当前位置:文档之家› 控制系统的闭环频响

控制系统的闭环频响

控制系统的闭环频响
控制系统的闭环频响

控制系统的闭环频响

4.7.1 由开环频率特性估计闭环频率特性

对于如图4-42所示的系统,所谓开环频率特性,是指将闭环回路的环打开,其开环频率特性为G (j ω)H (j ω)。

图4-42 典型闭环系统

而该系统闭环频率特性为 )

()(1)()()(ωωωωωj H j G j G j X j X i o += (4.20) 据此,可以画出系统闭环频率特性图。由于求出的闭环频率特性分子分母通常不是因式分解的形式,故其频率特性图一般不如开环频率特性图容易画。随着计算机的应用日益普及,其冗繁的计算工作量可以很容易地由计算机完成。另一方面,已知开环幅频特性,也可定性地估计闭环频率特性。

设系统为单位反馈,则 )

(1)()()(ωωωωj G j G j X j X i o += (4.21) 一般实用系统的开环频率特性具有低通滤波的性质,低频时,1)(>>ωj G ,)(ωj G 与1相比,1可忽略不计,则 1)

(1)()()(≈+=ωωωωj G j G j X j X i o 高频时,1)(<<ωj G , )(ωj G 与1相比,)(ωj G 可忽略不计,则 )()

(1)()()(ωωωωωj G j G j G j X j X i o ≈+= 系统开环及闭环幅频特性对照如图4-43所示。因此,对于一般单位反馈的最小相位系统,低频输入时输出信号的幅值和相位均与输入基本相等,这正是闭环反馈控制系统所需要的工作频段及结果;高频输入时输出信号的幅值和相位则均与开环特性基本相同,因而可用开环的截止频率估计闭环的截止频率;而中间频段的形状随系统阻尼的不同有较大的变化。

图4-43 系统开环及闭环幅频特性对照

另外,我们可以利用等M 圆(等幅值轨迹)和等N 圆(等相角轨迹)由开环频率特性求出闭环频率特性。对于单位反馈系统,设前向通道传递函数为G(s), 则其闭环传递函数为

()()()()s

G s G s X s X i o +=1 (4.22) 在图4-44所示的乃奎斯特图上,向量OA 表示()A j G ω,其中A ω为A 点频率。向量OA 的幅值为()A j G ω,向量OA 的相角为()A j G ω∠。由点P (-1,j0)到A 点的向量PA 可表示为[1十()A j G ω]。向量OA 与PA 之比正好表示了闭环频率特性,即

()()()()

A o A i A A j X j X j G j G PA OA ωωωω=+=1 (4.23) 在A ωω=处,闭环频率特性的幅值就是向量OA 与PA 的幅值之比,相位角就是两向量的相角之差,即夹角θ?-,如图4-44所示。当系统的开环频率特性确定后,根据图4-44就可求出闭环频率特性。

图4-44 由开环频率特性求闭环频率特性

设闭环频率特性的幅值为M (ω),相位角为φ(ω), 闭环频率响应可表示为

()()

()()ωφωωωj o i e M j X j X = (4.24)) 类似于地图上等高线的思路,我们可画出闭环频率特性的等幅值轨迹和等相角轨迹,在由开环乃奎斯特图确定闭环频率特性及系统校正时,这将带来方便。

(1)等幅值轨迹(M 圆)

设()jY X j G +=ω,式中X 和Y 均为实数,则

()222

211Y X Y X jY X jY

X M +++=+++= (4.25)

式(4.25)两边平方,可得

()222

221Y X Y X M +++= (4.26)

如果M=1,由式(4.26)可求得X=-1/2,即为通过点(-1/2,0)且平行虚轴的直线。 如果M ≠1,式(4.26)可化成

()

222

222211-=+???? ??-+M M Y M M X (4.27) 该式就是一个圆的方程,其圆心为]0,1

[22j M M --,半径为12-M M 。如图4-45所示。

图4-45 M 圆

在复平面上,等M 轨迹是一族圆,对于给定的M 值,可计算出它的圆心坐标和半径。图4-46表示的一族等M 圆。由图上可以看出,当M>1时,随着M 的增大M 圆的半径减小,最后收敛于点(-1,j0)。当M <1时,随着M 的减小M 圆的半径亦减小,最后收敛于点(0,j0)。M=1时,其轨迹是过点(-1/2,j0)且平行于虚轴的直线。

图4-46 等M 圆族

(2)等相角轨迹(N 圆)

()()ωωj X j X o i ∠相角为 jY

X jY X +++∠=1φ 即 X

Y X Y +-=1a r c t a n

a r c t a n φ 设tan φ=N ,则 2

21111a r c t a n a r c t a n t a n Y X X Y X

Y X Y X

Y X Y X Y X Y N ++=+?++-

=??

????+-= 则 022=-

++N

Y Y X X 配方整理,可得 222

21412121??? ??+=??? ??-+??? ??+N N Y X (4.28)

由式(4.28)可看出,等相角轨迹是一个圆心为??? ??-N j 21,21,半径为2

2141??? ??+N 的圆。图4-47表示的是一族等N 圆。

应当指出,对于给定的φ的值的N 圆,实际上并不是一个完整的圆,而只是一段圆弧。同时,由于φ与φ±180°的正切值是相同的, N 圆对应的φ具有多值性,例如φ=-35°与φ=145°对应的圆弧是相同的。

