当前位置:文档之家› 草药重金属和农药残留限量标准汇总.doc

草药重金属和农药残留限量标准汇总.doc

草药重金属和农药残留限量标准汇总.doc
草药重金属和农药残留限量标准汇总.doc

部分国家、地区草药重金属和农药残留限量标准汇总

加入WTO后,中药的国际贸易将以国际通行的标准进行。目前,国际上虽然尚无植物类中药的国际标准,但是FAO和WHO均制定了食品、蔬菜及茶叶重金属的允许摄入量和农药残留限量。美国、欧盟及传统出口中药的东南亚地区均对中药提出了重金属和农药残留限量的指标,并有提高的趋势。

近年来国际贸易中以环保标准为基础的绿色认证制度日趋盛行,“环保标签”在许多情况下变成贸易壁垒。在中药材生产过程中,由于对土壤选择不严,以及长期施用农药、化肥和除草剂,加之对农药的盲目选择,施用时间和剂量等达不到技术要求,导致目前药材普遍存在农药残留量和有害重金属含量超标,这是造成中药材质量下降的重要因素,也是制约我国中药及其它农副产品难以走向国际市场的重要原因之一,直接影响了中药在国际市场上的竞争力。

在此情况下,一方面我们要建立适合我国产品质量的标准以适应国际标准。另一方面中药在中国有数千年的使用历史,世界各国在制定相应的植物药产品质量标准中也多参考我国的中药标准,因此,制定绿色标准也可以影响世界,达到对我中药产品国际贸易相对有利的局面。由外经贸部制定并颁布的《药用植物及制剂外经贸绿色行业标准》已于2001年07月01日起正式实施。这是我国中药的第一个进出口质量标准,也是我国中药的第一个绿色标准,对推动我国中药进入国际市场,确保植物药进出口品质,有着重大的历史性意义。

一、中国大陆

(一)中国药典(2010版)

药典对植物药中重金属和农药残留量的限量要求( ×10- 6)

(二)药用植物及制剂外经贸绿色行业标准(WM/T2-2004)

适用范围:药用植物原料及制剂的外经贸行业品质检验 重金属及砷盐限量:

重金属总量 ≤20.0 mg/kg 。 铅(Pb ) ≤5.0 mg/kg 。 镉(Cd ) ≤0.3 mg/kg 。 汞(Hg ) ≤0.2 mg/kg 。 铜(Cu ) ≤20.0 mg/kg 。 砷(As ) ≤2.0 mg/kg 。

农药残留限量:

六六六(BHC)

≤0.1 mg/kg 。 DDT ≤0.1 mg/kg 。 五氯硝基苯(PCNB) ≤0.1 mg/kg 。 艾氏剂(Aldrin) ≤0.02 mg/kg 。

二、 香港(香港中药材标准第一册)

表1:药材中重金属限度

三、澳门:(技術性指示第02/2003號)

重金属种类上限

砷(无机) 每日1500.00微克

镉(水溶性) 每剂3500.00微克

铅每日179.00微克

汞每日36.00微克

重金属种类上限

砷 5.00 ppm

铜150.00 ppm

铅20.00 ppm

汞0.50 ppm

四、新加坡:(1995年药物决议(禁止销售及供应)(修正案))

重金属及砷盐限量:

铅(Pb)≤20 mg/kg。

汞(Hg)≤0.5 mg/kg。

铜(Cu)≤150 mg/kg。

砷(As)≤5 mg/kg。

镉(Cd)≤5 mg/kg。

五、马来西亚

重金属及砷盐限量::

铅(Pb)≤10 mg/kg。

汞(Hg)≤0.5 mg/kg。

砷(As)≤5 mg/kg。

六、泰国

重金属及砷盐限量:

适用范围:草药原料及产品

铅(Pb)≤10 mg/kg。

镉(Cd) ≤0.3 mg/kg。

砷(As)≤ 4 mg/kg。

七、韩国

重金属限量(药品安全厅公示第2005-62号):

1、植物性生药:

铅(Pb)≤5 mg/kg。

汞(Hg)≤0.2 mg/kg。

镉(Cd) ≤0.3 mg/kg。

砷(As)≤3 mg/kg。

2、鹿茸:

砷(As)≤3 mg/kg。

3、生药萃取物及制剂:

总重金属≤30 mg/kg。

农药名称许可标准(mg/kg)

总BHC(α,β, γ及δ-BHC的和) 0.2

总DDT(p, p'-DDD, p, p'-DDE, o, p'-DDT及 p,

0.1

p'-DDT的和)

艾氏剂(Aldrin) 0.01 安特灵(Endrin) 0.01 狄氏剂(Dieldrin) 0.01 甲氧DDT(Methoxychlor) 1.0 赛灭宁(Cypermethrin) 0.5

安杀番(Endosulfan)(α,β-硫丹和硫酸硫丹的

0.2

和)

灭螨猛(Chinomethionat) 0.3 盖普丹(Captan) 2.0 五氯硝苯(Quintozene, PCNB) 0.1 四氯异苯腈(Chlorothalonil) 0.1 陶斯松(Chloropyrifos) 0.5 甲基益发灵(Tolylfluanid) 1.0 扑灭宁(Procymidone) 0.1 2.个别生药:

生药许可标准生药许可标准生药许可标准

1) 萘苯酰草胺(Napropamide)

桔梗 0.1 芍药 0.1 黄芪 0.1

2) 二甲基二硫代氨基甲酸盐(Dimethyldithiocarbamates)

红花 0.1

3) 待凯利(Difenoconazole)

甘草 0.05

4) 迈克尼(Myclobutanil)

芍药 0.1

5) 毕芬宁(Bifenthrin)

川穹 0.5 红花 0.1

6) 赛普洛(Cyprodinil)

芍药 0.1

7) 亚灭培(Acetamiprid)

黄芪 0.1 红花 0.1

8) 三唑锡(Azocyclotin)

当归 0.2

9) 亚托敏(Azoxystrobin)

甘草 0.05 当归 0.1 黄芪 0.1

10) 亚乙基双二硫代氨基甲酸酯(Ethylenebis-dithiocarbamates)

红花 0.3

11) 双胍辛胺(Iminoctadine)

