当前位置:文档之家› 实际生活中的几何光学

实际生活中的几何光学

光学设计作业答案Word版

现代光学设计作业 学号:2220110114 姓名:田训卿

一、光学系统像质评价方法 (2) 1.1 几何像差 (2) 1.1.1 光学系统的色差 (3) 1.1.2 轴上像点的单色像差─球差 (4) 1.1.3 轴外像点的单色像差 (5) 1.1.4 正弦差、像散、畸变 (7) 1.2 垂直像差 (7) 二、光学自动设计原理9 2.1 阻尼最小二乘法光学自动设计程序 (9) 2.2 适应法光学自动设计程序 (11) 三、ZEMAX光学设计.13 3.1 望远镜物镜设计 (13) 3.2 目镜设计 (17) 四、照相物镜设计 (22) 五、变焦系统设计 (26)

一、光学系统像质评价方法 所谓像差就是光学系统所成的实际像和理想像之间的差异。由于一个光学系统不可能理想成像,因此就存在光学系统成像质量优劣的问题,从不同的角度出发会得出不同的像质评价指标。 (1)光学系统实际制造完成后对其进行实际测量 ?星点检验 ?分辨率检验 (2)设计阶段的评价方法 ?几何光学方法:几何像差、波像差、点列图、几何光学传递函数 ?物理光学方法:点扩散函数、相对中心光强、物理光学传递函数 下面就几种典型的评价方法进行说明。 1.1 几何像差 几何像差的分类如图1-1所示。 图1-1 几何像差的分类

1.1.1 光学系统的色差 光波实际上是波长为400~760nm 的电磁波。光学系统中的介质对不同波长光的折射率不同的。如图1-2,薄透镜的焦距公式为 ()'121111n f r r ??=-- ??? (1-1) 因为折射率n 随波长的不同而改变,因此焦距也要随着波长的不同而改变, 这样,当对无限远的轴上物体成像时,不同颜色光线所成像的位置也就不同。我们把不同颜色光线理想像点位置之差称为近轴位置色差,通常用C 和F 两种波长光线的理想像平面间的距离来表示近轴位置色差,也成为近轴轴向色差。若l ′F 和l ′c 分别表示F 与C 两种波长光线的近轴像距,则近轴轴向色差为 '''FC F C l l l ?=- (1-2) 图1-2 单透镜对无限远轴上物点白光成像 当焦距'f 随波长改变时,像高'y 也随之改变,不同颜色光线所成的像高也不 一样。这种像的大小的差异称为垂轴色差,它代表不同颜色光线的主光线和同一基准像面交点高度(即实际像高)之差。通常这个基准像面选定为中心波长的理 想像平面。若'ZF y 和'ZC y 分别表示F 和C 两种波长光线的主光线在D 光理想像平面 上的交点高度,则垂轴色差为 '''FC ZF ZC y y y ?=- (1-3)

几何光学像差光学设计部分习题详解

1.人眼的角膜可认为是一曲率半径r=7.8mm的折射球面,其后是n=4/3的液体。 如果看起来瞳孔在角膜后3.6mm处,且直径为4mm,求瞳孔的实际位置和直径。 2.在夹锐角的双平面镜系统前,可看见自己的两个像。当增大夹角时,二像互相靠拢。设人站在二平面镜交线前2m处时,正好见到自己脸孔的两个像互相接触,设脸的宽度为156mm,求此时二平面镜的夹角为多少? 3、夹角为35度的双平面镜系统,当光线以多大的入射角入射于一平面镜时,其反射光线再经另一平面镜反射后,将沿原光路反向射出?