图4-47 等N 圆族

(3)应用乃奎斯特图求闭环频率特性

应用相同的比例尺,将等M 圆和等N 圆绘制在透明片上,然后再把它覆盖在以相同比例尺绘制的系统开环传递函数乃奎斯特图上,乃奎斯特图与等M 圆和等N 圆的交点所对应的幅值与相角分别由M 圆和N 圆的参数决定,对应的频率则由开环乃奎斯特图决定,这样即可求出闭环频率特性。图4-48(a )和(b )分别表示一单位反馈系统G (j ω)轨迹与M 圆和N 圆的相交情况。可以看出,在频率1ωω=处,G (j ω)轨迹与M =1.1的圆相交,这意味着在该频率处,闭环频率响应幅值为1.1。从(b )图上可以看出其相角应为-10°。与G (j ω)轨迹相切的M 圆的幅值即为谐振峰值。在频率4ωω=时,G (j ω)与M=2的圆相切,这意味着该切点对应的幅值就是最大幅值(谐振峰值),其相角为-120°。找出G (j

ω)与M圆和N圆的交点,就可绘出闭环频率特性曲线,如图4-48(c)所示。

图4-48 (a)叠加在M圆族上的G(jω)轨迹;

(b)叠加在N圆族上的G(jω)轨迹;

(c)闭环频率响应曲线

(4)应用Nichols图线求闭环频率特性

仿照上述等M圆和等N圆的思路,在对数幅相特性图上也可作等M曲线和等N曲线,只不过此时曲线已不是圆形,由它们轨迹构成的曲线称为尼柯尔斯图线。图4-49表示了相角在0°和-240°之间的图线。尼柯尔斯图线对称于-180°轴线,每隔360°, M轨线和N轨线重复一次,且在每个180°的间隔上都是对称的。在由开环频率特性确定闭环频率特性时,应

用相同的比例尺,将尼柯尔斯图线绘制在透明片上,然后再把它覆盖在以相同比例尺绘制的系统开环传递函数对数幅相图上,则开环频率特性曲线G (jω)与M 轨线和N 轨线的交点,就给出了每一频率上闭环频率特性的幅值M 和相角φ。若G (jω)轨迹与M 轨线相切,切点处频率就是谐振频率,谐振峰值由M 轨线对应的幅值确定。

图4-49 尼柯尔斯图线

例如,一单位反馈系统的开环传递函数为

()()()

15.011++=s s s s G 为了应用尼柯尔斯图线求闭环频率特性,可在对数幅相图上画G (jω)轨迹与M 轨线和N 轨线,如图4-50所示。闭环频率特性曲线可由M 轨线和N 轨线与G (jω)交点求出不同频率时的幅值与相角,闭环频率特性曲线如图(b )所示。由于G (jω)轨迹是与M=5dB 的轨迹相切,所以闭环频特性的谐振峰值为r M =5dB ,而谐振频率s rad r /8.0=ω。此外G (jω)与M=-3dB 轨迹交点的频率在1.2~1.4rad/s 之间,采用插值计算可大致确定闭环截止

频率为b ω=1.3rad /s 。

图4-50 (a )重叠在尼柯尔斯图线上的G (jω)图 (b )闭环频率响应曲线

(5)非单位反馈系统的闭环频率特性

对于非单位反馈系统,其闭环传递函数为

()()()()()

s H s G s G s X s X i o +=1 (4.29) 闭环频率特性可写为

()()()()()

()()()()()ωωωωωωωωωωj H j G j H j G j H j H j G j G j X j X i o +?=+=111 (4.30)

在求取闭环频率特性时,在尼柯尔斯图上画出()()ωωj H j G 的轨迹,由轨迹与M 轨线和N 轨线的交点,就可得到()()()()ωωωωj H j G j H j G +1的某一频率下的幅值和相角,用()ωj H 1乘以()()()()

ωωωωj H j G j H j G +1就可得到系统闭环频率特性。 4.7.2 系统频域指标

(一) 开环频域指标

ωc — 开环截止频率(rad /s );

γ°— 相位裕量;

Kg 一 幅值裕量。

(二) 闭环频域指标

如图4-51闭环频率特性曲线,给出闭环频域指标:

ωr 一 谐振角频率;

M r 一 谐振峰值;

ωm — 复现频率,即在允许误差范围内最高工作频率。相应的,0~ωm 称为复现带宽 ωb 一 闭环截止频率。相应的,0~ωb 一般称为系统带宽。

图4-51 闭环频域指标

4.8 机械系统动刚度的概念

一个典型的由质量-弹簧-阻尼构成的机械系统的质量块在输入力f (t )作用下产生的输出位移为y (t ),其传递函数为

()()()1121/11222++=++==s s k k Ds ms s F s Y s G n

n ω?ω (4.31) 系统的频率特性为

()()()n n j k j F j Y j G ω?ωωωωωω21/122+???? ?

?-== (4.32) 该式反映了动态作用力f (t )与系统动态变形y (t )之间的关系,如图4-52所示。

图4-52 系统在力作用下产主变形

实质上()ωj G 表示的是机械结构的动柔度()ωλj ,也就是它的动刚度()ωj K 的倒数,即 ()()()

ωωλωj K j j G 1=

= (4.33) 当0=ω时

()()k j G j K ====001

ωωωω (4.34)

即该机械结构的静刚度为k 。

当0≠ω时,我们可以写出动刚度()ωj K 的幅值

()k j K n n ???

