当前位置:文档之家› 10种运算放大器

10种运算放大器

10种运算放大器
10种运算放大器

10种不同类型的运算放大器介绍

一.OP07C运算放大器

OP07C是一款低失调低漂移运算放大器。生产厂家主要有德州仪器公司和AD公司。这款运算放大器具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。目前价格为1.5元/个—2元/个。

特点:

1)低噪音

2)没有外部组件要求

3)输出电压范围广. . . 0 to ±14 V Typ

4)供电电压范围广. . . ±3 V to ±18 V

5)超低偏移:150μV最大

6)低输入偏置电流:1.8nA 。

7)超稳定,时间:2μV/month最大

8)高电源电压范围:±3V至±18V

相关参数介绍:

电气特性:虚拟通道连接= ± 15V ,

二.LT1812 具有关断功能的运算放大器

LT1812是LINEAR公司生产推出的一款具有良好的DC特性的低功耗,高速率,高转换率的运算放大器。它采用具有电流反馈特性的电压反馈式电路结构,因而具有更低的电源电流,输入偏移电压和输入偏置电流及更高的DC增益,LT1812自身的关断特性使得芯片的电源电流仅为50uA,从而大大降低了功耗。主要运用于带宽放大器,缓冲器,有源滤波器,有线设备,数据采集系统及音频,射频等领域。目前报价10元/个。

特点:

1)具有100MHz 的增益带宽,且增益稳定。

2)转换速率高。

3)具有关断功能,停机模式中的电源电流为50μA

4)30ns 稳定时间至0.1%,5V 阶跃

相关参数:

工作范围:-40oC 至85oC

TA = 25°C, VS = ±5V, VCM = 2.5V 括号内为测量条件(与上表参数数值相同的省

三.LM318 高速运算放大器

LM318是一款高速单运放。生产厂家主要有德州仪器(TI)和美国国家半导体公司(NS)。LM318高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。具有高速的电压转换速率。主要运用于A/D转换器,振荡器,有源滤波器,取样与保持电路和通用放大器。目前报价为1元—3.5元/个。

特点:

1)具有较高的转换速率。

2)频率响应宽。

3)具有输入和输出过载保护。

4)具有内部频率补偿。

相关参数:

电气特性:

四.CA3140 高输入阻抗运算放大器

CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压

的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。主要运用于单电源放大器在汽车和便携式仪表,有源滤波器,比较器,采样保持放大器,长期定时器,光电仪表,探测器,TTL接口,入侵报警系统,函数发生器,音调控制,电源,便携式仪器。工作范围为-55oC—125oC。目前生产厂家主要是INTERSIL公司和HARRIS公司,报价为:2.7—3元/个。

引脚图

五.ICL7650B斩波稳零式高精度运算放大器

ICL7650是利用动态校零技术和CMOS工艺制作的斩波稳零式高精度运算放大器,它具有输入偏置电流小、失调小、增益高、共模抑制能力强、响应快、漂移低、性能稳定及价格低廉等优点。IcL7650除了具有普通运算放大器的特点和应

用范围外,还具有高增益、高共模抑制比、失调小和漂移低等特点,所以常常被用在热电偶、电阻应变电桥、电荷传感器等测量微弱信号的前置放大器中。主要的生产厂家有INterisl公司,MAXIM公司。ICL7650CSA为八引脚芯片。目前为18—20元/个。

CEXTB:外接电容CEXTB;

CEXTA:外接电容CEXTA;

CRETN:CEXTA和CEXTB的公共端;

CLAMP:箝位端;

INTCLKOUT:时钟输出端;

EXTCLKIN:时钟输入端;

时钟控制端,可通过该端选择使用内部时钟或外部时钟。当选择外部时钟时,该端接负电源端(V-),并在时钟输入端(EXTCLKIN)引入外部时钟信号。当该端开路或接V+时,电路将使用内部时钟去控制其它电路的工作。

特点:

1)不需要调节偏置电压。

2)电源电流低。

3)具有较高的共模抑制比。

4)时间漂移和温度漂移低。

5)共模电压范围广。

6)直流偏置电流低。

7)低功耗CMOS设计。

电气特性:

六.AD810A 视频运算放大器

AD810是AD公司研发的一款兼容复合视频和高清电视的电流反馈型视频运算放大器,非常适合多媒体、数字磁带机和摄像机等系统使用。0.1 dB平坦度带宽为30 MHz (G=+2),差分增益和相位误差分别为0.02%和0.04° (NTSC),使AD810成为所有广播级质量视频系统的理想之选。AD810特别适合摄像机等对功耗敏感的应用,最大电源电流低至8.0 mA。放大器不用时,禁用特性可将电源电流降至2.1 mA,以节省电力。此外,AD810的额定电源电压范围为±5 V至±15 V。AD810的单位增益带宽达到80 MHz,因而适合用作视频系统中的 ADC或DAC缓冲器。由于它是一款跨导放大器,因此可在整个增益范围内保持这种带宽性能,而其2.9 nV/√Hz的低噪声特性则适合宽动态范围。

