当前位置:文档之家› 温度传感器

温度传感器

温度传感器
温度传感器

所属分类:[温度传感器系列]产品名称:铂铑热电偶产品简介:品牌:昆仑中大

规格:1000mm,无固定,刚玉管

功能:测温

型号:KZW/S-130

尺寸:可根据客户需求定做

材质:铂铑丝,保护管刚玉

颜色:见图片

铂铑热电偶产品特点:

测温范围0-1600℃、0-1800℃

测温元件材质为S、B

保护材质为99钢玉

工作原理:

是由两种不同成分的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存在有温差时,显示仪表将会批示出热电偶产生的热电势所对应的温度值。铂铑热电偶的热电动热将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关、与热电极的长度、直径无关。各种铂铑热电偶的外形常因现场实际需要而外形不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要成分组成。

应用领域:

铂铑热电偶应用于粉末冶金、真空炉、冶炼炉、炼钢炉、工业盐浴炉、烧结光亮炉等工业生产中,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中的温度测量。

所属分类:[温度传感器系列]产品名称:防爆温度传感器产品简介:

规格:300*150

功能:测量易燃易爆,气体、液体温度

型号:KZW/P-240

尺寸:可以根据客户需要孔做

材质:保护管304不锈钢

颜色:不锈钢

防爆温度传感器产品特点:

工业用隔爆铂电阻是一种温度传感器。在工业自控系统中应用极广,通过温度传感器,可将控制对象的温度参数变成电信号,传递给显示、记录和调节仪表,对系统实行检测、调节和控制。

在化工厂、生产现场常伴有各种易燃、易爆等化学气体、蒸气,如果使用普通的铂电阻非常不安全,极易引起环境气体爆炸。因此,在这些场合必须使用隔爆热电偶作温度传感器,本厂生产的隔爆铂电阻产品适用在dIIBT4~dIICT6温度组别区间内具有爆炸性气体危险的场所内.

通常和显示仪表,记录仪表,电子计算机的配套使用。直接测量各种生产过程中的0-1300℃范围内液体,蒸汽和气体介质及固体表面温度。

工作原理:

隔爆热电阻和装配式热电阻的结构和原理基本相同,热电阻温度传感器原理是:导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。②电阻率高,热容量小,反应速度快。③材料的复现性和工艺性好,价格低。④在测温范围内化学物理特性稳定。

隔爆热电阻和装配式热电阻的结构和原理所区别的是,隔爆型产品的接线盒(外壳)在设计上采用防爆特殊的结构,接线盒用高强度铝合金压铸而成,别且具有足够的内容空间、壁厚和机械强度,橡胶圈密封圈的热稳定性均符合国家防爆时,其内压不会破坏接线盒,而由此产生的热能不能向外扩散--传爆

由于产品采用上述防爆特殊结构,是产品完全符合使用只dIIBT4至dIICT6防爆组别区间范围内,只要用户严格遵守产品使用规则,产品就能达到可靠的防爆效果防爆原利用间隙隔爆原理,设计具有足够强度的接线盒等部件,将所有会产生火花、电弧和危险温度的零部件都密封在接线盒内,当腔内发生爆炸时,能通过接合面间隙熄火和冷却,使爆炸后的火焰和温度不传到腔外

应用领域:

工业用隔爆热电偶是一种温度传感器,在化学工业自控系统中应用极广,通过温度传感器,可将控制对象的温度参数变成电信号,传递给显示、记录和调节仪,对系统施行检测、调节和控制。在化工厂,生产现场常伴有各种易燃、易爆等化学气体、蒸汽,如果使用普通的热电偶非常不安全,极易引起环境气体爆炸。因此,在这些场合必须使用隔爆热电偶作温度传感器,本公司生产的隔爆型热电偶产品,适用于dⅡCT6温度组别区间内的具有爆炸性气体危险的场所内。

自开模,大吨位压铸机压铸,

无气孔,内墙光滑, 烤漆工艺外形更美观 B

管径材质 标准厚度2mm , 焊接光滑,无焊痕, 抛光整洁 C

螺纹材质

外观光滑,整体无毛刺 标准304材质 D

变送器

输出稳定性高,抗干扰

应用案例燃气站:

智能温度传感器DS18B20及其应用

智能温度传感器DS18B20及其应用 作者:张军, ZHANG Jun 作者单位:山西冶金技师学院,山西太原,030003 刊名: 仪表技术 英文刊名:INSTRUMENTATION TECHNOLOGY 年,卷(期):2010(4) 被引用次数:8次 参考文献(4条) 1.马家成;孙玉德;张颖MCS-51单片机原理与接口技术 1998 2.张萍基于数字温度计DS18B20的温度测量仪的开发[期刊论文]-自动化仪表 2007(06) 3.金伟正单线数字温度传感器的原理与应用[期刊论文]-电子技术应用 2000(06) 4.赵海兰;赵祥伟智能温度传感器DS18B20的原理及应用[期刊论文]-现代电子技术 2003(14) 本文读者也读过(2条) 1.韩志军.刘新民.HAN Zhi-jun.LIU Xin-min数字温度传感器DS18B20及其应用[期刊论文]-南京工程学院学报(自然科学版)2003,1(1) 2.刘华东.LIU Hua-dong串行温度传感器DS18B20的应用[期刊论文]-湖北职业技术学院学报2010,13(4) 引证文献(15条) 1.李建海.刘迪.王冬梅电池温度智能监测系统设计[期刊论文]-现代电子技术 2011(16) 2.张嘉斌.毕艳梅MDX61B驱动变频器在核电站燃料转运装置中的应用[期刊论文]-电脑知识与技术 2012(22) 3.孙云翔.刘永刚浅谈变电站热点温度监测预警工作的信息化建设[期刊论文]-企业技术开发(学术版) 2012(7) 4.林峰宝浅析智能压力变送器[期刊论文]-才智 2012(3) 5.王毅.万英.陈承格数字式温度测量系统的设计[期刊论文]-福建师范大学学报(自然科学版) 2012(1) 6.沈燕.高晓蓉.李金龙超声车距预警系统设计[期刊论文]-现代电子技术 2012(13) 7.张准.陈良旭.韦中超基于单片机与计算机串口的温度实时监控系统设计[期刊论文]-现代电子技术 2012(16) 8.刘玉洁DS18B20温度测量电路的设计与仿真[期刊论文]-数字技术与应用 2011(4) 9.马将.邓学勇.邓毅.杨威变电站重点部位温度监测系统设计[期刊论文]-宜宾学院学报 2011(12) 10.李战胜.李智.秦岭基于SPCE061A的矿山锅炉水温监测系统设计[期刊论文]-工矿自动化 2010(9) 11.管晓博基于SPCE061A单片机的超声波测距系统的设计[期刊论文]-计算机与现代化 2012(7) 12.张婧婧.达新民.郭斌基于TMS320VC5402的温控系统的设计[期刊论文]-计算机与现代化 2011(3) 13.金晓龙.郭斌.孟小艳基于SPCE061A温室温湿度监测系统的设计及实现[期刊论文]-计算机与现代化 2012(9) 14.钟珊.尹斌基矛Proteus的温度测控系统仿真研究[期刊论文]-电子设计工程 2011(24) 15.张江印基于单片机的多点测温系统[期刊论文]-实验室研究与探索 2012(10) 本文链接:https://www.doczj.com/doc/942342144.html,/Periodical_ybjs201004023.aspx

国际品牌温度传感器介绍一..

一、霍尼韦尔 公司简介: 霍尼韦尔是《财富》百强公司,总部位于美国。致力于发明制造先进技术以应对全球宏观趋势下的严苛挑战,例如生命安全、安防和能源。公司在全球范围内拥有大约130,000 名员工,其中包括19,000 多名工程师和科学家。 霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。1973年美国总统尼克松访华时,应中国政府之邀从十大领域推荐精英企业来华推动两国双向交流,并促进中国的现代化建设。其中炼油石化领域唯一被选中推荐给中国政府的美国环球油品公司,正是霍尼韦尔旗下的子公司。80年代的改革开放成为了霍尼韦尔融入中国经济发展的又一个新起点,作为首批在北京设立代表处的跨国企业,霍尼韦尔在彼时开始了一系列的高品质投资。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。目前,霍尼韦尔在中国的投资总额超10亿美金,员工人数超过12,000名。 主要产品及服务: 家具与消费品——环境自控解决方案及产品 航空与航天——航空航天UOP中国传感与控制 生命安全与安防——霍尼韦尔安全产品安防气体探测技术 建筑、施工与维护——环境自控解决方案及产品安防英诺威发泡剂极冷致制冷剂 传感与控制——扫描与移动生产力扫描与移动技术 工业过程控制——无线自动化解决方案环境自控解决方案及产品传感与控制气体探测技术 能效与公共事业——环境自控解决方案及产品无线自动化解决方案传感与控制 汽车与运输——极冷致制冷剂传感与控制 石油、天然气、炼油、石油化工与生物燃料——环境自控解决方案及产品UOP中国无线自动化解决方案传感与控制气体探测技术安防 医疗保健——扫描与移动技术阿克拉薄膜传感与控制Burdick & Jackson 溶剂和试剂 化学品、特殊材料与化肥——Burdick & Jackson 溶剂和试剂阿克拉薄膜尼龙6树脂UOP中国极冷致制冷剂OS有机硅密封胶添加剂 制造——环境自控解决方案及产品尼龙6树脂A-C高性能添加剂传感与控制 无线自动化解决方案