芍药 0.3 红花 0.1

12) 益达胺(Imidacloprid)

红花 0.1 黄芪 0.3

13) 赛速安(Thiamethoxam)

黄芪 0.1

14) 多菌灵(Carbandazim)

芍药 0.05

15) 溴虫腈(Chlorfenapyr)

川穹 0.05

16) 戊唑醇(Tebuconazol)

当归 1.0

17) 三泰隆(Triadimenol)

芍药 0.1

18) 三泰芬(Triadimefon)

芍药 0.01

19) 赛福宁(Triforine)

芍药 0.1

20) 赛福唑(Triflumizole)

黄芪 0.1 芍药 1.0

21) 芬瑞莫(Fenarimol)

黄芪 0.5

22) 二甲戊乐灵(Pendimethalin)

当归 0.2 麦门冬 0.2 柴胡 0.2

芍药 0.2 红花 0.1

23) 芬普宁(Fenpropathrin)

当归 0.2

24) 福赛绝(Fosthiazate)

柴胡 0.02

25) 甲基锌乃浦(Propineb)

芍药 0.2

26) 派灭净(Pymetrozine)

红花 0.05 黄芪 0.05

27) 勿落菌恶(Fludioxonil)

芍药 0.1

八、日本

重金属及砷盐限量:

铅(Pb)≤20PPM

砷As2O3 ≤ 2PPM

农药残留限量:

1、中药材:(生药农药残留量的行业标准)

适用范围:黄芪、远志、甘草、桂皮、细辛、山茱萸、苏叶、大枣、陈皮、枇杷叶、牡丹皮

BHC总量≤0.2 mg/kg

DDT总量≤0.2 mg/kg

2、中药制剂:(汉方及生药制剂农药残留量的行业标准)

1)有机氯类农药:

适用范围:含有黄芪、远志、甘草、桂皮、细辛、山茱萸、苏叶、大枣、陈皮、枇杷叶、牡丹皮、人参、红参、番泻叶的汉方及生药制剂

BHC总量≤0.2 mg/kg

DDT总量≤0.2 mg/kg

2)有机磷类农药:

适用范围:含有远志、山茱萸、苏叶及陈皮的汉方制剂

对硫磷≤0.5 mg/kg

甲基对硫磷≤0.2 mg/kg

杀扑磷≤0.2 mg/kg

马拉硫磷≤1.0 mg/kg

3)菊酯类农药

适用范围:含有远志、苏叶、大枣、陈皮及枇杷叶的汉方制剂氰戊菊酯≤1.5 m g/kg

氯氰菊酯≤1.0 mg/kg

九、德国

重金属限量:

铅(Pb)≤5 mg/kg。

汞(Hg)≤0.1 mg/kg。

镉(Cd) ≤0.2 mg/kg。

十、法国

重金属限量:

铅(Pb)≤5 mg/kg。

汞(Hg)≤0.1 mg/kg。

镉(Cd) ≤0.2 mg/kg。

十一、英国

重金属及砷盐限量:

砷(As)食品总量≤1 mg/kg,草药≤5 mg/kg。

铅(Pb)食品总量≤1 mg/kg,草药≤5 mg/kg。

锡(Sn)食品总量≤200mg/kg,

铜(Cu)食品总量≤20mg/kg,茶≤150mg/kg。

锌(Zu)食品总量≤50mg/kg。

十二、加拿大

重金属及砷盐限量:

1、草药材:

铅(Pb)≤10 mg/kg;铬(Cr)≤ 0.2 mg/kg。

镉(Cd) ≤0.3 mg/kg;砷(As)≤ 5 mg/kg。

汞(Hg)≤ 0.2 mg/kg。

2、草药产品:

铅(Pb)≤0.02 mg/day;铬(Cr)≤ 0.006 mg/day。

镉 (Cd) ≤0.02 mg/day;砷(As)≤ 0.01 mg/day。

汞(Hg)≤ 0.02 mg/day。

十三、美国

(一)美国药典:

重金属及砷盐限量:

适用范围:草药

重金属总量 10-20 mg/kg;铅(Pb)3-10 mg/kg。

汞(Hg)<3 mg/kg;砷(As)<3 mg/kg。

(二)NSF International Draft Standard (Draft Standard NSF 173-2001)

重金属及砷盐限量:

适用范围:饮食补充剂

1、饮食补充剂原料:

铅(Pb)≤10 mg/kg;铬(Cr)≤ 0.2 mg/kg。

镉(Cd) ≤0.3 mg/kg;砷(As)≤ 5 mg/kg。

2、饮食补充剂产品:

铅(Pb)≤0.02 mg/day;铬(Cr)≤ 0.006 mg/day。

镉(Cd) ≤0.02 mg/day;砷(As)≤ 0.01 mg/day。

汞(Hg)≤ 0.02 mg/day。

十四、WHO

重金属及砷盐限量:

(一)WHO 推荐:(Quality Control Methods for Medicinal Plant Materials Revised Draft Update (2005年))

适用范围:草药

铅(Pb)≤10 mg/kg;镉(Cd)≤0.3 mg/kg。

(二)最大日摄入量

Heavy Metals Pb Cd Hg As

WHO PTWI 0.025 0.007 0.005 0.015

WHO ADI (ug) 214 60 43 128

ADI:Acceptable Daily Intake

PTWI:Provisional tolerable weekly intake (mg/Kg body weight, week) PTWI × 60/7= ADI