目前价格约为18元—20元/个。

相关参数:

工作温度范围:–40°C to +85°C

七.OPA549音频大功率放大器

OPA549是一种高电压大电流功率运算放大器。它提供极好的低电平信号精度,能输出高电压,大电流,可驱动各种负载。OPA549 输出电流大(连续输出达8A),工作电压范围宽,输出电压摆幅大,有过热关闭功能,有使能及禁止功能,压摆率高。应用范围为阀门、气动执行机构驱动,同步、伺服驱动,传感器励磁,工业控制设备,测试设备,电源,音频功率放大。主要的生产公司为TI(德州仪器公司),BB公司。目前价格为130—170元/个。

最大额定值

电气参数:

八.AD8500微功耗、精密CMOS运算放大器

AD8500是一款低功耗、精密CMOS运算放大器,最大电源电流为1 μA,最大失调电压为1 mV,典型输入偏置电流为1 pA,以轨到轨输入和输出方式工作。它采用+1.8 V至+5.5 V单电源或±0.9 V至±2.75 V双电源供电。AD8500具有低功耗、低输入偏置电流以及轨到轨输入和输出特性,特别适合各种电池供电的便携式应用。潜在应用包括ECG、脉冲监控器、血糖仪、烟火探测器、振动监测仪和备用电池传感器。此外还具有轨到轨输入和输出摆幅能力,有助于采用极低电压工作的系统达到最大的动态范围和信噪比。AD8500的低失调电压特性使它可以用在高增益系统中,而不会产生过大的输出失调误差,并且能够在无需进行系统校准的情况下提供高精度操作。AD8500的额定温度范围为?40°C至+85°C工业温度范围,也可以在?40°C至+125°C扩展工业温度范围内工作,采用5引脚SC70表面贴装封装。应用于便携式设备,远程传感器,低功耗滤波器,阈值检波器,电流检测。生产厂家为AD(ANALOG DEVICES)公司。目前为22元到26元/个。

电气参数:

九.LF398 采样保持放大器

LF398是一种反馈型采样/保持放大器,也是目前较为流行的通用型采样/保持放大器,是由场效应管构成,具有采样速率高、保持电压下降慢和精度高等特点。LF398由输入缓冲级、输出驱动级和控制电路三部分组成。在采样或保持状态下输入特性不变。可与TTL,PMOS,CMOS兼容,双电源供电,电源范围宽。主要应用于峰值采样电路,12位数据采集系统,斜坡发生器,模拟开关,阶梯波发生器。目前3元—5元/个。生产厂家主要有NS公司,Linear公司,飞利浦公司。

十.LTC6915可编程增益放大器

LTC6915 是由LINEAR公司推出的一款具有数字可编程增益的零漂移精准仪表放大器。可通过一个并行或串行接口将增益设置为 0、1、2、4、

8、16、32、64、128、256、512、1024、2048 或 4096。在采用单 5V 电

源以及任何设定增益的条件下,CMRR 通常为 125dB。电压失调低于 10uV,且温度漂移小于 50nV/℃。LTC6915 采用充电平衡采样数据技术将一个差分输入电压转换成一个单端信号,随后再由一个零漂移运算放大器对该单端信号进行放大。差分输入的工作范围为轨至轨,而单端输出在轨至轨之间摆动。LTC6915 既可在低至 2.7V 的单电源应用中使用,也可在采用双±5V 电源的应用中使用。LTC6915 采用 16 引线 SSOP 封装和 12 引线