单片机温度传感器及无线传输

通信与测控系统课程设计 报告

一、课程设计目的及要求 ①通过一个具体的项目实例,熟悉项目开发的流程,学习与通信相关的测控系统开发,包括基本知识、技术、技巧 ②锻炼硬件编程能力(C51),积累编程经验,形成代码风格,理解软件层次结构 ③常用外围器件(接口)的操作、驱动 一、实习主要任务 ①采集远端温度信息,无线收集,上位机显示信息 ②硬件配置:51系统板、DS18B20、无线数传模块IA4421、数码管 ③编程、调试,完成作品 二、硬件电路的原理框图 图一、AT89S51、数码管硬件原理图

图二、IA4421硬件原理图图三、DS18B20硬件原理图最终实现的功能: 三、软件设计及原理 1、读主程序流程图

主程序代码: #include #include #include #include #include #include #define uint unsigned int #define uchar unsigned char unsigned char m; unsigned char n; void zhuanhuan(); void delay_led(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } uint aa; uchar wei_1,wei_2,wei_3,v,wei_4,wei_5,wei_6; uint shuju;//得到的温度值 uchar temp[2]={0,0}; //存放DS18B20的温度寄存器值 uint value = 0; sbit DQ=P3^3; //数据线 void ReadSerialNumber(void); uchar sn1,sn2,sn3,sn4,sn5,sn6,sn7,sn8; //存放DS18B20的64位序列号void ow_reset(void); void tmstart (void); void ReadSerialNumber(void); void Read_Temperature(void); void write_byte(char); uint read_byte(void); void delay_18B20(uint); //void baojing(); /*******主函数**********/ void main() { m=0; //init_led();//初始化子程序 tmstart (); delay_18B20(50); /*等待转换结束*/ while(1) { m++; Read_Temperature(); delay_18B20(50);

STM32-内部温度传感器-串口显示-完整程序

STM32F103 内部温度传感器用串口传递到PC上显示 程序如下: #include "stm32f10x.h" #include "stm32_eval.h" #include "stm32f10x_conf.h" #include #define DR_ADDRESS ((uint32_t)0x4001244C) //ADC1 DR寄存器基地址 USART_InitTypeDef USART_InitStructure; //串口初始化结构体声明ADC_InitTypeDef ADC_InitStructure; //ADC初始化结构体声明DMA_InitTypeDef DMA_InitStructure; //DMA初始化结构体声明__IO uint16_t ADCConvertedValue; // 在内存中声明一个可读可写变量用来存放AD的转换结果,低12 位有效 void ADC_GPIO_Configuration(void); static void Delay_ARMJISHU(__IO uint32_t nCount) { for (; nCount != 0; nCount--);} int main(void) { u16 ADCConvertedValueLocal; USART_https://www.doczj.com/doc/942342144.html,ART_BaudRate = 115200; USART_https://www.doczj.com/doc/942342144.html,ART_WordLength = USART_WordLength_8b;

USART_https://www.doczj.com/doc/942342144.html,ART_StopBits = USART_StopBits_1; USART_https://www.doczj.com/doc/942342144.html,ART_Parity = USART_Parity_No; USART_https://www.doczj.com/doc/942342144.html,ART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_https://www.doczj.com/doc/942342144.html,ART_Mode = USART_Mode_Rx | USART_Mode_Tx; STM_EV AL_COMInit(COM1, &USART_InitStructure); /* Enable DMA1 clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); DMA_DeInit(DMA1_Channel1); //开启DMA1的第一通道DMA_InitStructure.DMA_PeripheralBaseAddr = DR_ADDRESS; DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)&ADCConve rtedValue; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //DMA的转换模式为SRC模式,由外设搬移到内存 DMA_InitStructure.DMA_BufferSize = 1; //DMA缓存大小,1个DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //接收一次数据后,设备地址禁止后移DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; //关闭接收一次数据后,目标内存地址后移 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //定义外设数据宽度为16位