4、有一双平面镜系统,光线以与其中的一个镜面平行入射,经两次反射后,出射光线与另一镜面平行,问二平面镜的夹角为多少? 5、一平面朝前的平凸透镜对垂直入射的平行光束会聚于透镜后480mm处。如此透镜凸面为镀铝的反射面,则使平行光束会聚于透镜前80mm处。求透镜的折射率和凸面的曲率半径(计算时透镜的厚度忽略不计)。解题关键:反射后还要经过平面折射

6、人眼可简化成一曲率半径为5.6mm的单个折射球面,其像方折射率为4/3,求远处对眼睛张角为1度的物体在视网膜上所成像的大小。 7、一个折反射系统,以任何方向入射并充满透镜的平行光束,经系统后,其出射的光束仍为充满透镜的平行光束,并且当物面与透镜重合时,其像面也与之重合。试问此折反射系统最简单的结构是怎样的。。

8、一块厚度为15mm的平凸透镜放在报纸上,当平面朝上时,报纸上文字的虚像在平面下10mm处。当凸面朝上时,像的放大率为β=3。求透镜的折射率和凸面的曲率半径。 9、有一望远镜,其物镜由正、负分离的二个薄透镜组成,已知f1’=500mm, f2’=-400mm, d=300mm,求其焦距。若用此望远镜观察前方200m处的物体时,仅用第二个负透镜来调焦以使像仍位于物镜的原始焦平面位置上,问该镜组应向什么方向移动多少距离,此时物镜的焦距为多少?

几何光学基础教材

几何光学基础 可见光,指那引起视觉的电磁波,这部分电磁波的波长范围约770-390纳米之间。光具有波粒二象性,它有时表现为波动,有时也表现为粒子(光子)的线形运动。几何光学就是以光的直线传播性质及光的反射和折射规律为基础,用数学方法研究光传播问题的学科。 几何光学研究的对象为光学仪器,研究一般光学仪器(透镜,凌镜,显微镜,望远镜,照相机)成像与消灭像差的问题,研究特种光学仪器(光谱仪,测距仪)的设计原理。本章仅就几何光学中光线及其传播规律问题做一介绍。 1.光线及光线的种类 在均匀介质中呈直线传播的光,就是光线。就光的传播而言在均匀介质中是呈直线传播的;从其本身而言,均匀均匀介质中的光为一直线。 自发光点发出许多光线,我们任意取围绕一个线传播的一束光线,这一束光线就叫光束。 1.散开光线。又称作发散光线 任何发光点发出光线都是发散的,这些光线总是表现在一定的空间,总是在一定的限度内表现为空间的物理现象,从发光点射向某一方向的光总是以发光点为顶点的锥体向外传播,沿锥体向外传播的光束称为散发光束,常称为发散光线。 人们为了便于理解,又把这立体图形简化为平面图形,但在理解知识的时后,我们应该时时意设到,光是在空间意义上的光。 2.平行光线 由任何一点发出的光束,经过光学仪器后,光束中的光线的相对方 位改变为无相平行,成为平行光束,即平行光线。平行光线产生见 图1。

图1 通常所说的平行光线是就另外的意义而言,任何光源所发出的光线,如果光距越大,就越趋于平行,当光距无限大时,即可视为平行,这种光线就称为平行光线。 在眼屈光学中,对光线的性质又作了人为的规定,并约定:5米及5米以外射来的光线,虽有发散性质,但同平行光线对眼生理光学的影响,差异实在微乎其微,故约定二者均为平行光线。那么,5米以内光源发出的光线即为发散光线。 三.集合光线,又称会聚光线 光源发出的平行光线,由一凹面镜发射(图2)或一凸透镜屈析(图 3)而产生的光线,就称为集合光线。 图2 图3 几何光学的基本定律 直线传播定律,反射定律和折射定律是几何光学中的三个基本定律,是几何光学全部内容的基础,是眼屈光学的基础。临床上使用的各种眼科检查仪器都同透镜、反射镜、棱镜的应用密切相关。眼镜行业更是如此,可以说这一行业的工作,每时每刻都离不开光,每时每刻都离不开几何光学。离开光,离开几何光学就没有眼镜行业。更不会有眼镜行业的发展。所以,学习几何光学对眼镜行业的各类从业人员来说是十分重要的,掌握几何光学的基本理论是保持眼镜行业高质量。高标准服务的根本保证。 为了知识的科学性和一致性,人们对于光学中的距离、高度、角度的正负和光的方向作了规定,常用规则如下: 1.光线均假定从左向右而行 2.距离计算 (1)物距、像距、焦距、曲率半径都从折射面或反射面起计算; (2)与入射交线方向一致为正,与入射光线方向相反为负 (3)焦物距(z)、焦像距(z',)各从物侧主焦点像则主焦点起计算.正负号规则同前。 3.高度计界