DFN 表面贴封装。主要应用于热电偶放大器,电子衡器,医疗仪器,

应变仪放大器,高分辨率数据采集。目前价格约为17.5元—25元/个。

绝对额定最大值

电气特性:V+=3V V-=0V Vref=200mv

运算放大器输出驱动能力的确定

运算放大器输出驱动能力的确定 上网时间:2007年10月23日 在电路中选择运算放大器(运放)来实现某一特定功能时,最具挑战性的选择标准之一是输出电流或负载驱动能力。运放的大多数性能参数通常都会在数据手册、性能图或应用指南中明确地给出。设计者须根据输出电流并同时参考运放的其他各类参数,以满足数据手册中所规定的产品性能。不同半导体制造商所提供的器件之间,甚至同一家制造商所提供的不同器件之间的输出电流都存在很大区别,这使得运放的设计和应用变得更加复杂。本文将通过一些实例讲解如何根据运放的性能参数对所需进行设计的电路的驱动能力进行评估,从而帮助设计者确保自己所选择的产品,在所有情况下都具有足够的负载驱动能力。 哪些因素影响驱动能力 输出驱动能力是一系列内部和外部设定值或条件的函数。输出级的偏置电流、驱动级、结构和工艺都属于内部因素。一旦选择了一种器件来实现某一特定的功能,设计者就无法再改变这些影响输出驱动能力的内部条件。大多数低功耗运放的输出驱动能力较差,其中一个原因就是它们的输出级的偏置电流较小。另一方面,高速运放通常具有较高的驱动能力,可满足高速电路的低阻要求。高速运放通常具有较高的电源工作电流,这也会提高输出驱动能力。 传统上,集成化PNP级比NPN晶体管的性能要差。在这样的工艺下,PNP输出晶体管与NPN相比,越低的β值,意味着输出驱动能力会不平衡。满摆幅输出的运放通常会将晶体管的集电极作为输出管脚,性能较差的PNP 管会导致提供源电流(source current)的能力比提供阱电流(sink current)的能力差。对于非满摆幅器件,情况恰好相反,由于大多数器件使用PNP晶体管的发射极输出,大大地影响了阱电流特性,因此它们输出阱电流的能力较差。而且,当估计器件的输出电流能力时,器件之间的性能波动也应考虑在内。因此设计者在基于"典型的"数据手册规范选择器件的同时,还必须考虑"限值"和"最小"规范,以确保所使用的每个器件在生产时都具有足够的驱动能力。 除上面所列的内部因素之外,一些外部因素也会影响驱动能力。其中一些能够被控制,以优化输出驱动能力,而其余的就很难控制。下面列出了影响输出驱动能力的外部因素:相对于相应电源电压的输出电压余量(相对于电源电压的差值);输入过驱动电压;总电源电压;直流与交流耦合负载;结温。 输出驱动能力通常以输出短路电流的形式给出。此时,制造商指定当输出接地(在单电源供电的情况下为1/2电源电压,称作"V s/2")时所能提供的电流值。制造商可能会提供两个数值,一个代表源电流(通常前面会有"+"),另一个代表阱电流(通常前面会有"-")。在负载上电压摆幅很小的应用中,输出级驱动器相对于电源电压(源电流为V+,漏电流为V-)会有很大的电压差,此时用户能够使用这一数据来有效地预测此运放的性能。试想运放带一个很大负载并且该负载被一个接近地(或在单电源情况下为V s/2)的电压驱动的情况。如果放大级的负载是逐步变化的,能向负载提供的电流将与运放数据手册中"输出短路电流"所给出的电流值一致。一旦输出开始随之改变,将发生两个情况:运放的输出电压余量减小;运放的输入过驱动电压减小。 由于前一个原因所能提供的输出电流将减小,这还与运放的设计有关,如后者中所述,过驱动电压的减小也会引起输出电流的减小。 另一种更有用的确定电流能力的方法,是使用输出电流和输出电压图。图1显示了美国国家半导体公司的 LMH6642的输出电流和输出电压图。对于大多数器件,通常会对源电流(图1a)和阱电流(图1b)这两种情况分别给出一张图。

集成运算放大器应用实验

《电路与电子学基础》实验报告 实验名称集成运算放大器应用 班级2013211XXX 学号2013211XXX 姓名XXX

实验7.1 反相比例放大器 一、实验目的 1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。 2.测定反响比例放大器输出与输入电压波形之间的相位差。 3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。 4.测定不同电平的输入信号对直流输出失调电压的影响。 二、实验器材 LM 741 运算放大器 1个 信号发生器 1台 示波器 1台 电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个 三、实验步骤 1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。 单击仿真开关运行动态分析,记录输入峰值电压 V和输出峰值电压 ip V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op 相位差。

Vip=4.9791mV Vop=498.9686mV Vof=99.37mV 相位差π 2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。 Av=-100.2 3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。 Av=-100 4.根据运放的输入失调电压 V和电压增益Av,计算反相比例运放 if 的直流输出失调电压 V。 of Vof=100mV 四、思考与分析 1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何? 计算值为-100,测量值为-100.2,基本相等,略有误差

2.输出与输入正弦电压波形之间的相位差怎样? 相位差为π 3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何? 测量值为99.37mV,计算值为100mV,基本相等,略有误差 4.步骤1中峰值输出电压占直流输出失调电压的百分之几? 500% 5.反馈电阻 R的变化对放大器的闭环电压增益有何影响? f 在R1一定的条件下,Rf越大,闭环电压增益越大 实验7.2 加法电路 一、实验目的 1.学习运放加法电路的工作原理。 2.分析直流输入加法器。 3.分析交直流输入加法器。 4.分析交流输入加法器。 二、实验器材 LM741 运算放大器 1个直流电源 2个 0~2mA毫安表 4个万用表 1个 信号发生器 1台