温度传感器实验

实验二(2)温度传感器实验 实验时间 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为 )()(0T E T E E AB AB t -=。

热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时, )1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(=C ??/105.847--71) 3、PN 结温敏二极管

半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U = ?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件,灵敏度高,可以测量小于℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为: )11(00 e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值

数字温度传感器测温显示系统说明书

数字温度传感器测温显示系统说明书 学院:机械与电子控制工程学院 班级:0907班 组长:段晗晗 组员:兰天宝、侯晨、李楠楠、王珂、赵亮 时间:2011-7-1

目录 任务书------------------------------------------------------------------------------3 摘要---------------------------------------------------------------------------------4 正文---------------------------------------------------------------------------------4 总体设计方案 第1章主控制器 1.1AT89C51 特点及特性--------------------------------------------------------4 1.2管脚功能说明-----------------------------------------------------------------5 1.3振荡器特性--------------------------------------------------------------------7 1.4芯片擦除-----------------------------------------------------------------------7 第2章温度采集部分设计 2.1.DS18B20 技术性能描述----------------------------------------------------7 2.2.DS18B20 管脚排列及内部结构-------------------------------------------8 2.3.DS18B20 工作原理----------------------------------------------------------8

(完整版)无线无源温度检测原理

无线测温技术方案 (基于EH技术) 1.EH技术说明 1.1. EH技术简介 环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。 能量收集(EH)也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。 能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。 1.2.EH技术应用 在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。 将EH技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。 2.基于EH技术的富邦电控FTZ600无线测温系统 2.1. 无线测温系统简介

第14课 电子温度计——温度传感器

第14课电子温度计——温度传感器 【教材分析】 本课的教学内容主要分为两大部分:首先是温度传感器及其应用,以多功能电子钟还能显示温度为切入点,进而认识温度传感器及其典型应用。其次简单介绍湿度传感器及相对湿度数据,了解日常生活中各类环境适宜的相对湿度数据范围。本课的重点是温度传感器及其应用。 【学情分析】 学生对温度的认识具有一定的生活经验,对冰箱、电子体温计等装有温度传感器的产品有所体验,但对温度传感器本身比较陌生。 【教学目标与要求】 1. 知识与技能 (1)了解温度的概念及温度计的原理,认识温度传感器,了解其应用; (2)设计制作温度测量表格; (3)动手搭建创作出外形新颖、方便实用的温度计。 2. 过程与方法 (1)通过教师提出的问题,理解温度计的原理,了解温度传感器及其应用; (2)连接电子模块,完成温度计的制作,设计制作温度测量表格; (3)应用比特造型模块,创意设计出造型各异的温度计外形; (4)围绕作品的创意,用途等方面进行说明和展示(5W+1H)。 3. 情感、态度与价值观 (1)温度计外形的设计,培养发散思维,提高创新能力,审美能力; (2)通过模块的组建、拼装,培养动手能力; (3)小组为单位的学习过程,提高团队意识,培养人际交往和沟通能力; (4)作品的描述展示,设计理念和功能说明,培养演讲演示能力,提高自信心。 4. 行为与创新 勇于反思、敢于突破,在实验中打破常规。 【教学重点与难点】 重点:发挥想象力和创造力,团队合作,设计温度计外形,组建模块,完成

