E+01 Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.14339E+02 0.11359E+02 -0.12846E+02 ___________________________________________________ SUMMARY OF FORCES BY MAXWELL STRESS TENSOR Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.79007E+01 0.55769E+01 -0.11511E+02 _____________________________________________________ Note: Maxwell forces are in the Global Cartesian coordinate system. Virtual work forces are in the element ESYS coordinate system.

耦合场分析

ANSYS非线形分析指南基本过程 第四章耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 第1页

ANSYS热分析指南

ANSYS热分析指南 第一章简介 1.1热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有: 温度的分布 热量的增加或损失 热梯度 热流密度 热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。 1.2ANSYS中的热分析 ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、 ANSYS/FLOTRAN四种产品中支持热分析功能。ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Reference》。ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。 ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。1.2.1对流 热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。 1.2.2辐射 ANSYS提供了四种方法来解决非线性的辐射问题: 辐射杆单元(LINK31) 使用含热辐射选项的表面效应单元(SURF151-2D,或SURF152-3D)

在AUX12中,生成辐射矩阵,作为超单元参与热分析 使用Radiosity求解器方法 有关辐射的详细描述请阅读本指南第四章。 1.2.3特殊的问题 除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。例如,可使用热质点单元MASS71模拟随温度变化的内部热生成。 1.3热分析的类型 ANSYS支持两种类型的热分析: 1.稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。 2.瞬态热分析则计算在随时间变化的条件下,温度的分布和热特性。 1.4耦合场分析 ANSYS中可与热分析进行耦合的方式有热—结构、热-电磁等。耦合场分析可以使用ANSYS中的矩阵耦合单元,或者在独立的物理环境中使用序惯荷载耦合。有关耦合场分析的详细描述,请参阅《ANSYS Coupled-Field Analysis Guide》。 1.5关于菜单路径和命令语法 在本指南中,您将会看到相关的ANSYS命令及其等效的菜单路径。这些参考的命令仅仅包括命令名,因为并不总是需要指定所有的参数,而且不同的参数组合会有不同的作用。有关ANSYS命令的更多的叙述,请参考《ANSYS Commands Reference》。 菜单路径将近可能完整得列出。对于多数情况,选择菜单就能够完成所需要的功能;但还有一些情况,选择文中所示菜单后会弹出一个菜单或是对话框,由此定义其他的选项来执行一些特定的任务。 第二章基础知识 2.1符号与单位

电磁场分析指南——静电场分析(h方法)

第十四章 静电场分析(h方法) 14.1 什么是静电场分析 静电场分析用以确定由电荷分布或外加电势所产生的电场和电场标量位(电压)分布。该分析能加二种形式的载荷:电压和电荷密度。 静电场分析是假定为线性的,电场正比于所加电压。 静电场分析可以使用两种方法:h方法和p方法。本章讨论传统的h方法。下一章讨论p方法。 14.2 h方法静电场分析中所用单元 h方法静电分析使用如下ANSYS单元: 表1. 二维实体单元 单元维数形状或特征自由度 PLANE1212-D四边形,8节点每个节点上的电压 表2. 三维实体单元 单元维数形状或特征自由度 SOLID1223-D砖形(六面体),20节点每个节点上的电压 SOLID1233-D砖形(六面体),20节点每个节点上的电压 表3. 特殊单元 单元维数形状或特征自由度 MATRIX50无(超单元)取决于构成本单元的单元取决于构成本单元的单元类型 INFIN1102-D4或8节点每个节点1个;磁矢量位,温度,或电位 INFIN1113-D六面体,8或20节点AX、AY、AZ磁矢势,温度,电势,或磁标量势 INFIN92-D平面,无界,2节点AZ磁矢势,温度INFIN473-D四边形4节点或三角形3节点AZ磁矢势,温度 14.3 h方法静电场分析的步骤 静电场分析过程由三个主要步骤组成: 1.建模 2.加载和求解 3.观察结果 14.3.1 建模 定义工作名和标题: 命令:/FILNAME,/TITLE GUI:Utility Menu>File>Change Jobname Utility Menu>File>Change Title 如果是GUI方式,设置分析参考框:

ANSYS耦合场分析指南

ANSYS非线形分析指南基本过程 耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 第1页

【ANSYS分析】耦合场分析

第四章耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 1

直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 1

ANSYS电磁场分析指南 第十一章 磁宏

第十一章磁宏 11.1 什么是电磁宏 电磁宏是ANSYS宏命令,其主要功能是帮助用户方便地建立分析模型、方便地获取想要观察的分析结果。目前,ANSYS提供了下列宏命令,可用于电磁场分析: ·CMATRIX:计算导体间自有和共有电容系数 ·CURR2D:计算二维导电体内电流 ·EMAGERR:计算在静电或电磁场分析中的相对误差 ·EMF:沿预定路径计算电动力(emf)或电压降 ·FLUXV:计算通过闭合回路的通量 ·FMAGBC:对一个单元组件加力边界条件 ·FMAGSUM:对单元组件进行电磁力求和计算 ·FOR2D:计算一个体上的磁力 ·HFSWEEP:在一个频率范围内对高频电磁波导进行时谐响应分析,并进行 相应的后处理计算 ·HMAGSOLV:定义2-D谐波电磁求解选项并进行谐波求解 ·IMPD:计算同轴电磁设备在一个特定参考面上的阻抗 ·LMATRIX:计算任意一组导体间的电感矩阵 ·MAGSOLV:对静态分析定义磁分析选项并开始求解 ·MMF:沿一条路径计算磁动力 ·PERBC2D:对2—D平面分析施加周期性约束 ·PLF2D:生成等势的等值线图 ·PMGTRAN:对瞬态分析的电磁结果求和 ·POWERH:在导体内计算均方根(RMS)能量损失

·QFACT:根据高频模态分析结果计算高频电磁谐振器件的品质因子 ·RACE:定义一个“跑道形”电流源 ·REFLCOEF:计算同轴电磁设备的电压反射系数、驻波比、和回波损失 ·SENERGY:计算单元中储存的磁能或共能 ·SPARM:计算同轴波导或TE10模式矩形波导两个端口间的反射参数 ·TORQ2D:计算在磁场中物体上的力矩 ·TORQC2D:基于一个圆形环路计算在磁场中物体上的力矩 ·TORQSUM:对2-D平面问题中单元部件上的Maxwell力矩和虚功力矩求和 本章对这些宏有详细描述。在ANSYS命令手册和理论手册对这些宏有更详细的描述。 下面的表格列出了这些电磁宏的使用范畴。

ANSYS电磁场分析指南第十六章

ANSYS电磁场分析指南第十六章 发表时间:2007-9-20 作者: 安世亚太来源: e-works 关键字: ANSYS 电磁场分析 CAE教程 第十六章电路分析 16.1 什么是电路分析 电路分析可以计算源电压和源电流在电路中引起的电压和电流分布。分析方法由源的类型来决定:源的类型分析方法 交流(AC)谐波分析 直流(DC)静态分析 随时间变化瞬态分析 要在电磁学分析中用有限元来模拟全部电势,就必须提供足够的灵活性来模拟载流电磁设备。ANSYS 程序对于电路分析有如下性能: ·用经过改进的基于节点的分析方法来模拟电路分析 ·可以将电路与绕线圈和块状导体直接耦合 ·2-D和3-D模型都可以进行耦合分析 ·支持直流、交流和时间瞬态模拟 ANSYS程序中先进的电路耦合模拟功能精确地模拟多种电子设备,: ·螺线管线圈 ·变压器 ·交流机械 16.2 使用CIRCU124单元 ANSYS提供一种通用电路单元CIRCU124对线性电路进行模拟,该单元求解未知的节点电压(在有些情况下为电流)。电路由各种部件组成,如电阻、电感、互感、电容、独立电压源和电流源、受控电压源和电流源等,这些元件都可以用CIRCU124单元来模拟。 注:本章只描述CIRCU124单元的某些最重要的特性,对该单元的详细描述参见《ANSYS单元手册》。 16.2.1 可用CIRCU124单元模拟的电路元件 对CIRCU124单元通过设置KEYOPT(1)来确定该单元模拟的电路元件,如下表所示。例如,把KEYOPT(1)设置为2,就可用CIRCU124来模拟电容。对所有的电路元件,正向电流都是从节点I流向节点J。

最新ANSYS电磁场分析指南第一章磁场分析概述汇总

A N S Y S电磁场分析指南第一章磁场分析概 述

第一章磁场分析概述 1.1磁场分析对象 利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS 可分析计算下列的设备中的电磁场,如: ·电力发电机·磁带及磁盘驱动器 ·变压器·波导 ·螺线管传动器·谐振腔 ·电动机·连接器 ·磁成像系统·天线辐射 ·图像显示设备传感器·滤波器 ·回旋加速器 在一般电磁场分析中关心的典型的物理量为: ·磁通密度·能量损耗 ·磁场强度·磁漏 ·磁力及磁矩· S-参数 ·阻抗·品质因子Q ·电感·回波损耗 ·涡流·本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场。 1.2ANSYS如何完成电磁场分析计算 ANSYS以Maxwell方程组作为电磁场分析的出发点。有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。 1.3静态、谐波、瞬态磁场分析