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

第5章 含有运算放大器的电阻电路总结

第五章 含有运算放大器的电阻电路 ◆ 重点: 1、运放的传输特性 2、比例器、加法器、减法器、跟随器等运算电路 3、含理想运放的运算电路的分析计算 ◆ 难点: 熟练计算含理想运放的电路 5.1 运放的电路模型 5.1.1 运放的符号 运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。其符号为 + u- _ o + _ 图5-1 运放的符号 在新国标中,运放及理想运放的符号分别为 图5-2 运放的新国标符号 5.1.2 运放的简介 一、同相与反相输入端 运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。其意义并不是电压的参考方向。 二、公共端 在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。有时,电路中并不画出该接地端,但计算时要注意它始终存在。

5.1.3 运放的输入输出关系 一、运放输入输出关系曲线 在运放的输入端分别同时加上输入电压+ u 和- u (即差动输入电压为d u )时,则其输 出电压u o 为 d u u o u A u u A u =-=-+)( d 图5-3 运放输入输出关系曲线 实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。 二、运放的模型 a u - u o u 图5-4 运放的电路模型 由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。 例:参见书中P140所示的反相比例器。(学生自学) 5.1.4 有关的说明 在电子技术中,运放可以用于 1.信号的运算——如比例、加法、减法、积分、微分等 2.信号的处理——如有源滤波、采样保持、电压比较等 3.波形的产生——矩形波、锯齿波、三角波等 4.信号的测量——主要用于测量信号的放大 5.2 具理想运放的电路分析 5.2.1 含理想运放的电路分析基础 所谓“理想运放”,是指图中模型的电阻R in 、R 0为零,A 为无穷大的情况。由此我们可以得出含有理想运放的电路的分析方法。根据输入输出特性,我们可以得出含有理想运放器件的电路的分析原则:

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

第5章 含有运算放大器的电阻电路

教案 课程: 电路分析基础 内容: 第五章含有运算放大器的电阻电路 课时:3学时 教师:刘岚

教学环节教学过程 复习 引入新课 讲述新课简单回顾上次课的知识点。 在第一章中我们已经学习了电阻、独立电源和受控电源这几种常见的电路元件。在这一章我们将学习一种新的电路器件。 运算放大器是电路中一种重要的多端器件,它的应用十分广泛。在这一章,我们将学习运算放大器的电路模型,运算放大器在理想化条件下的外部特性,含有理想运算放大器的电路的分析,以及一些含有运放的典型电路。 多媒体课件展示: 第五章含有运算放大器的电阻电路 一、设置悬念、激发探究 放大器是电子设备中的基本部件,在日常生活中经常看到它的应用。例如:扩音机、收音机、音响、电视机、MP3等电子产品中都有放大器。它们都能够将收到的小信号转换成人们可以听到或看到的大信号。 我们将要学习的运算放大器主要用于实现对信号的加法、减法、积分、微分等运算。在信号处理、测量及波形产生方面也获得广泛应用。 二、运算放大器的电路模型 多媒体课件展示:5.1 运算放大器的电路模型运放是一种集成电路。一般放大器的作用是把输入电压放大一定倍数后再输送出去,其输出电压与输入电压的比值称为电压放大倍数或电压增益。运放是一种高增益、高输入电阻、低输出电阻的放大器。

运放的电路模型与外部特性:多媒体课件展示。 注意点: 1. 掌握运算放大器各个端子的名称,端子电压表示方法:反相输入端-u ,同相输入端+u ,输出端o u ,这些电压都是对地的参考电 压。 2. 掌握运算放大器的电压关系:如果在运放的输入端同时加输入电压-u 和+u ,则有:d o Au u u u =-=-+)(A ,A 为运放的电压放 大倍数,d u 称为差分输入电压。 3. 掌握运放工作的三个区域:线性工作区、正向饱和区与反向饱和区。 4. 掌握运算放大器理想化的条件: (1) 输入电阻∞→i R ,则有i +=0 , i -=0。 即从输入端看进去,元件相当于开路(虚断路)。 (2) 输出电阻0R →o 。 (3)运算放大器开环放大倍数∞→A ,则由于o u 为有限值,则d u =0 ,即+u =-u ,两个输入端之间相当于短路(虚短路)。 多媒体课件展示:5.2 含运算放大器的电路分析 对含有理想运放的电路,应合理运用理想运放“虚短”和“虚断”两条规则,并结合节点电压法进行求解。 需要注意的是,在对理想运放输入端列写KCL 方程时,由于理想运放输入电流为零,故可将其视为“开路”;由于运放输出端的电流事先无法确定,故不宜对该节点列写KCL 方程。 含有运放的电阻电路分析:多媒体课件展示(例题)。

集成运放线性运算实验.(精选)

集成运放线性运算实验 一、实验目的 1、研究由集成运算放大器组成的比例、加法和减法等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 3、熟悉典型集成运放应用电路的接线和使用方法。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。 (2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路

