当前位置:文档之家› 盾构机常用英语词汇 (基于以色列特拉维夫红线轻轨项目,海瑞克S1026 S1027盾构机)

盾构机常用英语词汇 (基于以色列特拉维夫红线轻轨项目,海瑞克S1026 S1027盾构机)

盾构机常用英语词汇    (基于以色列特拉维夫红线轻轨项目,海瑞克S1026 S1027盾构机)
盾构机常用英语词汇    (基于以色列特拉维夫红线轻轨项目,海瑞克S1026 S1027盾构机)

盾构机常?用英语词汇(基于海?瑞克S1026 S1027盾构机,以?色列列特拉维夫红线轻轨项?目;整理理:项?目?首席翻译 Chuck Li)英?文中?文备注

1TBM盾构机Tunnel Boring Machine, 国内?一帮把软?土TBM称盾构

机,硬岩掘进机称TBM

2EPB Shield ?土压平衡式盾构机EPB=Earth Pressure Balance

3Steel Construction Shield 钢结构盾体

4Front Shield 前盾

5hardfacing耐磨堆焊有时也叫 Hardfacing weld

6articulation joint 铰接连接

7Center Shield/Middle Shield中盾

8Tailskin 盾尾

9Back-up后配套盾构机的后配套系统,包括注浆、油脂、泡沫等系统10Installed power 装机功率

11Theoretical thrust speed 理理论推进速度

12Correction Curve Radius 盾构机的转弯半径最?小转弯半径

13thrust cylinders 主推进油缸

14shield articulation cylinders 盾构机中盾铰接油缸主动铰接油缸

15Tailskin articulation cylinders盾构机盾尾铰接油缸被动铰接油缸

16stroke 油缸?行行程

17Nominal thrust force 额定推?力力

18screw conveyor 螺旋输送机

19torque扭矩

20breakaway torque 起步扭矩(转动扭矩)

21Erector管?片拼装机

22precast concrete segment 混凝?土预制管?片

23grabbing system抓举系统

24driveway?行行程

25Rotational speed 转动速度

26rotary angle 转动?角度

27steel construction cutting wheel钢结构?刀盘

28open ratio开?口率

29disc cutter 滚?刀

30overcutter 超挖?刀

31track pitch 滚?刀轨距

32Ripper撕裂?刀

33bucket周边刮?刀

34wear detection 磨损探测

35sensor传感器?物性传感器?(压?力力、流量量、液位)等

36transducer 传感器?结构型传感器?(涉及信号转换)

37Main drive 主驱动

38Motor电机

39hydraulic system 液压系统

序号

40cooling water circuit

冷却?水?水路路41hose drum ?水管盘42Foam Installations 泡沫装置43foam generator 泡沫发?生器?44Pneumatic system

?气动系统45compressed-air regulating system

?高压?风调节系统46safety installations

安全装置47detector 探测器?48fire extinguisher 灭?火器?49water curtain

?水幕50aerosol extinguishing system

?气溶胶灭?火系统

51rescue chamber 救援舱52primary voltage 主电压53secondary voltage ?二级电压 54emergency generator 应急发电机55Excavated materials

渣?土56belt conveyor ?皮带输送机57conveyance rate 出?土速度58Segment feeder

喂?片机59crane system and lifting device

起重系统和起吊装置

60Material crane 材料料吊机61Telescopic crane 伸缩吊机62pivot crane 旋转吊机63

segment crane

管?片吊机

英?文

中?文备注

序号

盾构主要参数的计算和确定

盾构主要参数的计算和确定 1、盾构外径: 盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t) 盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm; 结合五标地质取多少? 2、刀盘开挖直径: 软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的? 3、盾壳长度 盾壳长度L=盾构灵敏度ξx盾构外径D 小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2; 大型盾构D>9M;ξ=0.7—0.8; 4、盾构重量 泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷? 5、盾构推力 盾构总推力F e=安全储备系数AX盾构推进总阻力F d 安全储备系数A---一般取1.5---2.0。 盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+ 切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6 盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的? 刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的? 管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定? 计算中土压力计算是按郎肯土压公式或库仑土压计算? 6、刀盘扭矩 刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋 转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘 背面摩擦力矩T7+刀盘开口槽的剪切力矩T8 刀盘切削扭矩T1中的切削土的抗压强度q u如何确定? 刀盘轴向推力形成的旋转反力矩T3 计算中土压力计算是按郎肯土压公式或库仑土压计算? , 刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算? 刀盘背面摩擦力矩T7中土仓压力P W如何确定? 7、主驱动功率 主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定? 8、推进系统功率 推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW 功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定? 推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率 9、同步注浆能力 每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L 推进一环的最短时间t=管片长度L/最大推进速度v 理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t 额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η 地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构掘进主要参数计算方式