温度计的制作。 难点:设计制作漂亮且实用的作品。 【教学方法与手段】 分析法:学生通过观察、思考和交流分析来解惑、释疑。 验证法:在验证对比中发现问题并寻找背后原因。 【课时安排】 安排1课时。 【教学准备】 PPT课件,图片,比特造型模块,比特电子模块。 【教学过程】 一、话题导入,响指一声,顺利揭题 师:老师想知道教室现在的温度,你们有没有办法? 生答:可以使用温度计。 师:老师这里正好有一个温度计,请同学来帮我读一读。你能说完整吗?(学生纠正其温度完整性:一定要读成多少摄氏度) 师:谢谢你,帮助顾老师解决了一个问题,那么你刚才读出的温度能代表我们江阴的气温吗?可以代表今天一天的气温吗? 生答。 师:是啊,一般情况下,我们都是使用这样的温度计来测量温度的。而温度计从古到今也经历了不同的发展历程(屏显各个不同时期的温度计)。如今有越来越高级的温度计出现在我们的生活中。看!现在我请一位同学来给我们做个实验。(拍手或打个响指)看,有没有奇迹发生了?那么这个数据代表了什么? 生答。 师:我们只要一拍手、一打响指就可以显示教室内的温度,你们说它听话吗? 师:(揭题)今天就来学习制作听话的数字温度计(板书)。 【设计意图】开门见山地引入气温的话题,让同学们看温度计上的读数来温故有关温度的科学知识。响指一声,引出今天所要学习的知识:听话的数字温度计。其中我强调了温度表述的完整性,这种科学性的表述是一贯而之的。在揭题之前,渲染了“见证奇迹”氛围,激起了学生的学习兴趣。

温度传感器简介与选型

温度监控的I/O解决方案 选择和采购温度传感器 监测温度和采集数据的传感器种类繁多。从单一房间的温度监测到复杂的批次过程控制应用都依赖精准的温度获取。电阻温度计(RTD),热电偶,积体电路温度计(ICTD),热敏电阻,红外线传感器是用于以上目的的主要传感器类型。 RTD决定于材料电阻和温度的关系,它读数精确(一般小数点后2-3位),具有多种封装形式。他们一般由镍,铜及其他金属制造,但是较早前,RTD是由铂制造的,很大程度上因为铂的电阻在较宽的温度区间里与温度成线性关系。但是由于铂价格昂贵且当温度超过660°C时不能适用,因为在这范围以外铂的惰性会失效导致读数不准。RTD需要一个小功率激励源才能进行操作,且RTD应用性很强,在较大范围内它侦测温度非常准确漂移很小。 热电偶是由双金属导体制备,受热时产生的电压与温度成比例.同RTD一样,热电偶常用于工业设置里。其种类丰富(B,J,K,R,T等),提供不同的温度敏感范围。热电偶读数没有RTD那么精确,有时可能高达一度之差。热电偶和RTD一样本身及其脆弱,使用时它通常附有一根耐用探针。一般热电偶价格不贵,但若装了特殊外壳或装置,其价格将大大上升。因为热电偶种类繁多测温范围很大,最高可达1800°C,能用在高温条件下(但值得注意的是,高温使用一般需要特殊外壳、包装或绝热材料)。 ICTD是常见的通用温度传感器,其价格不贵,类似2线晶体管装置,工作电压在5-30V之间,由此产生的电流与温度成线性比例。也和RTD一样,ICTD低噪音,但比RTD更易使用,因为其无需电阻测量电路。ICTD的特点在于其简易,工业应用偏少,在-50~100°C范围内温度测量较准确,例如在HVAC,制冷机和室内温度监控等应用上。 热敏电阻工作原理是由电阻调节获得不同温度。这样看来热敏电阻和RTD的工作原理类似,差别在于前者使用2线互连,对温度更加敏感,但是一定程度上读数不准。除此,电热调节器所用材料通常是陶瓷或聚合物(而RTD使用纯金属),这样使其具有价格上的优势。热敏电阻适应于大容量的温度监测,范围在-40~200°C,并且允许一定量的漂移的场合。 红外传感器代表了温度监测设备中最新前沿的仪器。红外辐射通过监测物体的电磁辐射(也叫做热摄影或高温测量)来对其进行远程温度测定,红外监测对快速移动的物体或难以测得高温易变化的环境有很好的效果红外广泛应用在制造流程中,如对金属、玻璃、水泥、陶瓷半导体、塑料、纸品、织物及涂层的温度。 重要提示:在决定使用哪种测温器件时,需着重考虑的是价格、温度测量所需达到的精度、设备对环境的适用性以及布线。例如:对ICTD来说,一般双绞电缆,最简单的布线方案就能使它正常工作,几千米的布线也不会造成信号损失。;而相比较RTD,则需要3或4线制。对于RTD,线的规格也同样重要。直径必须相配,接合无误,即使在最佳的条件下,也易受噪音的影响,尤其在线过长的情况下。热电偶的应用通常都有严格的布线要求。每种热电偶有其匹配的线,和它的材料组成相搭配。这种专业线价格昂贵,所以在热电偶应用时,以短程布线为多。 Opto 22 的解决方案 SNAP输入模块 Opto 22的特点在于能为所有类型温度监测设备---RTD,热电偶,ICTD,热敏电阻,红外监测提供解决方案。方案包括一套完整的多通道模拟输入模块,能与以上设备连接用于远程监控和数据采集。 更值得注意的是,Opto 22的I/O模块有多种构造,从双通道到八通道一应俱全。八通道的模块是需要多通道温度采集的最佳经济选择。应用包括水处理、制冷系统、杀菌、巴氏消毒及焊接等。 Opto 22的SNAP AICTD-8模块是特别为能源管理相关应用而设计的,能从标准ICTD中获得八通道模