利用ANSYS可以完成下列磁场分析: ·2-D静态磁场分析,分析直流电(DC)或永磁体所产生的磁场,用矢量位方程。参见本书“二维静态磁场分析” ·2-D谐波磁场分析,分析低频交流电流(AC)或交流电压所产生的磁场,用矢量位方程。参见本书“二维谐波磁场分析” ·2-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包含永磁体的效应,用矢量位方程。参见本书“二维瞬态磁场分析” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。参见本书“三维静态磁场分析(标量位方法)” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。参见本书“三维静态磁场分析(棱边元方法)” ·3-D谐波磁场分析,分析低频交流电所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维谐波磁场分析(棱边元方法)” ·3-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维瞬态磁场分析(棱边元方法)” ·基于节点方法的3-D静态磁场分析,用矢量位方法。参见“基于节点方法的3-D静态磁场分析” ·基于节点方法的3-D谐波磁场分析,用矢量位方法。参见“基于节点方法的3-D谐波磁场分析” ·基于节点方法的3-D瞬态磁场分析,用矢量位方法。参见“基于节点方法的3-D瞬态磁场分析” 1.4关于棱边单元、标量位、矢量位方法的比较 什么时候选择2-D模型,什么时候选择3-D模型?标量位方法和矢量位方法有何不同?棱边元方法和基于节点的方法求解3-D问题又有什么区别?在下面将进行详细比较。 1.4.12-D分析和3-D分析比较 3-D分析就是用3-D模型模拟被分析的结构。现实生活中大多数结构需要3-D模型来进行模拟。然而3-D模型对建模的复杂度和计算的时间都有较高要求。所以,若有可能,请尽量考虑用2-D模型来进行建模求解。

ANSYS电磁场分析指南

A N S Y S电磁场分析指南(总 434页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

ANSYS电磁场分析指南(共17章) ANSYS电磁场分析指南第一章磁场分析概述: ANSYS电磁场分析指南第二章 2-D静态磁场分析: ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析: ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法): ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法): ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法): ANSYS电磁场分析指南第九章 3-D静态、谐波和瞬态分析(节点法): ANSYS电磁场分析指南第十章高频电磁场分析: ANSYS电磁场分析指南第十一章磁宏: ANSYS电磁场分析指南第十二章远场单元: ANSYS电磁场分析指南第十三章电场分析: ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析: ANSYS电磁场分析指南第十七章其它分析选项和求解方法:

第一章磁场分析概述 磁场分析对象 利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如: ·电力发电机·磁带及磁盘驱动器 ·变压器·波导 ·螺线管传动器·谐振腔 ·电动机·连接器 ·磁成像系统·天线辐射 ·图像显示设备传感器·滤波器 ·回旋加速器 在一般电磁场分析中关心的典型的物理量为: ·磁通密度·能量损耗 ·磁场强度·磁漏 ·磁力及磁矩· S-参数 ·阻抗·品质因子Q ·电感·回波损耗 ·涡流·本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场。 如何完成电磁场分析计算

ANSYS流体与热分析第15章耦合场分析典型工程实例

第15章耦合场分析典型工程实例 本章重点通过实例讲解介绍ANSYS耦合分析在工程上的一些典型应用。 章要要点 如何解决热-结构耦合问题 耦合场分析典型工程实例 本章案例 包含焊缝的金属板热膨胀分析 现代办公楼层内空调布局对室内温度分布的影响研究

15.1工程实例一——包含焊缝的金属板热膨胀分析 该工程实例问题说明及分析如下:某一平板由钢板和铁板焊接而成,焊接材料为铜,平板尺寸为1×1×0.2,横截面结构如图15-1所示。平板的初始温度为800℃,将平板放置于空气中进行冷却,周围空气温度为30℃,对流系数为110W/(m2g℃)。求10分钟后平板内部的温度场及应力场分布(材料参数见表15-1)。 图15-1 平板横截面结构示意图 表15-1 材料性能参数 温度℃弹性 模量 Gpa 屈服 强度 Gpa 切变 模量 Gpa 导热系数 W/(m·℃) 线膨胀系 数℃-1 比热容J/ (kg·℃) 密度kg/m3泊松比 钢 30 206 1.4 20.6 66.6 1.06E-05 460 7800 0.3 200 192 1.33 19.8 400 175 1.15 18.3 600 153 0.92 15.6 800 125 0.68 11.2 铜 30 103 0.9 10.3 383 1.75E-05 390 8900 0.3 200 99 0.85 0.98 400 90 0.75 0.89 600 79 0.62 0.75 800 58 0.45 0.52 铁 30 118 1.04 1.18 46.5 5.87E-06 450 7000 0.3 200 93 0.91 0.86 400 93 0.91 0.86 600 75 0.76 0.69 800 52 0.56 0.51 该问题属于瞬态热应力问题,选择整体平板建立几何模型,选取SOLID5热-结构耦合单 元进行求解。