电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2 =R 1 // R F 。 图1 反相比例运算电路 图2 反相加法运算电路 2) 反相加法电路 电路如图2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 4) 差动放大电路(减法器) 对于图3所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 )U (U R R U i1i21 F O -= 图3 减法运算电路图 i 1F O U R R U -=

2018年技能高考电气类《集成运算放大器》试题含答案

《集成运算放大器》试题 时间:60分钟总分:分班级:班命题人: 一、判断题 1.按反馈的信号极性分类,反馈可分为正反馈和负反馈。(正确) 2.负反馈使输出起到与输入相反的作用,使系统输出与系统目标的误差增大,使系统振荡。(错误) 3.若反馈信号与输入信号极性相同或变化方向同相,则两种信号混合的结果将使放大器的净输入信号大于输出信号,这种反馈叫正反馈。正反馈主要用于信号产生电路。(正确) 4.正反馈使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。(正确) 5.反馈信号与输入信号极性相反或变化方向相反,则叠加的结果将使净输入信号减弱,这种反馈叫负反馈。(正确) 6.放大电路通常采用负反馈技术。(正确) 7.负反馈的取样一般采用电流取样或电压取样。(正确) 8.反馈按取样方式的不同,分为电阻反馈和电流反馈。(错误) 9.负反馈有其独特的优点,在实际放大器中得到了广泛的应用,它改变了放大器的性能。采用负反馈使得放大器的闭环增益趋于稳定。(正确) 10.正反馈使得放大器的闭环增益趋于稳定。(错误) 11.线性运算电路中一般均引入负反馈。(正确) 12.在运算电路中,同相输入端和反相输入端均为“虚地”。(错误) 13.使净输入量减小的反馈是负反馈,否则为正反馈。(正确) 14.集成运放处于开环状态,这时集成运放工作在非线性区。(正确) 15.运算电路中一般引入正反馈。(错误) 16.集成运放只能够放大直流信号,不能放大交流信号。(错误) 17.集成运放在实际运用中一般要引入深度负反馈。(正确) 18.集成运算放大电路是一种阻容耦合的多级放大电路。(错误) 19.集成运放的“虚断”是指运放的同相输入端和反相输入端的电流趋于零,好像断路一样,但却不是真正的断路。(正确) 20.若放大电路的放大倍数为负值,则引入的反馈一定是负反馈。(错误) 21.电压负反馈稳定输出电压,电流负反馈稳定输出电流。(正确) 22.只要在放大电路中引入反馈,就一定能使其性能得到改善。(错误) 23.反相比例运算电路中集成运放反相输入端为“虚地”。(正确) 24.集成运算放大电路产生零点漂移的主要原因是晶体管参数受温度的影响。(正确) 25.实际集成运算放大电路的开环电压增益非常大,可以近似认为A=∞。(正确)26.实际集成运算放大电路的开环电压增益非常小,可以近似认为A=0。(错误) 27.“虚短”和“虚断”是分析集成运放工作在线性区的两条重要依据。(正确) 28.负反馈可以大大减少放大器在稳定状态下所产生的失真。(正确) 29.理想的差动放大电路,即能放大差模信号,也能放大共模信号。(错误) 30.由集成运放和外接电阻、电容构成比例、加减、积分和微分的运算电路工作在线性工作范围。(正确) 二、单选题 1.理想集成运放具有以下特点:(B)。 A.开环差模增益Aud=∞,差模输入电阻Rid=∞,输出电阻Ro=∞ B.开环差模增益Aud=∞,差模输入电阻Rid=∞,输出电阻Ro=0 C.开环差模增益Aud=0,差模输入电阻Rid=∞,输出电阻Ro=∞ D.开环差模增益Aud=0,差模输入电阻Rid=∞,输出电阻Ro=0 2.在输入量不变的情况下,若引入反馈后(D),则说明引入的反馈是负反馈。 A.输入电阻增大 B.输出量增大 C.净输入量增大 D.净输入量减小 3.负反馈能抑制(B)。 A.输入信号所包含的干扰和噪声 B.反馈环内的干扰和噪声 C.反馈环外的干扰和噪声 D.输出信号中的干扰和噪声 4.对于集成运算放大电路,所谓开环是指(B)。 A.无信号源 B.无反馈通路 C.无电源 D.无负载 5.对于集成运算放大电路,所谓闭环是指(D)。 A.考虑信号源内阻 B.接入负载 C.接入电源 D.存在反馈通路 6.下面关于线性集成运放说法错误的是(D)。 A.用于同相比例运算时,闭环电压放大倍数总是大于等于1。 B.一般运算电路可利用“虚短”和“虚断”的概念求出输入和输出的关系 C.在一般的模拟运算电路中往往要引入负反馈 D.在一般的模拟运算电路中,集成运放的反相输入端总为“虚地” 7.集成运放级间耦合方式是(B)。 A.变压器耦合 B.直接耦合 C.阻容耦合 D.光电耦合 8.同相比例运算电路的比例系数会(A)。 A.大于等于1 B.小于零 C.等于零 D.任意值 9.直接耦合放大器能够放大(C)。 A.只能放大直流信号 B.只能放大交流信号 C.交、直流信号都能放大 D.任何频率范围的信号都能放大 10.下面关于集成运放理想特性叙述错误的是(C)。 A.输入阻抗无穷大 B.输出阻抗等于零 C.频带宽度很小 D.开环电压放大倍数无穷大