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

照相物镜镜头设计与像差分析

应用光学课程设计课题名称:照相物镜镜头设计与像差分析

专业班级:2009级光通信技术 学生学号: 学生姓名: 学生成绩: 指导教师: 课题工作时间:2011.6.20 至2011.7.1 武汉工程大学教务处

课程设计摘要(中文) 在光学工程软件ZEMAX 的辅助下, 配套采用大小为1/2.5英寸的CCD 图像传感器, 设计了一组焦距f '= 12mm的照相物镜, 镜头视场角33.32°, 相对孔径D/f’=2. 8, 半像高3.6 mm ,后工作距9.880mm,镜头总长为14.360mm。使用后置光阑三片物镜结构,其中第六面采用非球面塑料,其余面采用标准球面玻璃。该组透镜在可见光波段设计,在Y-field上的真值高度选取0、1.08、1.8、2.5452,总畸变不超过0.46%,在所选视场内MTF 轴上超过60%@100lp/mm,轴外超过48%@100lp/mm,整个系统球差-0.000226,慧差-0.003843,像散0.000332。完全满足设计要求。 关键词:ZEMAX;物镜;调制传递函数 ABSTRACT By the aid of optical engineering software ZEMAX,A focal length f '= 12mm camera lens matched with one CCD of 1/2.5 inch was designed。Whose FOV is 33.32°, Aperture is 2. 8,half image height is 3.6 mm,back working distance is9.880mm and total length is 14.360 mm. Using the rear aperture three-lens structure,a aspherical plastic was used for the sixth lens while standard Sphere glasses were used for the rest lenses。The group Objective lenses Designed for the visible light,Heights in the true value as Y-field Defined as 0、1.08、1.8、2.5452,total distortion is less than 0.41%,Modulation transfer function of shade in the selected field of view to meet the axis is

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

平面几何四大定理

平面几何四大定理 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Me nelau s)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R,则P、Q 、R共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Pto lemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(S imso n)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△A BC的边BC 上的中线,直线CF 交AD 于F 。求 证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F,交CB 于

平面几何四大定理 D 。 求证: 1FA CF EA BE =+。 【分析】连结并延长AG 交BC 于M,则M为BC 的中点。 DEG 截△AB M→1DB MD GM AG EA BE =??(梅氏定理) D GF 截△AC M→1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE + =MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、C A、AB 边上, λ===EA CE FB AF DC BD ,A D、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△B CE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C。求证:AC 2=AB 2+AB ·B C。

几何光学的基础知识 人教版

几何光学的基础知识 一. 本周教学内容 几何光学的基础知识 主要学习光的反射,光的折射,全反射和光的色散。 本章内容是学习下一章内容的基础。从原则上讲知道了光在同一种均匀介质中和在两种介质分界面处传播的规律就可以说知道了光在介质中的传播规律。 二. 单元划分 第一单元:§1光的直线传播 第二单元:§2—3 光的折射和全反射 第三单元:§4 棱镜和光的色散 §1 光的直线传播 (一)教学目的 知道什么是光源;知道光在同一种均匀介质中沿直线传播;知道光在真空中的传播速度。 (二)教学内容 1. 光源:能够自行发光的物体叫光源 光源的特点:光源具有能量 光源本身进行能量转化,是把其他形式的能量转化为光能的装置,光在介质中的传播就是能量的传播。 2. 光的直线传播 (1)介质:光能够在其中传播的物质称为介质 (2)光在同一均匀介质中沿直线传播 (3)光线:在研究光的传播方向时,常用一条带箭头的直线表示光的行进方向,这种直线称为光线。

(二)教学内容 2 1 sin θ* 在折射现象中,光路也是可逆的。 3. 绝对折射率、相对折射率 (1)折射率 对于不同的介质 n =2 1 sin sin θθ(常数)一般不同 表明这一比值与介质有关 它反映了不同介质的光学性质是不同的,或者说不同介质的折光本领不同。 光从真空射入某种介质发生折射时,入射角1θ的正弦跟折射角2θ的正弦之比n 称为这种介质的折射