ansys耦合命令

CP, nset, lab,node1,node2,……node17 定义或改变耦合节点自由度 PREP7: Coupled DOF nset:耦合组编号 设置如下: n:随机设置数量 HIGH:使用最高定义的耦合数量(如果Lab=all,此为默认值)。该选项用于在已有组中增加节点。 NEXT:将定义的最高耦合数量增加1。该项用于在现有组未改变时自动定义耦合组。Lab: 耦合节点的自由度。定义类型随NSET所选类型改变: 结构类:UX, UY, or UZ (位移); ROTX, ROTY, or ROTZ (角度); 热分析类:TEMP, TBOT, TE2, TE3, . . ., TTOP (温度); 流体分析类: PRES (压力); VX, VY, or VZ (速率); 电子类: VOLT (电压); EMF (电场耦合值); CURR (电流). 磁分析类: MAG (标量磁位差); AX, AY, or AZ (矢量磁位差); CURR (电流). Explicit analysis labels: UX, UY, or UZ (位移)。 node1~node17: 待耦合的节点号。 输入相同的节点号会被忽略。如果某一节点号为负,则此节点从该耦合组中删去。如果node1=all,则所有选中节点加入该耦合组。 注意: 1,不同自由度类型将生成不同编号 2,不可将同一自由度用于多套耦合组 耦合自由度的结果是耦合组中的一个元素与另一个元素有相同的属性。耦合可以用于模型不同的结点和联结效果。一般定义耦合可以使用约束公式(CE)。对结构分析而言,耦合节点由节点方向定义。耦合的结果是,这些节点在指定的结点坐标方向上有相同的位移。对于一组没有定义位移的耦合节点,可能会产生应力弯矩,这些弯矩不是由作用力产生的。对特定节点的实际自由度是由元素类型(ET)所指定的。例如,BEAM3的自由度是UX,UY和ROTZ。对标量场分析,该命令用于耦合节点的温度、压力、电压等等。 对显式动力分析,耦合只能用位移参数(UX、UY和UZ)。由于不允许旋转位移(ROTX、ROTY、ROTZ),CP命令不可用于对刚体模型的显式分析,因为其中包含旋转特性。如果用了CP,可能会导致非物理响应。 一组耦合节点,如果坐标不重合,或者没有分布在一条与约束自由度同方向的直线上,会产生虚假的弯矩约束。(错误的原文:如果有一组没有定义的耦合节点,或没有定义耦合位移,会产生假的弯矩约束。)如果结构旋转,弯矩可能产生耦合组中由耦合力产生。这个弯矩与实际作用力无关,而只考虑应力和作用力不会得到满意结果。然而要注意,对显式动力分析来说,假弯矩不会产生。确切来说,只有应力和作用力可以在模型中产生弯矩。因此,在显式分析中,对耦合节点来说大量的节点位移依靠耦合中心的位移,位移的方向则依靠实际的弯矩。这在某些情况下可能产生非物理反应。 附加的耦合节点由指定耦合产生。自由度数可以由耦合定义,但是不可以定义两次。Such an appearance would indicate that at least two sets were in fact part of a single larger set(这句不理解).耦合组的第一自由度是“主要”自由度。耦合组的其它自由度会从求解矩阵中消除,

ANSYS电磁场分析指南

ANSYS电磁场分析指南(共17章) ANSYS电磁场分析指南第一章磁场分析概述: ANSYS电磁场分析指南第二章2-D静态磁场分析: ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析: ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法): ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法): ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法): ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法): ANSYS电磁场分析指南第十章高频电磁场分析: ANSYS电磁场分析指南第十一章磁宏: ANSYS电磁场分析指南第十二章远场单元: ANSYS电磁场分析指南第十三章电场分析: ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析: ANSYS电磁场分析指南第十七章其它分析选项和求解方法:

第一章磁场分析概述 1.1磁场分析对象 利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器 ·变压器·波导 ·螺线管传动器·谐振腔 ·电动机·连接器 ·磁成像系统·天线辐射 ·图像显示设备传感器·滤波器·回旋加速器

在一般电磁场分析中关心的典型的物理量为: ·磁通密度·能量损耗 ·磁场强度·磁漏 ·磁力及磁矩· S-参数 ·阻抗·品质因子Q ·电感·回波损耗 ·涡流·本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场。1.2ANSYS如何完成电磁场分析计算 ANSYS以Maxwell方程组作为电磁场分析的出发点。有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。 1.3静态、谐波、瞬态磁场分析 利用ANSYS可以完成下列磁场分析:

相关主题
文本预览
相关文档 最新文档