?? ??+???? ??-=2

222

21ω?ωωωω (4.35) 其动刚度曲线如图4-53所示。对二阶系统幅频特性()ωj G 求偏导等于零,即

()

0=??ωωj G

可求出二阶系统的谐振频率,即

221?ωω-=n r (4.36) 将其代入幅频特性,可求出谐振峰值

()212/1??ω-==k

j G M r r (4.37) 此时,动柔度最大,而动刚度()ωj K 则最小

()k j K ?-=2min 12??ω (4.38)

由式(4.42)和(4.43)可知,当1<

由此可以看出,增加机械结构的阻尼比,能有效提高系统的动刚度。上述有关频率特性、机械阻尼、动刚度等概念及其分析可推广到高阶系统,具有普遍意义,并在工程实践中得到了应用。

图4-53 动刚度曲线机械系统动刚度的概念

因 dB 32

2lg 20-≈ 由()22=

ωj G ,得二阶系统截止频率为 ()()707.0012244224≤≤--+-=????ωωn b (4.40)

课程设计单闭环直流电机控制系统

运动控制课程设计题目:单闭环直流电机控制系统 院系:工学院 专业:电气工程及其自动化 班级:电气工程1402 姓名:汤安琪 学号:201402012011 指导教师:王玮 二〇一七年二月

运动控制系统课程设计任务书 一、基本情况 学时:1周学分:1学分适应班级:电气工程1402 二、进度安排 本设计共安排1周,合计30学时,具体分配如下: 实习动员及准备工作: 2学时 总体方案设计: 4学时 硬件设计: 12学时 撰写设计报告: 8 学时 答辩: 4学时 教师辅导:随时 三、基本要求 1、课程设计的基本要求 运动控制系统课程设计的主要内容包括:理论设计与撰写设计报告等。其中理论设计又包括总体方案选择,硬件系统设计、硬件设计包括单元电路,选择元器件及计算参数等;课程设计的最后要求是写出设计总结报告,把设计内容进行全面的总结,若有实践条件,把实践内容上升到理论高度。 2、课程设计的教学要求 运动控制系统课程设计课程设计的教学采用相对集中的方式进行,以班为单位全班学生集中到设计室进行。做到实训教学课堂化,严格考勤制度,在实训期间累计旷课达到2节以上,或者迟到、早

退累计达到4次以上的学生,该课程考核按不及格处理。在实训期 间需要外出查找资料,必须在指定的时间内方可外出。 课程设计的任务相对分散,每5-6名学生组成一个小组,完成一个 课题的设计。小组成员既有分工、又要协作,同一小组的成员之间 可以相互探讨、协商,可以互相借鉴或参考别人的设计方法和经验。 但每个学生必须单独完成设计任务,要有完整的设计资料,独立撰 写设计报告,设计报告雷同率超过60%的课程设计考核按不及格处 理。 四、设计题目及控制要求 题目:单闭环直流电机控制系统 设计参数: (1)直流电机:12V 20W、U P N N ==、 1.5A I N =、 300r/min n N =、电枢电阻 4.5ΩR a =、电枢电感22a 15.68N.cm 6.76mH、GD L ==、30ms T m = (2)双闭环直流调速系统:N dm im *n 1.5I 5V、I 5V、U U ===、 5%σi ≤ 设计要求: (1)、根据题目的技术要求,分析并确定主电路的结构形式和闭 环调速系统的组成,画出系统组成的原理框图。 (2)、调速系统主电路元部件的确定及其参数的计算(包括电力 电子器件、平波电抗器与保护电路等) (3)、动态设计计算:根据技术要求,对系统进行动态校正,确 定调节器的结构形式及进行参数计算,使调节系统工作稳定,并满

DDC单回路PID闭环控制系统的设计及实时仿真课程设计报告

课程设计(综合实验)报告 ( 2011-- 2012 年度第二学期) 名称:过程计算机控制系统 题目:DDC单回路PID闭环控制系统的设计及实时仿真院系:控制与计算机工程学院 班级: 学号: 学生: 指导教师:朱耀春 设计周数:一周 成绩:

日期:2012 年 6 月20 日

一、 课程设计的目的与要求 1.设计目的 在计算机控制系统课程学习的基础上,加强学生的实际动手能力,通过对DDC 直接数字闭环控制的仿真加深对课程容的理解。 2.设计要求 本次课程设计通过多人合作完成DDC 直接数字闭环控制的仿真设计,学会A/D 、D/A 转换模块的使用。通过手动编写PID 运算式掌握数字PID 控制器的设计与整定的方法,并做出模拟计算机对象飞升特性曲线,熟练掌握DDC 单回路控制程序编制及调试方法。 二、 设计正文 1.设计思想 本课程设计利用Turboc2.1开发环境,通过手动编写C 语言程序完成PID 控制器的设计,A/D 、D/A 转换,绘出PID 阶跃响应曲线与被控对象动态特性曲线。整个设计程序模块包含了PID 配置模块,PLCD-780定时采样、定时输出模块,PID 手/自动切换模块(按键控制)及绘图显示模块。 设计中,通过设定合理的PID 参数,控制PLCD-780完成模拟计算机所搭接二阶惯性环节数据的采集,并通过绘图程序获得对象阶跃响应曲线。 2. 设计步骤 (1)前期准备工作 (1.1)配备微型计算机一台,系统软件Windows 98或DOS (不使用无直接I/O 能力的NT 或XP 系统), 装Turbo C 2.0/3.0集成开发环境软件; (1.2)配备模拟计算机一台(XMN-1型), 通用数据采集控制板一块(PLCD-780型); (1.3)复习Turboc2.0并参照说明书学习PLCD-780的使用 (2) PID 的设计 (2.1)PID 的离散化 理想微分PID 算法的传递函数形式为:??? ? ??++=s T s T K s G d i p 11)( 采用向后差分法对上式进行离散,得出其差分方程形式为: u[k]=u[k-1]+q0*e[2]+q1*e[1]+q2*e[0]; 其中各项系数为: q0=kp*(1+T/Ti+Td/T); q1=-kp*(1+2*Td/T);