重金属污染治理研究现状及进展

https://www.doczj.com/doc/944832650.html, Research Progress on Control of Water Environment Contaminated by Heavy Metals Xu Haisheng1 Zhao Yuanfeng2 (1. Institute of life science and technology, Dalian Fisheries University, Dalian116023; 2. Key Laboratory of Mariculture and Biotechnology, Ministry of Agriculture, Dalian 116023, China) Abstract: Some treatment methods for heavy metal wastewater are summarized in this paper, which are mainly based on the physical, chemical, Physical chemistry treatment, Biological treatment. The technology applications of bioengineering for wastewater reuse treatment are also summarized. It indicates that the comprehensive utilization and innocuous treatment of heavy metal wastewater become the main trend for the heavy metal contamination. Key Words: heavy metal contamination; treatment methods; comprehensive utilization; innocuous Preface Trace metals such as cadmium (C d), chromium (Cr), copper (Cu), lead (P b) and zinc (Zn) are classified as priority pollutants.Human living environment had polluted by industrial sewage, cultivate wastewater and electroplate heavy metal of wastewater, and becoming more and more serious [1]. Heavy metal pollution has persistence and accumulation, can transfer along food chain and enrichment, endangering human body and other organism in any way. Take place caused by Hg pollution " minamata disease " and " itai itai disease " incident caused by C d pollution in Japan, A growing concern among heavy metal pollution control from domestic and international environmentalist extremely [2-4]. 1 Wastewater of heavy metal treatment methods The treatment method of heavy metal, up till now, have already developed a lot of heavy metal pollution control technology in the wastewater, generally adopt: (1) Physical treatment; (2) Chemical treatment; (3) Physical chemistry treatment; (4) Biological treatment. 1.1 Physical treatment Physics method is used physics function to separate the suspending polluter from wastewater, change chemical property of material in the course of dealing with, such as electroplate degreasing, evaporation of wastewater is recycled, etc.. Physics method is regard as other treatment a link of method, seldom use alone in electroplate craft, Physics method including adsorption method, floatation, etc.. 1.1.1 Adsorption method The adsorption method is used for removing the micro- pollutant in the wastewater, to achieve the purpose of depth purifies. Mainly utilize solid absorbent physical absorption and chemistry to absorb performance, get rid of the course of many kinds of pollutant in wastewater. Polyethylene silica gel-polyethylene amine composite has important practical value in the absorbent material of the artificial synthesis. It has offered the prospect for the fact that economy

农残限定2006年欧盟版本C_17_normativa_1773_allegato

Ministero della Salute DIPARTIMENTO PER LA SANITà PUBBLICA VETERINARIA, LA NUTRIZIONE E LA SICUREZZA DEGLI ALIMENTI DIREZIONE GENERALE DELLA SICUREZZA DEGLI ALIMENTI E DELLA NUTRIZIONE DECRETO Prodotti fitosanitari: recepimento della direttiva 2006/62/CE della Commissione del 12 luglio 2006, della direttiva 2007/55/CE della Commissione del 17 settembre 2007, della direttiva 2007/62/CE della Commissione del 4 ottobre 2007 e aggiornamento del decreto del Ministro della salute 27 agosto 2004 concernente i limiti massimi di residui delle sostanze attive nei prodotti destinati all’alimentazione. Sedicesima modifica. IL MINISTRO DELLA SALUTE Visti gli articoli 5, lettera h), e 6, della legge 30 aprile 1962, n. 283, successivamente modificata con legge 26 febbraio 1963, n. 441; Visto l'articolo 19 del decreto legislativo 17 marzo 1995, n. 194, che prevede l'adozione con decreto del Ministro della salute di limiti massimi di residui di sostanze attive dei prodotti fitosanitari; Visto l'articolo 34 del decreto del Presidente della Repubblica 23 aprile 2001, n. 290, relativo ai residui ed intervalli di carenza; Visto il decreto del Ministro della salute 27 agosto 2004 “Prodotti fitosanitari: limiti massimi di residui della sostanze attive nei prodotti destinati all’alimentazione” (pubblicato nella Gazzetta Ufficiale – Serie generale n. 292 del 14 dicembre 2004, supplemento ordinario n. 179), modificato dal decreto del Ministro della salute 17 novembre 2004 (pubblicato nella Gazzetta Ufficiale n. 30 del 7 febbraio 2005), dal decreto del Ministro della salute 4 marzo 2005 (pubblicato nella Gazzetta Ufficiale n. 121 del 26 maggio 2005), dal decreto del Ministro della salute 13 maggio 2005 (pubblicato nella Gazzetta Ufficiale n. 184 del 9 agosto 2005), dal decreto del Ministro della salute 15 novembre 2005 (pubblicato nella Gazzetta Ufficiale n. 28 del 3 febbraio 2006), dal decreto del Ministro della salute 19 aprile 2006 (pubblicato nella Gazzetta Ufficiale n. 162 del 14 luglio 2006), dal decreto del Ministro della salute 20 aprile 2006 (pubblicato nella Gazzetta Ufficiale n. 161 del 13 luglio 2006), dal decreto del Ministro della salute 23 giugno 2006 (pubblicato nella Gazzetta Ufficiale n. 204 del 2 settembre 2006), dal decreto del Ministro della salute 3 ottobre 2006 (pubblicato nella Gazzetta Ufficiale n. 282 del 4 dicembre 2006), dal decreto del Ministro della salute 26 febbraio 2007 (pubblicato nella Gazzetta Ufficiale n. 102 del 4 maggio 2007); dal decreto del Ministro della salute 13 giugno 2007 (pubblicato nella Gazzetta Ufficiale n. 199 del 28 agosto 2007); dal decreto del Ministro della salute 13 giugno 2007 (pubblicato nella Gazzetta Ufficiale n. 200 del 29 agosto 2007); dal decreto del Ministro della salute 13 giugno 2007 (pubblicato nella

各国重金属和农残限量和标准

各国重金属和农残限量和标准84 部分国家、地区草药重金属和农药残留限量标准汇总;甘草;重金属及有害元素:;铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之;六六六(总B HC)不得过千万分之二,滴滴涕(总D;黄芪;重金属及有害元素:;铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之;六六六(总BHC)不得过千万分之二,滴滴涕(总D;丹参;重金属及有害元素:;铅、镉、砷、汞、铜含量限定如下:铅 部分国家、地区草药重金属和农药残留限量标准汇总 甘草 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。有机氯农药残留量: 六六六(总BHC)不得过千万分之二,滴滴涕(总DDT)不得过千万分之二,五氯硝基苯(PCNB)不得过千万分之一。 黄芪 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。有机氯农药残留量: 六六六(总BHC)不得过千万分之二,滴滴涕(总DDT)不得过千万分之二,五氯硝基苯(PCNB)不得过千万分之一。