运算放大器使用技巧

运算放大器使用技巧 一、采用哪种放大器 运算放大器基本电路有反相放大器及同相放大器,在实际使用中如何选择? 如果输入与输出要求反相,当然要采用反相放大器,若放大的是交流信号,并无相位要求则可以采用同相放大器或反相放大器。采用哪种好呢?这要根据具体情况来分析。 采用反相放大器的优点是:运放不管有无输入信号,其两输入端电位始终近似为零.两输入端之间仅有低于μV级的差动信号(或称差模信号).而同相输入放大器的两个输入端之间除有极小的差模信号外,同时还存在较大的共模电压。虽然运放有较大的共模抑制比,但多少也会因共模电压带来一些误差。同相放大器的优点是输入阻抗极高,因此输入电阻取大取小影响不大,而反相放大器的输入阻抗Zi与输入电阻Ri大小有关(输入阻抗Zi等于输人电阻Ri) 例如,输入阻抗要求100kΩ;增益要求300,则若采用反相放大器时,Ri=100kΩ,Rf=30MΩ.这样大的反馈阻值对通用运放很难正常工作了,在这种情况时,采用同相放大器更合适。 另外,还要看信号源的内阻大小。某些传感器的内阻较大,若采用输入阻抗较小的放大电路,会影响测量精度、在这种情况时采用同相放大器更为合适。 这里介绍一种既采用反相放大器,而且也不采用阻值大的反馈电阻的电路,如图1 所示这电路中的反馈电 阻Rf不直接接在输出端, 而按在由R1、R2组成分 压器的中点A。现对此电 路进行一些分析。 此电路要求输入阻抗为100KΩ,增益为-500。按一般反相放大器设计,Ri=100 K Ω,Rf=50MΩ。 A点的分压比为R1/(R1+R2)=1/500,且有R1《Rf。根据“虚短”及“虚断”原则,可以列出下式: Ii=Vi/100KΩ=If, IfRf=-VA,