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

步进电机闭环控制系统方案

几种典型的步进电机闭环控制系统 工业大学 【摘要】系统阐述了步进电动机闭环控制系统的优点,给出了几种典型的闭环控制系统,并提出了步进电动机高精度定位系统的设计思想。 【叙词】步进电机闭环系统/高精度定位 l概述 步进电机是机电一体化产品中的关键元件之一,是一种性能良好的数字化执行元件。它能够将电的脉冲信号转换成相应的角位移,是一种离散型自动化执行元件。随着计算机控制系统的发展,步进电动机广泛应用于同步系统、直线及角位系统、点位系统、连续轨迹控制系统以及其它自动化系统中,是高科技发展的一个重要环节。 2步进电动机闭环系统与开环系统比较[1- 步进电机的主要优点之一是适于开环控制。在开环控制下,步进电动机受具有予定时间间隔的脉冲序列所控制,控制系统中无需反馈传感器和相应的电子线路。这种线路具有简单、费用低的特点,使步进电动机的开环控制系统得以广泛的应用。 但是,步进电机的开环控制无法避免步进电动机本身所固有的缺点,即共振、振荡、失步和难以实现高速。另一方面,开环控制的步进电动机系统的精度要高于分级是很困难的,其定位精度比较低。因此,在精度和稳定性标准要求比较高的系统中,就必须果用闭环控制系统。 步进电动机的闭环控制是采用位置反馈和(或)速度反馈来确定与转子位置相适应的相位转换,可大大改进步进电动机的性能。 在闭环控制的步进电机系统中,或可在具有给定精确度下跟踪和反馈时,扩大工作速度围,或可在给定速度下提高跟踪和定位精度,或可得到极限速度指标和极限精度指标。步进电动机的闭环控制性能与开环控制性能相比,具有如下优点: a.随着输出转矩的增加,二者的速度均以非线性形式下降,但是,闭环控制提高了矩频特性。 b.闭环控制下,输出功率/转矩曲线得以提高,原因是,闭环下,电机励磁转换是以转子位置信息为基础的,电流值决定于电机负载,因此,即使在低速度围,电流也能够充分转换成转矩。 c.闭环控制下,效率一转矩曲线提高。 d.采用闭环控制,可得到比开环控制更高的运行速度,更稳定、更光滑的转速。 e.利用闭环控制,步进电动机可自动地、有效地被加速和减速。 f.闭环控制相对开环控制在快速性方面提高的定量评价,可借助比较Ⅳ步通过某个路径间隔的时间得出: 式中n-步进电动机转换拍数(N>n) g.应用闭环驱动,效率可增到7.8倍,输出功率可增到3.3倍,速度可增到3.6倍。 闭环驱动的步进电机的性能在所有方面均优于开环驱动的步进电动机。步进电机闭环驱动具有步进电动机开环驱动和直流无刷伺服电机的优点。因此,在可靠性要求很高的位置控

《闭环控制系统》教案分析

《闭环控制系统》教案分析 一.开环和闭环控制系统的定义分析 二.开环和闭环控制系统的区别及判断方法 三.闭环控制系统的方框结构及与实际系统的对应关系 四.闭环控制系统的各部分结构的基本概念的归纳总结 五.开闭环,自动和手动控制系统的总结 问题研讨1: .人开电灯的控制方式 问提研讨:人打开电灯开关后,不看电灯是否亮不亮,这是一种什么控制? 人打开电灯开关后,要看电灯是否亮不亮,如不亮,要多次开关电灯,甚至检修开关,直到开亮为止,这是一种什么控制? 2.人开汽车 人手握方向盘开汽车是什么控制方式? 人两手离开方向盘去发手机短信,有拐弯时,或有情况时手再扶方向盘,这种开汽车方式是什么控制方式? 问提研讨2: 自动控制系统是否一定是闭环控制? 举例说明之 按照控制的总定义,是否有人参加的控制 系统一定是闭环控制系统?

开环控制系统一定没有检测,反馈回路吗? 水箱水位自动控制系统中,被控对像是水箱吗? 现在有些教材中出现“输出量”的概念,它是什么?它等于被控量吗? 一.开环和闭环控制系统的定义分析 例1. 飞镖(图4-7)是同学们都很熟悉的运动。我们在投掷飞镖时,首先会在脑子里确定一个希望射中的目标,然后再根据场地的情况及自己的经验,控制手臂的投掷动作,将飞镖掷出。显然,在飞镖掷出后,飞镖的飞行就不可控制了,能否命中目标,取决于飞镖在投掷时的初始状态,即投掷者的投掷水平。 实际上,如果我们希望某一事物按照自己的意愿发展,就要对其进行干预,这种根据自己的目的,通过一定的手段使事物沿着某一确定的方向发展,就形成了控制。 二.开环和闭环控制系统的区别及判断方法 开、闭环控制的定义 能将控制的结果反馈回来与希望值进行比较,并根据它们的误差及时调整控制的系统,称为闭环控制系统。而不是将控制的结果反馈回来影响控制作用的系统,称为开环控制系统。系统中将控制的结果反馈回来的部分,称为反馈环节。闭环控制系统都有反馈环节,所以有时又称闭环控制系统为

单闭环温度控制系统

单闭环温度控制系统实验 姓名: 徐天富 学号: 0707030115 班级:2007级自动化1班 实验指导老师:___万敏___ 成绩:____________________ 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3. 学习温度PID 控制参数的配置。 二、实验数据或曲线 1.实验数据表 实际温度T 30℃ 35℃ 40℃ 45℃ 50℃ 电压pv -1.018066 -1.187744 -1.346436 -1.514893 -1.647949 偏差ei 0.661934 0.492256 0.333564 0.165107 0.032051 控制量op 3.500 3.500 3.500 3.500 3.500 2.参考程序 dim pv,sv,ei,ex,ey,k,ti,td,q0,q1,q2,op,x,Ts,ux,tv sub Initialize(arg) WriteData 0 ,1 end sub sub TakeOneStep (arg) pv = ReadData(1) '当前测量值 sv=50 '设置温度 k=20 ti=5 td=0 Ts=0.1 '采样时间100ms ei=((sv-35)/30+1.18) -abs(pv) '当前偏差 q0=k*(ei-ex) '比例项 if Ti=0 then q1=0 else q1=K*Ts*ei/Ti '当前积分项 end if q2=k*td*(ei-2*ex+ey) /Ts '微分项 ey=ex ex=ei op=op+q0+q1+q2 if op>=3.5 then op=3.5 end if if op<=1 then op=1 end if tv=35+30*(abs(pv)-1.18) TTTRACE "温度=%f",tv '输出温度 TTRACE "op=%f",op TTRACE "ei=%f",ei TTRACE "pv =%f",pv WriteData op ,1 end sub sub Finalize (arg) WriteData 0 ,1 end sub