重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 白芍 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 西洋参 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 金银花 重金属及有害元素: 铅、镉、砷、汞、铜含量限定如下:铅不得过百万分之五,镉不得过千万分之三,砷不得过百万分之二,汞不得过千万分之二,铜不得过百万分之二十。 石膏 重金属:含重金属不得过百万分之十;含砷量不得过百万分之二。 煅石膏 重金属:含重金属不得过百万分之十。 白矾 重金属:含重金属不得过百万分之二十。 玄明粉 重金属:含重金属不得过百万分之二十。 含砷量不得过百万分之二十。

我国水果农药残留限量国家标准表

我国水果农药残留限量国家标准表 农业行业法规: https://www.doczj.com/doc/944832650.html, 2012-9-21 10:36:00 浏览57 次《》我国水果农药残留限量国家标准表一 名称种类限量(mg/kg)标准号 滴滴涕杀虫剂0.1GB2763-81 六六六杀虫剂0.2 GB2763-81 倍硫磷杀虫剂0.05GB4788-94 甲拌磷杀虫剂不得检出GB4788-94 杀螟硫磷杀虫剂0.5GB4788-94 敌敌畏杀虫剂0.2GB5127-1998 对硫磷杀虫剂不得检出GB5127-1998 乐果杀虫剂 1.0GB5127-1998 马拉硫磷杀虫剂不得检出GB5127-1998 辛硫磷杀虫剂0.05GB14868-94 百菌清杀菌剂 1.0GB14869-94 多菌灵杀菌剂0.5GB14870-94 二氯苯醚菊酯杀虫剂 2.0GB14871-94 乙酰甲胺磷杀虫剂0.5GB14872-94 甲胺磷杀虫剂不得检出GB14873-94 地亚农杀虫剂0.5GB14928.1-94 抗蚜威杀虫剂0.5 GB14928.2-94 溴氰菊酯杀虫剂0.11)-0.052) GB14928.4-94 氰戊菊酯杀虫剂0.2 GB14928.5-94 呋喃丹杀虫剂不得检出GB14928.7-94 水胺硫磷杀虫剂0.023)GB14928.8-94 喹硫磷杀虫剂0.052)GB14928.10-9 草甘磷除草剂0.1 GB14968-94 克线丹杀虫剂0.0052)GB14969-94 西维因杀虫剂 2.5GB14971-94 农药残留限量国家标准二 名称种类限量(mg/kg)标准号 粉锈宁杀菌剂0.2GB14972-94 阿波罗杀螨剂1GB15194-94 氟氰戊菊酯杀虫剂0.5GB15194-94 克菌丹杀菌剂15GB15194-94 敌百虫杀虫剂0.1 GB16319-1996 亚胺硫磷杀虫剂0.5 GB16320-1996

土壤重金属污染现状

土壤重金属污染现状 摘要: 重金属作为一种持久性污染物已越来越多地被关注和重视. 重金属矿山的开采利用是造成当今世界重金属污染的主要原因,并已经严重威胁和影响人类的生存和发展.本文从我国重金属的利用入手,总结了我国近几年重金属污染的现状,分析了重金属污染物进入环境介质的途径和方式. 为促进我国矿业开发与环境的可持续发展和和谐发展,对重金属资源的合理开发利用提出措施和建议. 关键词: 重金属; 利用; 重金属污染 引言 所谓重金属污染,是指由重金属及其化合物引起的环境污染. 重金属矿山的开采及其产品的利用是重金属污染的重灾区,也是全球重金属污染的源头所在,对于矿山环境,重金属污染的主要危害对象是农作物和人. 其主要原因在于重金属被排入环境后具有永久性,且有明显的累积效应.随着人们对金属矿产品的需求量的不断增大,由此引发的环境问题日趋严重,重金属污染就是其中最为典型的一个. 以云南铅锌矿为例,云南拥有国内储量最大的兰坪铅锌矿和国内品位最富的会泽铅锌矿,它的开采量日益增大,产生的环境问题也随之日益增多,由于云南铅锌矿山布局分散,规模偏小,工艺技术落后,装备水平低,并且有相当一部分乡镇和个体私营企业没有专门的尾矿坝,尾矿、废水随意排放,加之由于当地开发无序,滥采滥挖,环保投入不足,导致矿山特别是铅锌矿山老化,品位下降,开采难度增大,造成了一定的环境污染,并使得生态环境的修复、改造和维护难以进行。 一土壤重金属污染的定义 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。但是由于不同的重金属在土壤中的毒性差别很大,所以在环境科学中人们通常关注锌、铜、钴、镍、锡、钒、汞、镉、铅、铬、钴等。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。由于土壤中铁和锰含量较高,因而一般不太注意它们的污染问题,但在强还原条件下,铁和锰所引起的毒害亦应引起足够的重视。 土壤重金属污染是指由于人类活动将重金属带入到土壤中,致使土壤中重金

草药重金属和农药残留限量标准汇总

部分国家、地区草药重金属和农药残留限量标准汇总 加入WTO后,中药的国际贸易将以国际通行的标准进行。目前,国际上虽然尚无植物类中药的国际标准,但是FAO和WHO均制定了食品、蔬菜及茶叶重金属的允许摄入量和农药残留限量。美国、欧盟及传统出口中药的东南亚地区均对中药提出了重金属和农药残留限量的指标,并有提高的趋势。 近年来国际贸易中以环保标准为基础的绿色认证制度日趋盛行,“环保标签”在许多情况下变成贸易壁垒。在中药材生产过程中,由于对土壤选择不严,以及长期施用农药、化肥和除草剂,加之对农药的盲目选择,施用时间和剂量等达不到技术要求,导致目前药材普遍存在农药残留量和有害重金属含量超标,这是造成中药材质量下降的重要因素,也是制约我国中药及其它农副产品难以走向国际市场的重要原因之一,直接影响了中药在国际市场上的竞争力。 在此情况下,一方面我们要建立适合我国产品质量的标准以适应国际标准。另一方面中药在中国有数千年的使用历史,世界各国在制定相应的植物药产品质量标准中也多参考我国的中药标准,因此,制定绿色标准也可以影响世界,达到对我中药产品国际贸易相对有利的局面。由外经贸部制定并颁布的《药用植物及制剂外经贸绿色行业标准》已于2001年07月01日起正式实施。这是我国中药的第一个进出口质量标准,也是我国中药的第一个绿色标准,对推动我国中药进入国际市场,确保植物药进出口品质,有着重大的历史性意义。 一、中国大陆 (一)中国药典(2010版) 药典对植物药中重金属和农药残留量的限量要求( ×10- 6)