2018年技能高考电气类《集成运算放大器》试题含答案

《集成运算放大器》试题 时间:60分钟 总分: 分 班级: 班 命题人: 一、判断题 1. 按反馈的信号极性分类,反馈可分为正反馈和负反馈。 (正确) 2. 负反馈使输出起到与输入相反的作用,使系统输出与系统目标的误差增大,使系统振荡。 (错误) 3. 若反馈信号与输入信号极性相同或变化方向同相,则两种信号混合的结果将使放大器的净输入信号大于输出信号,这种反馈叫正反馈。正反馈主要用于信号产生电路。(正确) 4. 正反馈使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。 (正确) 5. 反馈信号与输入信号极性相反或变化方向相反,则叠加的结果将使净输入信号减弱,这种反馈叫负反馈。(正确) 6. 放大电路通常采用负反馈技术。 (正确) 7. 负反馈的取样一般采用电流取样或电压取样。 (正确) 8. 反馈按取样方式的不同,分为电阻反馈和电流反馈。 (错误) 9. 负反馈有其独特的优点,在实际放大器中得到了广泛的应用,它改变了放大器的性能。 采用负反馈使得放大器的闭环增益趋于稳定。 (正确) 10. 正反馈使得放大器的闭环增益趋于稳定。 (错误) 11. 线性运算电路中一般均引入负反馈。 (正确) 12. 在运算电路中,同相输入端和反相输入端均为“虚地”。 (错误) 13. 使净输入量减小的反馈是负反馈,否则为正反馈。 (正确) 14. 集成运放处于开环状态,这时集成运放工作在非线性区。 (正确) 15. 运算电路中一般引入正反馈。 (错误) 16. 集成运放只能够放大直流信号,不能放大交流信号。 (错误) 17. 集成运放在实际运用中一般要引入深度负反馈。 (正确) 18. 集成运算放大电路是一种阻容耦合的多级放大电路。 (错误) 19. 集成运放的“虚断”是指运放的同相输入端和反相输入端的电流趋于零,好像断路一样,但却不是真正的断路。 (正确) 20. 若放大电路的放大倍数为负值,则引入的反馈一定是负反馈。 (错误) 21. 电压负反馈稳定输出电压,电流负反馈稳定输出电流。 (正确) 22. 只要在放大电路中引入反馈,就一定能使其性能得到改善。 (错误) 23. 反相比例运算电路中集成运放反相输入端为“虚地”。 (正确) 24. 集成运算放大电路产生零点漂移的主要原因是晶体管参数受温度的影响。 (正确) 25. 实际集成运算放大电路的开环电压增益非常大,可以近似认为A=∞。 (正确) 26. 实际集成运算放大电路的开环电压增益非常小,可以近似认为A=0。 (错误) 27. “虚短”和“虚断”是分析集成运放工作在线性区的两条重要依据。 (正确) 28. 负反馈可以大大减少放大器在稳定状态下所产生的失真。 (正确) 29. 理想的差动放大电路,即能放大差模信号,也能放大共模信号。 (错误) 30. 由集成运放和外接电阻、电容构成比例、加减、积分和微分的运算电路工作在线性工作范围。 (正确) 二、单选题 1. 理想集成运放具有以下特点:( B )。 A. 开环差模增益Aud=∞,差模输入电阻Rid=∞,输出电阻Ro=∞ B. 开环差模增益Aud=∞,差模输入电阻Rid=∞,输出电阻Ro=0 C. 开环差模增益Aud=0,差模输入电阻Rid=∞,输出电阻Ro=∞ D. 开环差模增益Aud=0,差模输入电阻Rid=∞,输出电阻Ro=0 2. 在输入量不变的情况下,若引入反馈后( D ),则说明引入的反馈是负反馈。 A. 输入电阻增大 B. 输出量增大 C. 净输入量增大 D. 净输入量减小 3. 负反馈能抑制( B )。 A. 输入信号所包含的干扰和噪声 B. 反馈环内的干扰和噪声 C. 反馈环外的干扰和噪声 D. 输出信号中的干扰和噪声 4. 对于集成运算放大电路,所谓开环是指( B )。 A. 无信号源 B. 无反馈通路 C. 无电源 D. 无负载 5. 对于集成运算放大电路,所谓闭环是指( D )。 A. 考虑信号源内阻 B. 接入负载 C. 接入电源 D. 存在反馈通路 6. 下面关于线性集成运放说法错误的是( D )。 A. 用于同相比例运算时,闭环电压放大倍数总是大于等于1 。 B. 一般运算电路可利用“虚短”和“虚断”的概念求出输入和输出的关系 C. 在一般的模拟运算电路中往往要引入负反馈 D. 在一般的模拟运算电路中,集成运放的反相输入端总为“虚地” 7. 集成运放级间耦合方式是( B ) 。 A. 变压器耦合 B. 直接耦合 C. 阻容耦合 D. 光电耦合 8. 同相比例运算电路的比例系数会( A )。 A. 大于等于1 B. 小于零 C. 等于零 D. 任意值 9. 直接耦合放大器能够放大( C )。 A. 只能放大直流信号 B. 只能放大交流信号 C. 交、直流信号都能放大 D. 任何频率范围的信号都能放大 10. 下面关于集成运放理想特性叙述错误的是( C )。 A. 输入阻抗无穷大 B. 输出阻抗等于零 C. 频带宽度很小 D. 开环电压放大倍数无穷大 姓名: 考号: 班级:

运算放大器的工作原理

运算放大器的工作原理 放大器的作用:1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

运放基本计算

第五章 含运算放大器的电路的分析 ◆ 重点: 1、运放的传输特性 2、比例器、加法器、减法器、跟随器等运算电路 3、含理想运放的运算电路的分析计算 ◆ 难点: 1、熟练计算含理想运放的思路 5.1 运放的电路模型 5.1.1 运放的符号 运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。其符号为 + u- _ o + _ 图5-1 运放的符号 在新国标中,运放及理想运放的符号分别为 图5-2 运放的新国标符号 5.1.2 运放的简介 一、同相与反相输入端 运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。其意义并不是电压的参考方向。 二、公共端 在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。有时,电路中并不画出该接地端,但计算时要注意它始终存在。

5.1.3运放的输入输出关系 一、运放输入输出关系曲线 在运放的输入端分别同时加上输入电压+u和-u(即差动输入电压为 d u)时,则其输出电压u o为 u o u A u u A u= - =- +) ( d 图5-3 运放输入输出关系曲线 实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。 二、运放的模型 a u- u o u 图5-4 运放的电路模型 由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。 例:参见书中P140所示的反相比例器。(学生自学) 5.1.4有关的说明 在电子技术中,运放可以用于 1.信号的运算——如比例、加法、减法、积分、微分等 2.信号的处理——如有源滤波、采样保持、电压比较等 3.波形的产生——矩形波、锯齿波、三角波等 4.信号的测量——主要用于测量信号的放大 5.2 具理想运放的电路分析 5.2.1 含理想运放的电路分析基础 所谓“理想运放”,是指图中模型的电阻R in、R0为零,A为无穷大的情况。由此我们可以得出含有理想运放的电路的分析方法。根据输入输出特性,我们可以得出含有理想运放器件的电路的分析原则: 虚短——由于理想运放的线性段放大倍数为无穷大,即从理论上说,要运放工作在线性区域,运放的输入电压应该无穷小,可见工作在线性区的理想运放的输入端电压近似为零,也就是说,输