开环控制、半闭环控制、闭环控制

开环控制、半闭环控制、闭环控制的区别 2011-11-2 10:31 提问者:升玩就走|浏览次数:485次 数控技术 推荐答案 2011-11-2 13:39 开环:没有测量回路。 半闭环:有一个测量回路(主要反馈控制转速:编码器)注意:编码器有绝对值和相对值之分 全闭环:有两个测量回路(反馈转速+位置:编码器+光栅尺或外置编码器) | 其他回答共2条 2011-11-3 14:01Einstiphen|五级 以监测点的不同来区分三者。 开环控制就是系统按设定的参数来运转,不作监测,不反馈。 半闭环控制就是在系统的执行端之前(非最终端)设置监测,反馈回的信号可以对执行端之前的机构进行实时调整。 闭环控制是在系统的最终执行端设置监测,反馈回的信号直接用于系统整体调整。 开环系统最简单,成本低,但执行精度最差,基本无系统波动。 闭环系统最复杂,控制成本最高,但执行精度相当高,系统波动也最大。 半闭环系统介于以上两者之间。 |评论 2011-11-17 10:09wangpeng3219|二级 闭环 闭环也叫反馈控制系统,是将系统输出量的测量值与所期望的给定值相比较,由此产生一个偏差信号, 利用此偏差信号进行调节控制,使输出值尽量接近于期望值。举例:调节水龙头——首先在大脑 中对水流有一个期望的流量,水龙头打开后由眼睛观察现有的流量大小与期望值进行比较,并不断的

用手进行调节形成一个反馈闭环控制;骑自行车——同理不断的修正行进的方向与速度形成闭环控制。 半闭环 半闭环控制系统:半闭环控制系统是在开环控制系统的伺服机构中装有角位移检测装置,通过检测 伺服机构的滚珠丝杠转角,半闭环控制系统图间接检测移动部件的位移,然后反馈到数控装置的 比较器中,与输入原指令位移值进行比较,用比较后的差值进行控制,使移动部件补充位移,直到 差值消除为止的控制系统。由于半闭环控制系统将移动部件的传动丝杠螺母不包括在环内,所以传动 丝杠螺母机构的误差仍会影响移动部件的位移精度,由于半闭环控制系统调试维修方便,稳定性好, 目前应用比较广泛。半闭环控制系统的伺服机构所能达到的精度、速度和动态特性优于开环伺服机构, 为大多数中小型数控机床所采用。 开环 相对闭环而言开环(kāi huán)英文名open-loop。开环相对于闭环而言,也叫开环控制系统。意思就是不将控制的结果反馈回来影响当前控制的系统。举例:打开灯的开关——按下开关后的一瞬间,控制活动已经结束,灯是否亮起以对按开关的这个活动没有影响;投篮——篮球出手后就无法再继续对其控制,无论球进与否,球出手的一瞬间控制活动即结束。

自动控制原理.第1—3章习题

第一章绪论 第1组 1、控制论的中心思想是()。 A.系统是又元素或子系统组成的 B.机械系统与生命系统乃至社会经济系统等都有一个共同的特点, 即通过信息的传递、加工处理,并利用反馈进行控制 C.有些系统可控,有些系统不可控制 D.控制系统有两大类,即开环控制系统和闭环控制系统 2、闭环控制系统中()反馈作用。 A.依输入信号的大小而存在 B.不一定存在 C.必然存在 D.一定不存在 3、控制系统依不同的初读可分为不同的类型,以下()的分类是正确的。 A.线性系统和离散系统 B.开环系统和闭环系统 C.功率放大系统和工人控制系统 D.数字系统和计算机控制系统 4、关于反馈的说法正确的是()。 A.反馈实质上就是信号的并联 B.正反馈就是输入信号与反馈信号相加C.反馈都是人为加入的 D.反馈是输出以不同的方式对系统作用5、开环控制系统的控制信号取决于()。 A.系统的实际输出 B.系统的实际输出与理想输出之差C.输入与输出之差 D.输入 6、机械工程控制论的研究对象是()。 A.机床主动传动系统的控制论问题 B.高精度加工机床的控制论问题C.自动控制机床的控制论问题 D.机械工程领域中的控制论问题 7、对于控制系统,反馈一定存在于()中。 A.开环系统 B.线性定常系统 C.闭环系统 D.线性时变系统8、一下关于信息的说法正确的是()。 A.不确定性越小的事件信息量越大 B.不确定性越大的事件信息量越大C.信号越大的事件信息量越大 D.信号越小的事件信息量越大 9、以下关于系统模型的说法正确的是()。 A.每个系统只能有一个数学模型 B.系统动态模型在一定条件下可简化为静态模型C.动态模型比静态模型好 D.静态模型比动态模型好 10、机械工程控制论所研究的系统()。 A.仅限于物理系统 B.仅限于机械系统 C.仅限于抽象系统 D.包括物理系统和抽象系统 第2组 1、学习机械工程控制论基础的目的之一是学会以()的观点对待机械工程问题。 A.动力学 B.静力学 C.经济学 D.生物学