目录 1、纵坡 (1) 2、土压平衡盾构施工土压力的设置方法 (1) 2.1深埋隧道土压计算 (3) 2.2浅埋隧道的土压计算 (3) 2.2.1主动土压力与被动土压力 (3) 2.2.2主动土压力与被动土压力计算: (4) 2.3地下水压力计算 (4) 2.4案例题 (5) 2.4.1施工实例1 (5) 2.4.2施工实例2 (7) 3、盾构推力计算 (9) 4、盾构的扭矩计算 (9) 1、纵坡 隧道纵坡:隧道底板两点间数值距离除以水平距离 如图所示:隧道纵坡=(200-100)/500=2‰ 注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0% 2、土压平衡盾构施工土压力的设置方法 根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:

a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋); b、根据判断的隧道类型初步计算出地层的竖向压力; c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力; d、根据隧道所处的地层以及施工状态,确定地层水压力; e、根据不同的施工环境、施工条件及施工经验,考虑0.010~0.020Mpa 的压力值作为调整值来修正施工土压力; f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中, σ初步设定-初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力-地层水压力; σ调整--修正施工土压力。 g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中; h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

海瑞克φ8800mm土压平衡盾构机参数书讲解

TABLE OF CONTENTS TECHNICAL DATA E D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 1 D O C U M E N T : 7686-001 II. Technical Data 1. Tunnel boring machine general. . . . . . . . . . . . . . . . . . . . . . . . . .II - 3 1.1Tunnel boring machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.2Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.3Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 4 2. Shield general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 5 2.1Steel construction shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.2Tailskin articulation cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.3Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.4Man lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 62.5Screw conveyor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 6 3. Cutting wheel general. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 7 3.1Steel construction cutting wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 7 4. Drive general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 8

海瑞克盾构选型

1.1盾构机选型 综合本区间隧道工程地质、水文、线路、方向控制、地表沉降、工期和环保要求,类似工程盾构选型经验,结合苏州以往盾构使用情况,根据《盾构法隧道工程施工及验收规程》,土压平衡盾构对于淤泥质粘土、粉质粉土、砂质粉土、粘土层对地层的适应性,通过盾构配备加膨润土、泡沫及水装置,可取得良好效果。因此在本区间隧道工程施工中拟选 1.2盾构机来源 拟将采用两台日本株式会社小松制作所生产的TM634PSX加泥式土压平衡盾构机用于本标段的施工,全部来源于新购置。 1.3盾构机供应方案和工程适应性的描述 1.3.1 土层的适应性能 (1)刀盘结构是针对苏州长三角淤泥质粘土、粉质粘土、砂质粉土、粘土地质条件设计的,采用面板式刀盘,开口率为40%。提高开挖效率,使碴土顺利从切削面流入土舱内。刀盘结构见图1-1。在维修时刀盘面板对土体有一定的支护作用,便于土压力平衡。 (2)刀盘采用中间支承式结构,设置有固定搅拌翼和随刀盘转动的搅拌翼,对土舱中的碴土进行强制搅拌,尤其在本工程中有各种地层且相互交错,对切削下来的碴土需要进行搅拌,使碴土具有塑性,并防止土体的滞留和粘附,盾构机刀盘设有中心刀1把,切刀120把,刮刀18把,超挖刀2把,能够确保施工的进度。 (3)刀盘、土舱及螺旋输送机有泡沫、膨润土及水注入系统,通过刀盘和

搅拌翼把注入在开挖面的添加剂与切削下来的碴土在土舱中进行充分搅拌。对于开挖不同的地层,可通过控制泡沫、膨润土或水的注入量,有效调节碴土的塑性及粘度、降低透水性及内摩擦力,提高土体的流塑性,防止螺旋输送机喷涌或产生泥饼,同时可减少刀盘功率的消耗。 (4)刀盘转速分五档可调0~1.3rpm,根据地层情况自动调节速度,且旋转方向可改变。 图1-1 盾构机刀盘示意图 1.3.2 埋深的适应性能 (1)盾构机有足够的承载能力、推进力和刀盘扭矩储备,有足够的土压承受能力及土压调节能力,可以满足本区间隧道施工的需要。 (2)轴式螺旋输送机,液压驱动,出土量易于调节,并有良好的土压减压效果。 (3)主轴承密封可承受3MPA的泥土压力,主轴承密封有良好的油脂润滑系统,保证密封系统的可靠。