(二)药用植物及制剂外经贸绿色行业标准(WM/T2-2004) 适用范围:药用植物原料及制剂的外经贸行业品质检验 重金属及砷盐限量: 重金属总量 ≤20.0 mg/kg 。 铅(Pb ) ≤5.0 mg/kg 。 镉(Cd ) ≤0.3 mg/kg 。 汞(Hg ) ≤0.2 mg/kg 。 铜(Cu ) ≤20.0 mg/kg 。 砷(As ) ≤2.0 mg/kg 。 农药残留限量: 六六六(BHC) ≤0.1 mg/kg 。 DDT ≤0.1 mg/kg 。 五氯硝基苯(PCNB) ≤0.1 mg/kg 。 艾氏剂(Aldrin) ≤0.02 mg/kg 。 二、 香港(香港中药材标准第一册) 表1:药材中重金属限度

农药残留限量标准

目前农产品贸易中的技术性贸易措施主要包括:农药残留限量标准、生物毒素残留量、重金属含量、食品包装和标签要求、动植物检验检疫制度、食品安全与卫生要求、环境保护及“绿色补贴”等等。近年来,发达国家对我国农产品的出口实施了很多限制措施,如美国于2003年12月开始执行食品和农产品注册通报制度;欧盟通过修订关于食品标签的指令、增加对我国出口商品抽验批次;日本通过修改《食品和农产品卫生法》及实施强制检验等,都对我国出口农产品设置了障碍,进一步加强了对我国农产品出口的限制。 农产品出口遭遇农药残留限量标准壁垒 由于发达国家对进口农产品中的农药残留限量标准等卫生要求越来越多(仅2003年,国外在进口农产品和食品方面就新增标准260多项),限量指标越来越苛刻,所以农产品(食品、水产品、畜禽产品)中的农药残留限量标准问题成为我国应对国外技术性贸易措施亟需解决的问题之一。 由农药残留限量标准引发的贸易纠纷已经给我国农产品出口带来了巨大的经济损失。例如2002年5月,美国食品药品管理局(fda)宣布中国蜂蜜氯霉素残留检测限为0.31μg/kg,并有可能提高到0.1μg/kg,受此影响,中国蜂蜜2002年对美出口约7614吨,比上年下降52.35%,出口额约809万美元,比上年下降43.56%。欧盟不断实行新的茶叶检测标准,农药残留限量标准指标不断增加,到2003年已经增加到196项,截止到2004年8月27日,欧盟共出台26个欧盟委员会指令涉及茶叶,从今年8月1日起,欧盟又将硫丹在茶叶中的残留限量从30mg/kg调整为0.01mg/kg,这些措施使得我国茶叶的出口雪上加霜;据海关人士介绍,今年1-7月广东累计出口茶叶8938吨,价值1868万美元,分别比去年同期下降33.9%和26%,其中对欧盟出口茶叶167吨,与去年同期相比降幅达88.8%。此外我国出口的水产品中抗生素超标及2002年的台州西兰花出口风波等问题都对我国农产品的出口产生负面影响。 如何正确认识农药残留问题 农药残留是指残存在环境及生物体内的微量农药,包括农药原体、有毒代谢物、降解物和杂质等。农产品中的农药残留主要来自化学农药,是关系食品安全的重要因素,农产品中的农药残留超标不仅危害人和动物的健康,破坏环境,而且影响世界农产品的正常贸易。 我国地域辽阔,农作物品种虽然丰富,但农业生产力还是比较落后,绿色经济所占比重不高,农药的生产和使用对我国农业的发展有着重要的影响作用。我们既要看到农药的使用在害虫、病菌等有害生物的防治中具有快速、高效、经济等的特点及在保证农业稳产、增收等方面发挥的巨大作用,同时也要积极关注自身健康,不断加强对农药残留的监测工作。 目前,在农业发展中完全禁用化学农药是不现实的,同时在土壤中残留的已经禁用的部分农药对农产品的影响仍然存在,所以世界各国农产品都存在着程度不同的农药残留问题。 限制农药残留的原因 随着经济全球化和贸易自由化的发展,各国政府在鼓励、扩大出口的同时,以各种手段限制进口,保护本国利益。利用发达科学技术,以保护人类、动物和环境为理由,采取技术性贸易措施是目前世界上很普遍的一种做法。由于农产品中的农药残留达到一定的数量时,会对人类、动物和环境造成危害,所以将农药最高残留限量作为农产品贸易中的技术性贸易

浅谈我国土壤重金属污染现状及修复技术

浅谈我国土壤重金属污染现状及修复技术 土壤是一个开放的缓冲动力学系统,承载着环境中50%~90%的污染负荷[1-2]。随着矿产资源开发、冶炼、加工企业等规模的扩大以及农业生产中农药、化肥、饲料等用量的增加和不合理的使用,致使土壤中重金属含量逐年累积,明显高于其背景值,造成生态破坏和环境质量恶化,对农业环境和人体健康构成严重威胁。重金属在土壤中移动性差、滞留时间长、难降解,可以通过生物富集作用和生物放大作用进入到农牧产品中[3],从而影响产出物的生长、产量和品质,潜在威胁人体健康[4]。本文对我国土壤重金属污染现状进行了简要分析,概述了土壤中重金属的来源,简单介绍了物理修复、化学修复和生物修复技术在土壤重金属污染修复方面的研究进展,以期为土壤重金属污染修复提供参考。 1我国土壤重金属污染现状 随着矿山开采、冶炼、电镀以及制革行业的蓬勃发展,一些企业盲目追逐经济利益,轻视环境保护,再加上农药、化肥、地膜、饲料添加剂等的大量使用,我国土壤中Pb、Cd、Zn等重金属的污染状况日益严重,污染面积逐年扩大,危害人类和动物的生命健康。据报道,2008年以来,全国已发生100余起重大污染事故,其中Pb、Cd、As等重金属污染事故达30多起。据2014年国家环境保护部和国土资源部发布的全国土壤污染状况调查公报显示,全国土壤环境总状况体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。全国土壤总的点位超标率为16.1%,其中轻微、轻度、中度和重度污染点位比例分别为11.2%、2.3%、1.5%和1.1%。据农业部对我国24个省市、320个重点污染区约548 万hm2土壤调查结果显示,污染超标的大田农作物种植面积为60万hm2,其中重金属含量超标的农产品产量与面积约占污染物超标农产品总量与总面积的80%以上,尤