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

步进电机闭环控制系统

步进电机闭环控制系统

几种典型的步进电机闭环控制系统 哈尔滨工业大学 【摘要】系统阐述了步进电动机闭环控制系统的优点,给出了几种典型的闭环控制系统,并提出了步进电动机高精度定位系统的设计思想。【叙词】步进电机闭环系统/高精度定位 l概述 步进电机是机电一体化产品中的关键元件之一,是一种性能良好的数字化执行元件。它能够将电的脉冲信号转换成相应的角位移,是一种离散型自动化执行元件。随着计算机控制系统的发展,步进电动机广泛应用于同步系统、直线及角位系统、点位系统、连续轨迹控制系统以及其它自动化系统中,是高科技发展的一个重要环节。 2步进电动机闭环系统与开环系统比较[1- 步进电机的主要优点之一是适于开环控制。在开环控制下,步进电动机受具有予定时间间隔的脉冲序列所控制,控制系统中无需反馈传感器和相应的电子线路。这种线路具有简单、费用低的特点,使步进电动机的开环控制系统得以广泛的应用。

c.闭环控制下,效率一转矩曲线提高。 d.采用闭环控制,可得到比开环控制更高的运行速度,更稳定、更光滑的转速。 e.利用闭环控制,步进电动机可自动地、有效地被加速和减速。 f.闭环控制相对开环控制在快速性方面提高的定量评价,可借助比较Ⅳ步内通过某个路径间隔的时间得出: 式中n-步进电动机转换拍数(N>n) g.应用闭环驱动,效率可增到7.8倍,输出功率可增到3.3倍,速度可增到3.6倍。 闭环驱动的步进电机的性能在所有方面均优于开环驱动的步进电动机。步进电机闭环驱动具有步进电动机开环驱动和直流无刷伺服电机的优点。因此,在可靠性要求很高的位置控制系统中,闭环控制的步进电动机将获得广泛应用。3编码器形式的步进电动机阕环控制系统步进电机的闭环控制最早是采用编码器的形式,图1是其原理示意图。初始状态,系统受一相或几相激磁而静止。开始工作后,先把目标位置送入减法计数器;然后,“起动”脉冲信号加到

5.2 闭环电子控制系统的设计与应用(1)

如图所示是JN6201集成电路鸡蛋孵化温度控制器电路图,根据该原理图完成1~3题。 1.该电路图作为控制系统的控制(处理)部分是IC JN6201,当JN6201集成输出9脚长时间处于高电平,三极管V2处于截止状态,继电器释放,电热丝通电加热。 2.安装好调试时,先将温度传感器Rt1放入37℃水中,调整电位器Rp1,使继电器触点J-2吸合,再将温度传感器Rt2放入39℃水中,调整Rp2,使继电器触点J-2释放。 3.调试时发现,不管电位器Rp1和Rp2怎么调,继电器J 始终吸合,检查电路元器件安装和接线都正确,用万用表测三极管V2集电极电位,在不同的调试状态分别为2.8V 和0V ,可知电路发生故障的原因是( B ) A.二极管V6内部断路 B.三极管V3内部击穿(短路) C.电阻R4与三极管V3基极虚焊 D.继电器线圈内部短路 如图所示是运算放大器鸡蛋孵化温度控制器电路图,根据该原理完成4~6题。 4.该电路作为控制系统的输出部分是继电器J 、电热丝等,当电路中集成运放2脚的电位低于3脚的电位,三极管V3处于饱和状态,继电器J 吸合,电热丝通电加热。 上限 V2饱和导通时候Uce 电压降0.2V ,所以留下来给集电极2.8V ,截止时候0V

5.安装好后调试时,将温度传感器Rt 放入39℃水中,调R4,使电压U2=U3,集成运放输出端6脚的电压为0V ,电路实现39℃单点温度控制。 6.调试时发现,将温度传感器Rt 放入高于39℃水中,继电器吸合;将温度传感器Rt 放入低于39℃水中,继电器释放,出现该故障现象的原因可能是( A ) A.集成运放2脚与3脚接反 B.二极管V4接反 C.电阻R2断路 D.三极管V3损坏 如图所示是晶体管组成的水箱闭环电子控制系统电路,根据该原理图完成7~9题。 7.该电路作为控制系统被控对象的是水箱内的水,水箱的水位从a 点降到b 点的过程中,三极管V1处于饱和状态,三极管V2处于截止状态,继电器触点J-1处于吸合状态。 8.安装调试时,将三个水位探头按图中的高低放入空玻璃杯中,如果电路正常,电路通电后,继电器J 吸合;向玻璃杯中加水,到达a 点时,继电器J 释放;接着将玻璃杯中的水排出,水位降到b 点以上时,继电器J 释放;水位降到b 点以下时,继电器J 吸合。 9.调试时发现,玻璃杯中的水位在b 点以下时,继电器J 就吸合;水位加到b 点,继电器J 就释放。出现该故障现象的原因是( D ) A.继电器J 没用 B.三极管V1损坏 C.二极管V3接反 D.电路没接J-1触点,b 点直接接到了电阻R1 如图所示是555集成电路组成的水箱水位闭环电子控制系统电路图, (第4~6题) (第7~9题) R4 10k ?R5 4.7k R3 4.7k