运算放大电路实验报告

北京邮电大学 实验报告 课程名称:电子电路基础 实验名称:集成运算放大器的运用 通信工程系23班姓名:郭奥 教师:魏学军成绩: 2011年11月28日

一:实验目的 1.研究有集成运算放大器组成的比例,加法,减法,和积分等基本运算电路功能 2.了解运算放大器在实际应用时应考虑的一些问题 3.提高独立设计和独立完成实验的能力 二:实验器材

三:预习思考题 1. 本实验哪些电路需要调零?若需要如何操作? 所有需要放大含有直流分量的应用场合,都必须进行调零,即对运放本身(主要是差动输入级)的失调进行补偿,以保证运放闭环工作时,输入为零时输出也为零。操作时分两种情况: ① 有的运放已有引出的补偿端,只需按照器件手册的规定接入调零电路即可。 ② 对于没有设调零端的运放,可将电路的输入端接地,用万用表直流电压档或示波器的DC 耦合档接在电路的输出端,调节电位器,使输出为零。 2. 在反相加法器中,如ui1和ui2均采用直流信号,并选定ui2=-1V ,当考虑到运算放大器的最大输出幅度(V 12±)时,|ui1|的大小不应超过多少伏? 答:2/)2(1uo ui ui --=故|ui1|max=6.5V 3. 在积分电路中,如F C k R μ7.4,1001=Ω=,求时间常数。 假设ui=0.5V,问要使输出电压uo 达到5V ,需要多长时间? 答:47.0*1==C R τ)0(1)(0uc uidt RC t uo t +-=?t=4.7s 4. 为了不损坏集成芯片,试验中要注意什么问题? 答:切记正、负电源极性接反和输出端短路。

四:实验电路图: 反相比例运算电路 反相加法运算电路 积分运算电路五:实验步骤:

运算放大器参数

一、增益带宽积 英文:Gain Bandwidth Product。 缩写:GBP,GBWP, GBW or GB。 增益带宽积是用来简单衡量放大器的性能的一个参数。就像它的名字一样,这个参数表示增益和带宽的乘积。在频率足够大的时候,增益带宽积是一个常数。 举例说明:假设运算放大器的增益带宽积为1 MHz,它意味着当频率为1 Mhz时,器件的增益下降到单位增益。即此时A=1。同时说明这个放大器最高可以以1 MHz的频率工作而不至于使输入信号失真。由于增益与频率的乘积是确定的,因此当同一器件需要得到10倍增益时,它最高只能够以100 kHz的频率工作。 二、单位增益带宽 单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个频率可变恒幅正弦小信号输入到运放的输入端,随着输入信号频率不断变大,输出信号增益将不断减小,当从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)时,所对应的信号频率乘以闭环放大倍数1所得的增益带宽积。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 单位增益带宽, 电压增益为1 时的带宽. 有的文件称为"带宽增益乘积" GBW, 可以用来 估算你的放大器电路带宽. 如ICL76XX 的GBW=44KHz, 当接成电压跟随器G=1 时 BW=44KHz, 而接成正反相运算电路G=10 时, BW=4.4KHz. 三、电源抑制比 Power Supply Rejection Ratio 电源抑制比(PSRR)是输入电源变化量(以伏为单位)与转换器输出变化量(以伏为单位)的比值,常用分贝表示。对于高质量的D/A转换器,要求开关电路及运算放大器所用的电源电压发生变化时,对输出的电压影响极小。通常把满量程电压变化的百分数与电源电压变化的百分数之比称为电源抑制比。 四、输入失调电压 失调电压,又称输入失调电压,Input Offset Voltage, 记为U1,一个理想的运放,当输入电压为0时,输出电压也应为0。但实际上它的差分输入级很难做到完全对称。通常在输入电压为0时,存在一定的输出电压。 解释一:在室温25℃及标准电源电压下,输入电压为0时,为使输出电压为0,在输入端加的补偿电压叫做失调电压。 解释二:输入电压为0时,输出电压Vo折合到输入端的电压的负值,即VIO=- VO|VI=0/AVO 输入失调电压反映了电路的对称程度,其值一般为±1~10mV 五、开环增益 OPEN-LOOP gain 在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,简称AVOL。AVOL的理想值为无限大,一般约为数千倍至数万倍之间,其表示法有使用dB及V/mV等,例如μA741C及LM318的AVOL典型值均为200V/mV或106dB。 六、全功率带宽

相关主题
文本预览
相关文档 最新文档