率。 (2)绝对折射率和相对折射率 光从介质1射入介质2时,入射角1θ与折射角2θ的正弦之比叫做介质2对介质1的相对折射率,即21n 若 OB OA OB OB AB H h -== ∴ vt h H H OA h H H OB ?-=?-= 可见,人头部的影子做速度为 v h H H -的匀速直线运动 ∴ 正确答案A 【模拟试题】

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

第01章 几何光学的基本概念和基本定律

2.解:由v c n =得: 光在水中的传播速度:)/(25.2333 .1)/(1038s m s m n c v =?==水水 光在玻璃中的传播速度:)/(818.165 .1)/(1038s m s m n c v =?==玻璃玻璃 3.一高度为1.7米的人立于离高度为5米的路灯(设为点光源)1.5米处,求其影子长度。 解:根据光的直线传播。设其影子长度为x ,则有 x x +=5.157.1可得x =0.773米 4.一针孔照相机对一物体于屏上形成一60毫米高的像。若将屏拉远50毫米,则像的高度为70毫米。试求针孔到屏间的原始距离。 解:根据光的直线传播,设针孔到屏间的原始距离为x ,则有 x x 605070=+可得x =300(毫米) 5. 有一光线以60°的入射角入射于的磨光玻璃球的任一点上, 其折射光线继续传播到球表面的另一点上,试求在该点反射和折射的光线间的夹角。 解:根据光的反射定律得反射角''I =60°,而有折射定律I n I n sin sin ' '=可得到折射角'I =30°,有几何关系可得该店反射和折射的光线间的夹角为90°。 6、若水面下200mm 处有一发光点,我们在水面上能看到被该发光点照亮的范围(圆直径)有多大? 解:已知水的折射率为 1.333,。由全反射的知识知光从水中到空气中传播时临界角为: n n m I 'sin ==333 .11=0.75,可得m I =48.59°,m I tan =1.13389,由几何关系可得被该发光点照亮的范围(圆直径)是2*200*1.13389=453.6(mm)

7、入射到折射率为 的等直角棱镜的一束会聚光束(见图1-3), 若要求在斜面上 发生全反射,试求光束的最大孔径角 解:当会聚光入射到直角棱镜上时,对孔径角有一定的限制,超过这个限制,就不会 发生全反射了。 由n I m 1sin =,得临界角 26.41=m I 得从直角边出射时,入射角 74.34590180=---=m I i 由折射定律 n U i 1sin sin =,得 5.68U =即 11.362U =

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

几何光学.像差.光学设计浙大出版社第二版_部分习题详解

几何光学.像差.光学设计部分习题详解 1.人眼的角膜可认为是一曲率半径r=7.8mm的折射球面,其后是n=4/3的液体。 如果看起来瞳孔在角膜后3.6mm处,且直径为4mm,求瞳孔的实际位置和直径。 2.在夹锐角的双平面镜系统前,可看见自己的两个像。当增大夹角时,二像互相靠拢。设人站在二平面镜交线前2m处时,正好见到自己脸孔的两个像互相接触,设脸的宽度为156mm,求此时二平面镜的夹角为多少? 3、夹角为35度的双平面镜系统,当光线以多大的入射角入射于一平面镜时,其反射光线再经另一平面镜反射后,将沿原光路反向射出? 4、有一双平面镜系统,光线以与其中的一个镜面平行入射,经两次反射后,出射光线与另一镜面平行,问二平面镜的夹角为多少?