实验十五 单闭环温度恒值控制系统

实验十五单闭环温度恒值控制系统 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3.学习温度PID控制参数的配置。 二、实验设备 1.THBCC-1型信号与系统?控制理论及计算机控制技术实验平台 2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根) 3.PC机1台(含软件“THBCC-1”) 三、实验原理 1.温度驱动部分 该实验中温度的驱动部分采用了直流15V的驱动电源,控制电路和驱动电路的原理与直流电机相同,直流15V经过PWM调制后加到加热器的两端。 2.温度测量端(温度反馈端) 温度测量端(反馈端)一般为热电式传感器,热电式传感器式利用传感元件的电磁参数随温度的变化的特性来达到测量的目的。例如将温度转化成为电阻、磁导或电势等的变化,通过适当的测量电路,就可达到这些电参数的变化来表达温度的变化。 在各种热电式传感器中,已把温度量转化为电势和电阻的方法最为普遍。其中将温度转换成为电阻的热电式传感器叫热电偶;将温度转换成为电阻值大小的热电式传感器叫做热电阻,如铜电阻、热敏电阻、Pt 电阻等。 铜电阻的主要材料是铜,主要用于精度不高、测量温度范围(-50℃~150℃)不大的的地方。而铂电阻的材料主要时铂,铂电阻物理、化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件和作为温度标准。铂电阻与温度的关系在0℃~630.74℃以内为Rt=R0(1+at+bt2) 式中Rt――温度为t ℃时的温度;R0――温度为0℃时的电阻; t――任意温度;a、b――为温度系数。 该实验系统中使用了Pt100作为温度传感器。 在实际的温度测量中,常用电桥作为热电阻的测量电阻。在如图15-1中采用铂电阻作为温度传感器。当温度升高时,电桥处于不平衡,在a,b两端产生与温度相对应的电位差;该电桥为直流电桥。 4.温度控制系统与实验十三的直流电机转速控制相类似,虽然控制对象不同,被控参数有差别,但对于计算机闭环控制系统的结构,却是大同小异,都有相同的工作原理,共同的结构及特点。 四、实验步骤 1、实验接线 1.1 用导线将温度控制单元24V的“+”输入端接到直流稳压电源24V的“+”端; 1.2 用导线将温度控制单元0~5V的“+”输入端接到数据采集卡的“DA1”的输出端,同时将温度变送器的“+”输出端接到数据采集卡的“AD1”处; 1.3打开实验平台的电源总开关。 2、脚本程序的参数整定及运行

闭环控制系统(精选.)

闭环控制系统 许多实时嵌入式系统使作出控制决策。这些决策通常是由软件和基于硬件反馈的基础上由它控制(被称为机械)。这些反馈通常采用的是模拟传感器,可以通过一个A / D转换器读取他形式。例如:传感器可能代表位置,电压,温度或其他任何适当的参数。每样提供软件和附加信息基础控制决策。 闭环控制的基本知识 基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。反馈控制是自动控制的主要形式。自动控制系统多数是反馈控制系统。在工程上常把在运行中使输出量和期望值保持一致的反馈控制系统称为自动调节系统,而把用来精确地跟随或复现某种过程的反馈控制系统称为伺服系统或随动系统。 反馈控制系统由控制器、受控对象和反馈通路组成。比较环节,用来将输入与输出相减,给出偏差信号。这一环节在具体系统中可能与控制器一起统称为调节器。以炉温控制为例,受控对象为炉子;输出变量为实际的炉子温度;输入变量为给定常值温度,一般用电压表示。炉温用热电偶测量,代表炉温的热电动势与给定电压相比较,两者的差值电压经过功率放大后用来驱动相应的执行机构进行控制。 同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。但反馈回路的引入增加了系统的复杂性,而且增益选择不当时会引起系统的不稳定。为提高控制精度,在扰动变量可以测量时,也常同时采用按扰动的控制(即前馈控制)作为反馈控制的补充而构成复合控制系统。 一个闭环系统采用反馈来衡量实际的系统运行参数,如温度,压力,流量,液位,转速控制。这种反馈信号发送回的地方是较理想的系统设定点控制器。该控制器发一个误差信号,即启动纠正措施和驱动器输出设备所需的值。在直流电动机驱动上很容

比较开环控制系统和闭环控制系统的优缺点

开环控制系统和闭环控制系统的优缺点 如果系统的输出端与输入端之间不存在反馈,也就是控制系统的输出量不对系统的控制产生任何影响,这样的系统称开环控制系统。 闭环控制系统是基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。 开环控制系统的优点是结构简单,比较经济。缺点是无法消除干扰所带来的误差。 同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。但反馈回路的引入增加了系统的复杂性,而且增益选择不当时会引起系统的不稳定。为提高控制精度,在扰动变量可以测量时,也常同时采用按扰动的控制(即前馈控制)作为反馈控制的补充而构成复合控制系统。

主要从三方面比较: 1、工作原理:开环控制系统不能检测误差,也不能校正误差。控制精度和抑制干扰的性能都比较差,而且对系统参数的变动很敏感。合闭环控制系统不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。控制精度和抑制干扰的性能都比较差,而且对系统参数的变动很敏感。因此,一般仅用于可以不考虑外界影响,或惯性小,或精度要求不高的一些场合。 2、结构组成:开环系统没有检测设备,组成简单,但选用的元器件要严格保证质量要求。闭环系统具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。 3、稳定性:开环控制系统的稳定性比较容易解决。闭环系统中反馈回路的引入增加了系统的复杂性。

单闭环控制系统设计及仿真要点

单闭环控制系统设计及仿真 班级电信2014 姓名张庆迎 学号142081100079

摘要直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 关键词直流电机直流调速系统速度调节器电流调节器双闭环系统 一、单闭环直流调速系统的工作原理 1、单闭环直流调速系统的介绍 单闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。 2、双闭环直流调速系统的介绍 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图1—1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称

步进电机全闭环控制

半导体器件应用网 https://www.doczj.com/doc/949264498.html,/news/194498.html 步进电机全闭环控制 【大比特导读】步进电机由于体积精巧、价格低廉、运行稳定,在低端行业 应用广泛,步进电机运动控制实现全闭环,是工控行业的一大难题。 步进电机由于体积精巧、价格低廉、运行稳定,在低端行业应用广泛,步进电机运动控 制实现全闭环,是工控行业的一大难题。 主要问题有两个,原点的不确定性和失步,目前,采用高速光电开关作为步进系统的原点,这个误差在毫米级,所以在精确控制领域,是不能接受的。另外,为了提高运行精度, 步进系统的驱动采用多细分,有的大于16,假如用在往复运动过程中,误差大的惊人。已 经不能适应加工领域。 为此,提出步进电机全闭环控制系统,以适应目前运动控制领域的需求。 1、硬件连接 硬件连接加装编码器,根据细分要求,采用不同等级的解析度编码器进行实时反馈。 2、原点控制 根据编码器的Z信号,识别、计算坐标原点,同数控系统相同,精度可以达到2/编码器解 析度×4。 3、失步控制 根据编码器的反馈数据,实时调整输出脉冲,根据失步调整程度,采取相应办法。 下图是电路原理 4、电路原理描述