温度传感器常见故障的处理方法

温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。在实际使用上通常会和一些仪表配套使用,但也会出现很多故障现象。下面就让艾驰商城小编对温度传感器常见故障的处理方法来一一为大家做介绍吧。 第一,被测介质温度升高或者降低时变送器输出没有变化,这种情况大多是温度传感器密封的问题,可能是由于温度传感器没有密封好或者是在焊接的时候不小心将传感器焊了个小洞,这种情况一般需要更换传感器外壳才能解决。 第二,输出信号不稳定,这种原因是温度源本事的原因,温度源本事就是一个不稳定的温度,如果是仪表显示不稳定,那就是仪表的抗干扰能力不强的原因。 第三,变送器输出误差大,这种情况原因就比较多,可能是选用的温度传感器的电阻丝不对导致量程错误,也有可以能是传感器出厂的时候没有标定好。 温度传感器出现故障的情况很少见,只要出厂的时候进行仔细的检测,这些情况都是可以避免的,所以温度传感器在出厂的时候一地要进行检验,客户也可找传感器厂家索要出厂检测报告进行参考。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/942342144.html,/

温度传感器原理

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节. (2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型温度传感器热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 3.温度传感器热电阻测温系统的组成 温度传感器热电阻测温系统一般由温度传感器热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①温度传感器热电阻和显示仪表的分度号必须一致

AD590温度传感器简介

AD590温度传感器简介 AD590就是一种集成温度传感器(类似的芯片还有LM35等),其实质就是一种半导体集成电路。它利用晶体管的b-e结压降的不饱与值VRE与热力学温度T与通过发射极电流I的下述关系实现对温度的检测。 式中,k就是波耳兹曼常数;q就是电子电荷绝对值。 集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出与电流输出两种。电压输出型的灵敏度一般为10mV/K(温度变化热力学温度1度输出变化10mV),温度0K时输出0,温度25℃时输出2、9815V。电流输出型的灵敏度一般为1μA/K,25℃时输出298、15μA。 AD590就是美国模拟器件公司生产的单片集成两端温度传感器。它主要特性如下: 1) 流过器件电流的微安数等于器件所处环境温度的热力学温度(开尔文)度数,即 式中,IT为流过器件(AD590)的电流,单位为μA;T为温度,单位为K。 2) AD590的测量范围为-55~+150℃。 3) AD590的电源电压范围为4~30V。电源电压从4~6V变化,电流IT 变化1μA,相当温度变化1K。AD590可以承受44V正向电压与20V 的反向电压。因而器件反接也不会损坏。

4) 输出电阻为710MΩ。 5) AD590在出厂前已经校准,精度高。AD590共有I、J、K、L、M 五挡。其中M档精度最高,在-55~+150℃范围内,非线性误差为±0.3℃。I档误差较大,误差为±10℃,应用时应校正。 由于AD590的精度高、价格低、不需辅助电源、线性度好,因此常用于测量与热电偶的冷端补偿。

无线温度传感器课程设计

邮电与信息工程学院 现代测控技术 课程设计说明书 课题名称:无限温度采集系统 学生学号:0941050212 专业班级:09测控技术及仪器2班 学生姓名:刘奎 学生成绩: 指导教师:李国平 课题工作时间:2012-6-20 至2012-7-4