中药及其产品重金属农药残留国内外标准

中药及其产品重金属农药残留国内外标准 The document was prepared on January 2, 2021

②植物油脂和提取物部分:

③成方制剂和单味制剂:所有胶剂一般应检查总灰分、重金属、砷盐、微生物限度。 二、国外 ①、法国、德国、英国: 重金属及砷盐限量: 砷(As)食品总量≤1 mg/kg,草药≤5 mg/kg。 铅(Pb)食品总量≤1 mg/kg,草药≤5 mg/kg。 锡(Sn)食品总量≤200mg/kg, 铜(Cu)食品总量≤20mg/kg,茶≤150mg/kg。 锌(Zu)食品总量≤50mg/kg。 ②、加拿大: 重金属及砷盐限量: 1、草药材: 铅(Pb)≤10 mg/kg;铬(Cr)≤ mg/kg。 镉(Cd) ≤ mg/kg;砷(As)≤ 5 mg/kg。 汞(Hg)≤ mg/kg。 2、草药产品: 铅(Pb)≤ mg/day;铬(Cr)≤ mg/day。 镉(Cd) ≤ mg/day;砷(As)≤ mg/day。 汞(Hg)≤ mg/day。 ③、美国: 重金属及砷盐限量: 适用范围:草药 重金属总量 10-20 mg/kg;铅(Pb) 3-10 mg/kg。 汞(Hg)<3 mg/kg;砷(As)<3 mg/kg 重金属及砷盐限量: 适用范围:饮食补充剂 1、饮食补充剂原料: 铅(Pb)≤10 mg/kg;铬(Cr)≤ mg/kg。 镉(Cd) ≤ mg/kg;砷(As)≤ 5 mg/kg。

2、饮食补充剂产品: 铅(Pb)≤ mg/day;铬(Cr)≤ mg/day。 镉(Cd) ≤ mg/day;砷(As)≤ mg/day。 汞(Hg)≤ mg/day。 ④、WHO(世界卫生组织): 重金属及砷盐限量: 适用范围:草药 铅(Pb)≤10 mg/kg; 镉(Cd)≤ mg/kg。 重金属限量(毫克/公斤) 铅 Pb≤ mg/kg 镉 Cd ≤ mg/kg 汞 Hg ≤ mg/kg 据不完全统计,有30%中草药的重金属和农药残留量不符合标准,其中有:川芎、细辛、白花蛇舌草、白头翁、蒲公英、菟丝子、茵陈、泽泻、地骨皮、枇杷叶、桂枝、猪苓、山茱萸、夜交藤、徐长卿、红花等。重金属超标的中成药品种有牛黄解毒片、六神丸、天仙丸、追风透骨丸、天王补心丸、牛黄降压丸等。 ⑤、日本、韩国: 2009年日本、韩国相继公布了新的中药材重金属与农残许可标准与检测方法,并于2009年正式实行。这是继2005年日本、韩国对中药材二氧化硫的限量要求和检测方法以来对中药材的又一新规定。 新规定明确植物性中药材重金属标准是: (1)铅≤ 5mg/kg,砷≤ 3mg/kg,汞≤ kg,镉≤ kg。 (2)鹿茸的砷≤ 3mg/kg。 (3)以生药的萃取物和只用生药为主成分的制剂的总重金属为30mg/kg以下。但是含有矿物性生药时除外。 据报道,韩方对生药及其提取物和制剂实施的新标准,涉及品种占到中国对韩国中药出口的70%左右。韩国在2008年4月7日正式实施的中药材霉菌(aflatoxin)B1许可标准涉及中药材甘草、决明子、桃仁、半夏、柏子仁、槟榔、酸枣仁、远志、红花等九个品种。按照该标准,上述九种中药材霉菌B1必须低于10μg/kg(10ppm)。

我国重金属污染研究现状

我国重金属污染研究现状 摘要:随着经济全球化的迅速发展,含重金属的污染物进入生态环境,对人类的健康带来了严重威胁,我国重金属污染突显,国内在重金属污染研究领域也展开研究,本文描述了我国在重金属污染研究中的具体采样、测定、评价方法,以及这些方法在我国的应用。 关键词:重金属污染;重金属污染物采样、重金属含量测定、污染评价 前言 重金属污染时指由重金属及其化合物引起的环境污染,重金属污染在环境中难以降解,能在动物和植物体内积累,通过食物链逐步富集,浓度成千上万甚至上百万倍的增加,最后进入人体造成危害,是危害人类最大的污染物之一。国际上,许多废弃物都因含有重金属元素被列到国家危险废物名录,近些年随着我国工农业生产的快速发展,我国出现了重金属污染频发、常发的状况。2008年,我国相继发生了贵州独山县、湖南辰溪县、广西河池、云南阳宗海、河南大沙河等5起砷污染事件,2009年环保部共接报陕西凤翔等十二起重金属、类金属污染事件。这些事件致使四千零三十五人血铅超标、一百八十二人镉超标,引发三十二起群体性事件。由于重金属污染事件在我国频繁发生,使得我国开始重视重金属污染的研究。 重金属污染物是一类典型的优先控制污染物。环境中的重金属污染与危害决定于重金属在环境中的含量分布、化学特征、环境化学行为、迁移转化及重金属对生物的毒性。人类活动极大的加速了重金属的生物地球化学循环,使环境系统中的重金属呈增加趋势,加大了重金属对人类的健康风险,当进入环境中的重金属容量超过其在环境中的容量时,即导致重金属污染的产生,重金属污染物为持久性污染物,一旦进入环境,就将在环境中持久存留。由于重金属对人类和生物可观察危害出现之前,其在环境中的累积过程已经发生,而且一旦发生危害,就很难加以消除。因此,在过去二十多年中人们就通过不同途径引入重金属对生态环境的污染做了广泛研究。