5、一平面朝前的平凸透镜对垂直入射的平行光束会聚于透镜后480mm处。如此透镜凸面为镀铝的反射面,则使平行光束会聚于透镜前80mm处。求透镜的折射率和凸面的曲率半径(计算时透镜的厚度忽略不计)。解题关键:反射后还要经过平面折射 6、人眼可简化成一曲率半径为5.6mm的单个折射球面,其像方折射率为4/3,求远处对眼睛张角为1度的物体在视网膜上所成像的大小。 7、一个折反射系统,以任何方向入射并充满透镜的平行光束,经系统后,其出射的光束仍为充满透镜的平行光束,并且当物面与透镜重合时,其像面也与之重合。试问此折反射系统最简单的结构是怎样的。。 8、一块厚度为15mm的平凸透镜放在报纸上,当平面朝上时,报纸上文字的虚像在平面下10mm处。当凸面朝上时,像的放大率为β=3。求透镜的折射率和凸面的曲率半径。

9、有一望远镜,其物镜由正、负分离的二个薄透镜组成,已知f1’=500mm, f2’=-400mm, d=300mm,求其焦距。若用此望远镜观察前方200m处的物体时,仅用第二个负透镜来调焦以使像仍位于物镜的原始焦平面位置上,问该镜组应向什么方向移动多少距离,此时物镜的焦距为多少? 10、已知二薄光组组合,f’=1000,总长(第一光组到系统像方焦点的距离)L=700,总焦点位置lF’=400, 求组成该系统的二光组焦距及其间隔。

平面几何定理及公式

平面几何定理及公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360°

高中平面几何定理

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去 这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 222 2 2 a c b m a -+= . 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2=== ---= . 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2 cos 2)(2A c b b c a p bcp c b t a += -+=(其中p 为周长一半). 6. 正弦定理: R C c B b A a 2sin sin sin === ,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+ ∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向 一边作垂线,其延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2 就是点P 对 于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一 点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即 AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的 距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三 角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马

第一章 几何光学基本定律

第一章 几何光学基本定律 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公 式: 会聚点位于第二面后15mm处。 (2)将第一面镀膜,就相当于凸面镜 像位于第一面的右侧,只是延 长线的交点,因此是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像第二面镀膜,则:

十大高中平面几何几何定理汇总及证明

高中平面几何定理汇总及证明 1.共边比例定理 有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM. 证明:分如下四种情况,分别作三角形高,由相似三角形可证 S△PAB=(S△PAM-S△PMB) =(S△PAM/S△PMB-1)×S△PMB =(AM/BM-1)×S△PMB(等高底共线,面积比=底长比) 同理,S△QAB=(AM/BM-1)×S△QMB 所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM(等高底共线,面积比=底长比) 定理得证! 特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ。 2.正弦定理 在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=R(r为外接圆半径,R为直径) 证明: 现将△ABC,做其外接圆,设圆心为O。我们考虑∠C及其对边 AB。设AB长度为c。 若∠C为直角,则AB就是⊙O的直径,即c= 2r。 ∵(特殊角正弦函数值) ∴ 若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A, 显然BC'= 2r=R。 若∠C为锐角,则C'与C落于AB的同侧, 此时∠C'=∠C(同弧所对的圆周角相等) ∴在Rt△ABC'中有 若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出。 考虑同一个三角形内的三个角及三条边,同理,分别列式可得 。

在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD, 则有BD/CD=(sin∠BAD/sin∠CAD)*(AB/AC)。 证明: S△ABD/S△ACD=BD/CD………… (1.1) S△ABD/S△ACD=[(1/2)×AB×AD×sin∠BAD]/[(1/2) ×AC×AD×sin∠CAD] = (sin∠BAD/sin∠CAD) ×(AB/AC) …………(1.2) 由1.1式和1.2式得 BD/CD=(sin∠BAD/sin∠CAD) ×(AB/AC) 4.张角定理 在△ABC中,D是BC上的一点,连结AD。那么∠∠∠。 证明: 设∠1=∠BAD,∠2=∠CAD 由分角定理, S△ABD/S△ABC=BD/BC=(AD/AC)*(sin∠1/sin∠BAC) → (BD/BC)*(sin∠BAC/AD)=sin∠1/AC (1.1) S△ACD/S△ABC=CD/BC=(AD/AB)*(sin∠2/sin∠BAC) → (CD/BC)*(sin∠BAC/AD)=sin∠2/AB (1.2) (1.1)式+(1.2)式即得sin∠1/AC+sin∠2/AB=sin∠BAC/AD 5.帕普斯定理 直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD交于G,AF,DC交于I,BF,EC交于H,则G,I,H共线。

相关主题
文本预览
相关文档 最新文档