摘要 无线温度采集系统是一种基于射频技术的无线温度检测装置。本系统由传感器和接收机,以及显示芯片组成。传感器部分由数字温度传感器芯片18B20,单片机89C52,低功耗射频传输单元NRF905和天线等组成,传感器采用电源供电;接收机无线接收来自传感器的温度数据,经过处理、保存后在LCD1602上显示,所存储的温度数据可以通过串行口连接射频装置与接收端进行交换。 数字单总线温度传感器是目前最新的测温器件,它集温度测量,A/D转换于一体,具有单总线结构,数字量输出,直接与微机接口等优点。既可用它组成单路温度测量装置,也可用它组成多路温度测量装置,文章介绍的单路温度测量装置已研制成产品,产品经测试在-10℃-70℃间测得误差为0.25℃,80℃≤T≤105℃时误差为0.5℃,T>105℃误差为增大到1℃左右。 关键词:温度采集系统;无线收发;温度传感器;89C52单片机;

Abstract Wireless temperature acquisition system based on RF technology is a kind of wireless temperature detecting device. The system consists of the sensor and receiver, and display chip. The sensor consists of digital temperature sensor18B20 chip, chip 89C52, low power RF transmission unit NRF905 and antenna components, sensors using wireless power supply; the receiver receives from the temperature data, processed, preserved in the LCD1602 display, the stored temperature data can be through the serial port connected to the RF device and the receiving terminal exchange. The digital single bus temperature sensor is the current measuring device, it sets the temperature measurement, A/D conversion in one, with a single bus structure, digital output, the advantages of direct interface with microcomputer. Not only can it consists of single channel temperature measuring device, it is also available to form a multichannel temperature measuring device, this paper introduces single temperature measurement device has been developed into products, products tested in -10℃-70 ℃measured between the error is 0.25℃,80 ℃≤T ≤105 ℃error is 0.5℃, T>105 ℃error in order to increase to about 1 ℃. Key words: temperature acquisition system; wireless transmission; temperature sensor; SCM 89C52

实验五 温度传感器特性试验

实验五温度传感器特性试验 5.1、 Cu50温度传感器的温度特性实验 一、实验目的:了解Cu50温度传感器的特性与应用。 二、基本原理:在一些测量精度要求不高且温度较低的场合,一般采用铜电阻,可用来测量-50oC~+150oC的温度。铜电阻有下列优点: 2在上述温度范围内,铜的电阻与温度呈线性关系 R t = R (1+at) 4电阻温度系数高,a = 4.25~4.28×10-3/oC 6容易提纯,价格便宜 三、需用器件与单元:K型热电偶、Cu50热电阻、YL系列温度测量控制仪、直流电源±15V、温度传感器实验模块、数显单元(主控台电压表)、万用表。 四、实验步骤: 1、差动电路调零 将温度测量控制仪上的220V电源线插入主控箱两侧配备的220V控制电源插座上。首先对温度传感器实验模块的三运放测量电路和后续的反相放大电路调 零。具体方法是把R 5和R 6 的两个输入点短接并接地,然后调节Rw 2 使V 01 的输出电压 为零,再调节Rw 3,使V 02 的输出电压为零,此后Rw 2 和Rw 3 不再调节。 2、温控仪表的使用 注意:首先根据温控仪表型号,仔细阅读“温控仪表操作说明”,(见附录一)学会基本参数设定(出厂时已设定完毕)。 3、热电偶的安装 选择控制方式为内控方式,将K型热电偶温度感应探头插入“YL系列温度测量控制仪”的上方两个传感器放置孔中的一个。将K型热电偶自由端引线插入“YL 系列温度测量控制仪”正前方面板的的“传感器”插孔中,红线为正极。 4、热电阻的安装及室温调零 将Cu50热电阻传感器探头插入加热源的另一个插孔中,尾部红色线为正端,插入实验模块的a端,其它两端相连插入b端,见图11-1,a端接电源+2V,b端与差动运算放大器的一端相接,桥路的R W1 另一端和差动运算放大器的另一端相接 (R2=50欧姆)。模块的输出V 02 与主控台数显表相连,连接好电源及地线,合上 主控台电源,调节Rw 1 ,使数显表显示为零(此时温度测量控制仪电源关闭)。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

几种无线温度传感器优劣(声表面波等)