国家中药重金属及农药残留残留标准

部分国家、地区草药重金属和农药残留限量标准汇总一、中国: (一)中国药典(2010版) 药典对植物药中重金属和农药残留量的限量要求( ×10- 6) (二)药用植物及制剂外经贸绿色行业标准(WM/T2-2004) 适用范围:药用植物原料及制剂的外经贸行业品质检验 重金属及砷盐限量: 重金属总量≤20.0 mg/kg。 铅(Pb)≤5.0 mg/kg。 镉(Cd)≤0.3 mg/kg。 汞(Hg)≤0.2 mg/kg。 铜(Cu)≤20.0 mg/kg。 砷(As)≤2.0 mg/kg。

农药残留限量: 六六六(BHC) ≤0.1 mg/kg。 DDT ≤0.1 mg/kg。五氯硝基苯(PCNB) ≤0.1 mg/kg。 艾氏剂(Aldrin) ≤0.02 mg/kg。 二、香港:(香港中药材标准第一册) 表1:药材中重金属限度 三、澳门:(技術性指示第02/2003號) 重金属种类上限 砷(无机) 每日1500.00微克 镉(水溶性) 每剂3500.00微克

铅每日179.00微克 汞每日36.00微克 重金属种类上限 砷 5.00 ppm 铜150.00 ppm 铅20.00 ppm 汞0.50 ppm 四、新加坡:(1995年药物决议(禁止销售及供应)(修正案)) 重金属及砷盐限量: 铅(Pb)≤20 mg/kg。 汞(Hg)≤0.5 mg/kg。 铜(Cu)≤150 mg/kg。 砷(As)≤5 mg/kg。 镉(Cd)≤5 mg/kg。 五、马来西亚: 重金属及砷盐限量:: 铅(Pb)≤10 mg/kg。 汞(Hg)≤0.5 mg/kg。 砷(As)≤5 mg/kg。 六、泰国: 重金属及砷盐限量: 适用范围:草药原料及产品 铅(Pb)≤10 mg/kg。 镉(Cd) ≤0.3 mg/kg。 砷(As)≤ 4 mg/kg。 七、韩国: 重金属限量(药品安全厅公示第2005-62号): 1、植物性生药: 铅(Pb)≤5 mg/kg。

土壤中重金属污染的现状研究

龙源期刊网 https://www.doczj.com/doc/944832650.html, 土壤中重金属污染的现状研究 作者:董续郎朗 来源:《科学与财富》2016年第05期 摘要:土壤中重金属污染存在着巨大的环境风险。城市环境中的土壤重金属污染已经成 为普遍关注的环境问题。本文针对重金属污染的特点与来源,以及各国对土壤中重金属污染的现状进行研究,阐述了土壤重金属污染不同的危害,包含改变土壤性质的直接危害以及对空气环境和水环境的污染的间接危害,最重要的是这些危害导致对人类健康生活的影响。加强社会各界对土壤中重金属元素污染的认识,以推动对土壤中重金属污染的重视及研究。 关键词:土壤;城市:污染;重金属元素 土壤中的重金属污染已经成为当今环境科学中重要的研究内容,尤其是城市的土壤重金属污染越来越多的被人们关注。城市作为人们生活和生产高度聚集的场所,人口相对集中,种种人类活动都非常容易造成城市的污染。本文针对土壤重金属污染的来源及危害加以阐述,增加读者对土壤污染的重视。 1 土壤重金属污染概况 重金属指的是密度大于5.0g/cm3的45种化学元素,但是因为每一种重金属元素在土壤中的毒性区别很大,所以在环境科学中通常关注锌、铜、锡、钒、汞、镉、钴、镍、铅、铬、钴等。硒和砷两种非金属元素它们的毒性及某些性质与重金属相似,因此也将硒元素和砷元素列入重金属污染物的范围内[1]。由于土壤中本身含有的铁和锰含量较高,因而一般不太注意它 们的污染问题,但在某些强还原条件下,铁和锰所引起的毒害却不能被忽视[2]。 中国作为发展中国家,工业科学上的发展越来越重要,但是由此造成的污染也在加剧。城市作为人口密集的区域,汽车尾气的排放成为了土壤中重金属污染的主要来源。吴学丽[3]等 人运用地累积指数法研究了沈阳地区浑河、细河及周边农田的土壤中重金属污染状况,发现这些地区土壤中汞元素和锌元素含量较高。兰砥中[4]等人研究湘南某铅锌矿区事故之后导致周 围土壤的重金属污染情况,运用单因子指数和潜在生态风险指数评价土壤污染状况,发现该地区土壤中铅、锌、铜、镉等重金属污染严重,其中镉的污染指数最高。 国外学者早在20世纪末就针对城市中土壤中重金属污染进行研究,在英国的几大城市中对土壤中的汞、铅等重金属元素进行调查,他们观察到这几个城市中的土壤重金属污染与英国的工业发展活动与周围居民区的繁荣与否有着直接的关系。世界各个国家正逐步开展城市中土壤中重金属污染的研究。在对葡萄牙、苏格兰、斯洛文尼亚、西班牙、意大利和瑞典这6个欧洲国家城市土壤中的重金属总浓度进行调查研究,发现葡萄牙地区中汞的浓度比苏格兰低,可能是由于燃煤发电和取暖导致的[5]。

欧盟农残限量指标

欧盟农残限量指标 编号英文名称中文名称限量检测限欧盟指令备注 1 , 1 乙滴涕0.1 0.1 2000 24 EC 2001/01/01 执行-Dichloro-2,2-bis(4-thyl-phenyl-)ethane/Perthane 2 1,2-Dibromoethanee(ethylene dibromide) 1,2-二溴乙烷0.1 0.1 9 3 58 EEC 3 2,4,,5-T 2,4,,5- 涕0.05 0.05 93 58 EEC 4 Acephate 乙酰甲胺磷0.1 0.1 93 58 EEC 5 Aldiarb 涕灭威0.05 0.05 93 38 EC 6 Aldrin 艾氏剂0.02 0.02 见狄氏剂 7 Amitraz 双甲脒0.1 0.1 95 38 EC 8 Amitrole(Aminotriazole) 杀草强0.1 0.1 93 58 EEC 9 Aramite 杀螨特0.1 0.1 2000 24 EC 2001/01/01 执行