半导体器件应用网 电路采用超大规模电路FPGA,输入、输出可以达到兆级的相应频率,电源3.3V,利用2596 开关电源,将24V转为3.3V,方便实用。输入脉冲与反馈脉冲进行4倍频正交解码后计算,及时修正输出脉冲量和频率。 5、应用描述 本电路有两种模式,返回原点模式和运行模式。当原点使能开关置位时,进入原点模式,反之,进入运行模式。 在原点模式,以同步于输入脉冲的频率输出脉冲,当碰到原点开关后,降低输出脉冲频率,根据编码器的Z信号,识别、计算坐标原点。返回原点完成后,输出信号。此信号及其数据在不断电的情况下,永远保持。 在运行模式,以同步于输入脉冲的频率输出脉冲,同时计算反馈数据,假如出现误差,及时修正。另外,大惯量运行时,加减速设置不合理的情况下,可能会及时反向修正。 6、技术指标 (1)输入输出相应频率:≤1M; (2)脉冲同步时间误差:≤10ms;(主要延误在反向修正,不考虑反向修正,≤10us) (3)重定位电气精度:≥2/编码器解析度×4/马达解析度×细分) (4)重定位原点电气精度≥2/编码器解析度×4/马达解析度×细分) (5)适应PNP,NPN接口 (6)适应伺服脉冲控制 (7)适应各种编码其接口 步进电机运动控制一旦解决上述问题,增加数百元成本的情况下可以实现全闭环控制,毫不逊色于伺服系统。特别是其价格低廉、控制简单、寿命长久的特点在某些场合,可能优于伺服系统。

双闭环流量比值控制系统设计

目录 摘要 0 双闭环流量比值控制系统设计 (1) 1、双闭环比值控制系统的原理与结构组成 (1) 2、课程设计使用的设备 (1) 3、比值系数的计算 (2) 4、设备投运步骤以及实验曲线结果 (2) 5、总结 (6) 6、参考文献 (6)

摘要 在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。 这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。当然与之成比例的从物料Q2变化也将比较平稳。根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。

单闭环流量定值控制系统

第二节单闭环流量定值控制系统 一.实验目的: 1.了解单闭环流量控制系统的结构组成与原理。 2.掌握单闭环流量控制系统调节器参数的整定方法。 3.研究P、PI、PD和PID四种控制分别对流量系统的控制作用。 二.实验原理: 离心泵恒流量控制系统图如图5.3-1所示,控制系统方框图如图5.3-2所示。 图5.3-1 离心泵恒流量控制系统图 图5.3-2 离心泵恒流量控制系统方框图 离心泵恒流量控制系统为单回路简单控制系统,安装在离心泵出口管路上涡轮流量传感器TT将离心泵出口流量转换成脉冲信号,其脉冲频率经频率/电压转换器转换成电压信号后输出至流量调节器TC,TC将流量信号与流量给定值比较后,按PID调节规律输出4—20mA信号,驱动电动调节阀改变调节阀的开度,达到恒定离心泵出口流量的目的。离心泵恒流量控制系统方框图如图十三所示。 控制参数如下: 1.控变量y:离心泵出口流量Q。 2.定值(或设定值)ys:对应于被控变量所需保持的工艺参数值 3.测量值ym:由传感器检测到的被控变量的实际值 4.操纵变量(或控制变量):实现控制作用的变量,在本实验中为离心泵出口流量。使用电动调节阀作为执行器对离心泵出口流量进行控制。电动调节阀的输入信号范围:4—20mA。 5.干扰(或外界扰动)f:干扰来自于外界因素,将引起被控变量偏离给定值。在

本实验中采用突然改变离心泵转速的方法,改变离心泵出口压力,人为模拟外界扰动给控制变量造成干扰。 6.偏差信号e:被控变量的实际值与给定值之差, e=ys-ym 。 ym---离心泵出口流量值Q 。 ys---离心泵出口流量设定值。 7.控制信号u :工业调节器将偏差按一定规律计算得到的量。 离心泵恒流量控制系统采用比例积分微分控制规律(PID)对离心泵流量进行控制。比例积分微分控制规律是比例、积分与微分三种控制规律的组合,理想的PID 调节规律的数学表达式为: 01()()()()t P D I de t u t K e t e t dt T T dt ???=++??? ?? 三.实验方法: 1.向V103中注入2/3以上清水 2.打开设备总电源,检查各仪表,执行器是否正常 3.打开阀门VA110或VA111,A112,A117,其余阀门关闭 4.松动离心泵放气螺丝,直到有水流出,拧紧螺丝 5.将离心泵出口压力测量表(PI-03)设为手动输出且输出值为100,变频器的频率即设为50.00Hz 6.打开实验软件,进入流量曲线界面点击菜单栏中的“曲线 流量控制曲线”开始记录液位变化 7.将流量测量表(FI-01)设为自动输出且SV 值为4.00,P=3,I=5,D=1.5 FILE=5 8.打开立式离心泵向观察曲线变化情况,待流量稳定后,点击菜单栏中的“曲线 流量控制曲线”重新记录液位变化 9.大约10秒钟后通过以下几种方式加干扰: (1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增 量的变化;(此法推荐,下面方法仅供参考)。 (2)改变开立式离心泵频率 以上两种干扰均要求扰动量为控制量的5%~15%,干扰过大可能

相关主题
文本预览
相关文档 最新文档