依据测温原理的无线温度传感器分类 无线测温系统在电力系统开关柜中投入应用已有多年,而在这几年间,陆续出现了多种类型的无线温度传感器。对于究竟哪一种传感器更适合开关柜内部使用并未有一个明确标准。在此,我们对现今常见的无线温度传感器依据测温原理进行分类以及对各种类型的特点进行一次客观的阐述。 依据测温的原理,应用于开关柜无线测温的无线温度传感器主要可分为四类。一类是利用热敏电阻的温度特性接触式测温的传感器;第二类是利用半导体材料(PN结)的温度特性,接触式测温的传感器;第三类是利用红外热辐射技术,传感器采用红外探头,非接触式测温;第四类是利用压电晶体,采用声表面波技术无源接触式测温的传感器 a.热敏电阻 利用热敏电阻测温的传感器,其原理是热敏电阻的阻值会随温度的变化而改变,通过阻值的大小来反映温度。这种传感器其优点是灵敏度高(因为热敏电阻的电阻温度系数大,阻值随温度改变的变化明显)。缺点是,由于热敏电阻阻值与温度的线性关系较差,直接测量的精度低,必须通过运算补偿才能得到较准确的测量值。电阻元件易老化,使用寿命短,精度及稳定性随使用变差。其无线是体现在通讯方式上,通过传感器内部的A/D转换,将数字信号无线发送出。 b.PN结 采用PN结作为测温元件的无线温度传感器,其原理是PN结的压降随温度的变化而改变,施加恒定电流,通过输出电压的大小来反映温度。其压降与温度的关系几乎为线性,精度高,但灵敏度相对热敏电阻要低,反应时间比热敏电阻长。半导体元件不易老化,使用寿命较长,可靠性高。其无线同样是体现在通讯方式上。 c.红外热辐射 采用红外技术的无线温度传感器,测温原理与常见的红外点温枪基本类似——任何高于绝对零度的物体都在发射出辐射能,辐射能的强度与物体温度有着密切关系,传感器探测物体发出的红外辐射,将辐射能转变为电信号,通过校准运算最终得到被测物体表面的温度。数据进一步通过传输模块无线发射出。红外传感器测温反应灵敏度极高,测温范围远大于其他几种,且非接触式测温使得探头使用寿命更长,对被测点无影响。但红外测温对空间要求较高,探头与被测表面必须无任何阻挡,且探头与被测表面间距受传感器距离比率(D:S)的限制,安装部位的选择不易。 以上三类无线温度传感器一般都是由感温模块(热敏电阻、PN结或红外探头)、数模转换模块、无线射频传输模块以及电源模块(可以是电池或感应取电,本文不对供电方式作讨论或比较)组成。 d.声表面波 基于声表面波的无线温度传感器则与其他类别有较大区别。首先,其最大的特点就是传感器本身不需要电源;其次,其无线并不是仅仅体现在通讯方式上,同时也体现在测温原理上。声表面波无线温度传感器是由天线、叉指换能器、反射栅以及压电基片组成,与其他传感器截然不同。其测温的原理是,传播在压电基片表面的声表面波,其波长和波速会随基片表面或内部相关因素(包括温度)的改变而变化。由对应的接收器发出无线激励信号,信号输入传感器的压电基片激起声表面波,不同温度下,传感器输出不同的信号,信号再由接收器接收,经过调解获取温度值。声表面波传感器体积小,不需要电源,传感器成本低是其主要的优势。但正由于无源,传感器需要接收采集器发出的激励信号,这种激励信号的有效无线传输距离较短;另一方面,由于被测设备的震动产生位移,导致声表面波的相位等发生变化,测温的精度严重降低,而现在尚无较好的校准方式。

温度传感器实验报告

温度传感器实验报告文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

温度传感器实验报告 一、 实验目的: 1、了解各种电阻的特性与应用 2、了解温度传感器的基本原理与应用 二、 实验器材 传感器特性综合实验仪 温度控制单元 温度模块 万用表 导线等 三、 实验步骤 1、AD590温度特性 (1)、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来。 (2)、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来。 (3)、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a 、b 上(正端接a ,负端接b ),再将b 、d 连接起来,接成分压测量形式。 (4)、将主控箱的+5V 电源接入a 和地之间。 (5)、将d 和地与主控箱的电压表输入端相连(即测量1K 电阻两端的电压)。 (6)、开启主电源,改变温度控制器的SV 窗口的温度设置,以后每隔C 0 10设定一次,即Δt=C 0 10,读取数显表值,将结果填入下表: 由于我们使用的是AD590温度集成模块,里面已经设置有如下关系:273+t=I (t 为AD590设定温度),因此可得测量温度与设定温度对照表如下:

通过上表可清楚地看出之间的误差。 四、实验中应注意的事项 1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器。 2、采用放大电路测量时注意要调零。 3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590。 五、实验总结 从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断。传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器。

相关主题
文本预览
相关文档 最新文档