10 Atrazine 莠去津0.1 0.1 93 58 EEC 11 Barban 燕麦灵0.1 0.1 2000 24 EC 2001/01/01 执行 12 Benalaxyl 苯霜灵0.1 0.1 94 30 EC 13 Benfuracarb 丙硫克百威0.1 0.1 94 30 EC 14 Benomyl 苯菌灵见多菌灵 15 Bifenthrin 联苯菊酯 5 98 82 EC 16 Binapacryl 乐杀螨0.1 0.1 93 58 EEC 17 Bromophos-ethyl 乙基溴硫磷0.1 0.1 93 58 EEC 18 Bromopropylate 溴螨酯0.1 0.1 95 61 EC 19 Camphechlor(Toxaphene) 毒杀芬0.1 0.1 93 58 EEC 20 Captafol 敌菌丹0.1 0.1 93 58 EEC 21 Carbendazin 多菌灵0.1 0.1 93 58 EEC 22 Carbofuran 克百威0.2 0.2 94 30 EC 23 Carbosulfan 丁呋丹0.1 0.1 94 30 EC 24 Cartap 杀螟丹0.1 0.1 2000 24 EC 2001/01/01 执行 25 Chlorbenside 氯杀螨0.1 0.1 2000 24 EC 2001/01/01 执行 26 Chlorbufan 氯草灵0.1 0.1 2000 24 EC 2001/01/01 执行 27 Chlordane 氯丹0.02 0.02 93 58 EEC 28 Chlorfenson 杀螨酯0.1 0.1 2000 24 EC 2001/01/01 执行 29 Chlormequat 矮壮素0.1 0.1 96 32 EC 30 Chlorobenzilate 乙酯杀螨醇0.1 0.1 2000 24 EC 2001/01/01 执行 31 Chlorothalonil 百菌清0.1 0.1 93 58 EEC 32 Chloroxuron 枯草隆0.1 0.1 2000 24 EC 2001/01/01 执行 33 Chlorpyrifos 毒死蜱0.1 0.1 93 58 EEC 34 Chlorpyriphos-methyl 甲基毒死蜱0.1 0.1 93 58 EEC 35 Cyfluthrin(sum of isomers) 百治菊酯(氟氯氰菊酯)0.1 0.1 2000 24 EC 2001/01/01 执行

农田重金属污染现状

农田重金属污染现状及修复技术综述 [摘要] 重金属污染因具有毒性、易通过食物链在植物,动物和人体内累积,对生态环境和人体健康构成严重威胁。随着工业快速发展、农药及化肥的广泛使用,农田土壤重金属污染越来越严重,研究农田土壤重金属污染现状及修复技术对农产品安全具有重要意义。综合国内外农田土壤重金属污染状况,农田土壤重金属污染主要来源于固体废弃物堆放及处置、工业废物大气沉降、污水农灌和农用物质的不合理施用。该文综述了国内外有关农田重金属污染土壤修复技术(物理修复、化学修复、生物修复、农业生态和联合修复)的研究进展,并针对各种修复方法,阐述了其原理、修复条件、应用实例及其优缺点 【关键词】农田土壤;重金属;污染;修复技术 1、重金属污染概述 随着矿产资源的大量开发利用,工业生产的迅猛发展和各种化学产品、农药及化肥的广泛使用,含重金属的污染物通过各种途径进入环境,造成土壤,尤其是农田土壤重金属污染日益严重。目前,世界各国土壤存在不同程度的污染,全世界平均每年排放Hg约1.5×104t、Cu约340万t、Pb约500万t、Mn约1500万t、Ni约100万t[1]。在欧洲,受重金属污染的农田有数百万公顷[2];在日本受Cd、Cu、As等污染的农田面积为7224 hm2[3]。当前我国受Cd、Hg、As、Cr、Pb污染的耕地面积约2000×104 hm2,每年因重金属污染而损失的粮食约1000×104t,受污染粮食多达1200×104t,经济损失至少达200×108元[4]。 重金属污染物不能被化学或生物降解、易通过食物链途径在植物,动物和人体内积累、毒性大,对生态环境、食品安全和人体健康构成严重威胁[5]。因此,农田土壤重金属污染己成为当前日益严重的环境问题,其污染来源和修复技术也一直是国内外研究的热点和难点。了解农田重金属污染来源对重金属污染修复有着重要的指导意义。目前,重金属污染土壤的修复技术研究取得了长足发展,主要包括物理、化学、生物、农业生态和联合修复技术。本文综合了国内外农田重金属污染状况及来源,系统地介绍农田重金属污染土壤修复的不同技术,以及近年来国内外修复重金属污染农田土壤的一些重要案例,对农产品安全生产具有重要意义,同时为农田土壤重金属污染综合治理与修复提供。 2、我国农田重金属污染现状 对我国8个城市农田土壤中Cr、Cu、Pb、Zn、Ni、Cd、Hg和As的浓度进行统计分析,大部分城市高于其土壤背景值 [6]。农业部农产品污染防治重点实验室对全国24个省市土地调查显示,320个严重污染区,约548×104 hm2,重金属超标的农产品占污染物超标农产品总面积的80%以上。2006年前,环境保护部对30×104hm2基本农田保护区土壤的重金属抽测了3.6×104 hm2,重金属超标率达12.1%[7]。我国大多数城市近郊农田都受到了不同程度的重金属污染,如南京市土壤已受到Pb、Hg、Cd污染,其中Hg污染比较严重[8];黄浦江中上游地区2010年农用土中Cd、Hg、As、Cr、Pb质量分数分别超过土壤背景值的60%、68%、19%、67%、45%[9];北京市连续5年(2005~2009年)的土壤样品中,近郊农田土壤中Hg、Cd和Pb平均质量分数均高于远郊[10];深圳市2010年土壤Hg质量分数有37%的采样点超过土壤背景值,6%的样品点处于中度以上污染水平[11]。此外,在贵州、福建、河北、广西、江西、海南、重庆、香港等许多省市地区都发现了不同程度

相关主题
文本预览
相关文档 最新文档