海瑞克土压平衡式盾构机分析

海瑞克土压平衡式盾构机分析 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后

海瑞克土压平衡盾构机结构分析

海瑞克土压平衡式盾构机结构分析 [2008-08-07] 关键字:盾构机结构分析 承担修建深圳地铁—期工程第七标段(华强至岗厦区间内径为5.4m的双线隧道)的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。 本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN&#82 26;m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土

(完整版)海瑞克盾构机液压系统说明(附电路图)

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

c.液控单向阀 注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,

海瑞克盾构机基本参数

海瑞克土压6.3m盾构基本参数 名称技术参数备注 管片设计 外径6米 内径5.4米 管片宽度1.5米 数量5+1 盾体 前体 6.25x6.25x2.9米86.5吨 中体 6.24x6.24x2.58米80吨 前盾数量1个 中盾数量1个 直径6.25米不计耐磨堆焊层 长度(前体和中体) 4.68米螺栓连接并带密封盾构类型土压平衡 300米 盾构最小水平转弯 半径 最大工作压力3BAR 土压传感器(数量) 5个 气闸连接法兰1个 1个 螺旋输送机连接法 兰 盾尾 6.23x6.23x3.61米30吨 盾尾数量1个 型式绞接 长度3.61米 密封3排钢丝刷 注浆口4个DN50,单管 推进油缸液压 数量30个10组双缸+10组单缸分组数量4组 推力34 210KN 最大300BAR 行程2米 工作压力300BAR 伸出速度80mm/min 所有油缸 绞接油缸 类型被动式 数量14个 行程150 mm 刀盘 6.28x6.25x2.6米65吨 数量1个 形式装配有滚刀式 直径6.28米

旋转方向左/右 刀具配置4把17寸中心双刃滚刀,32把17寸单刃滚刀,28把齿刀(250 mm 宽),8组边刮刀(1组两把)。 8个 刀盘上泡沫喷嘴数 量 中心回转体1个 刀盘驱动 数量1个 形式液压驱动 液压马达数量9个 额定转矩6000KNm 最大脱困扭矩7150KNm 转速0~4.5转/分 功率945KW 3x315KW 主轴承形式固定式 人闸 数量1个 形式双仓 直径1.6米 工作压力3BAR 测试压力4.5BAR 额定人数(容纳)3+2 主仓/副仓 管片安装器 管片安装器及行走 5.0x4.0x3.8米22吨 梁 数量1个 形式中心回转式 抓紧系统机械式 自由度6个 旋转角度+/—200度比例控制 管片宽度1.2/1.5米 纵向移动行程2米比例控制 控制装置无线、有线控制 螺旋输送机 形式双螺旋转、有轴式 1号螺旋输送机13.4x1.2x1.4米23吨 长度13.4米 直径800mm 功率160KW 最大扭矩198 KNm 拖困扭矩225 KNm 转速1~22转/分无级调速 285方/时100%充满时 最大出土量(理论 值)

海瑞克盾构设备-英汉对照

CYLINDER 油缸 DIV.SPARE PARTS SEGMENTFEEDER 待定管片喂送器备件SEGMENTCRANE 管片吊机 GEAR MOTOR 齿轮马达 DRIVE MOTOR 驱动马达 SPARE PART PACK SEGMENT CRANE 管片吊机备件包 DIV.SPARE PARTS 待定备件 DIV.SPARE PARTS ERECTORPULT 待定拼装机备件拼装机控制面板 SCREW TENSION CYLINDER M42 M42螺栓拉伸油缸 SCREW TIGHTENING DEVICE M60 M60螺栓上进装置 HIGH PRESSURE POWER PACK 高压动力包 HIGH-PRESSURE HOSE 高压油管 HIGH PRESSURE HOSE 1600Bar高压油缸 HIGH POWER AGGREGATE G20 G20高压泵站 HIGH PRESSURE HOSE 高压油管INSERT FOR SCREW DRIVER SW 65 SW65套筒 INSERT FOR SCREW DRIVER SW 55 SW55套筒 POWER SCREW DRIVER HYDRAULIC 液压动力扳手 DISPLACEMENT CYLINDER + AGGREGAT 移位油缸+液压泵站TOOL BOX 工具箱 CABLE SHEARS 电缆剪 SCREW DRIVER 螺丝刀 SOCKET WRENCH SET 12K 12K套筒扳手装置 DRILLING MACHINE 钻机 GAS SOLDERING IRON SET 气体烙铁 TIN 锡罐KALIBRATION DEVICE 校准装置 MULTIMETER 万用表 PLIERS 钳子 TORCH 手电筒 TWIST DRILL 螺旋钻 INDICATION 指示器 FAN 风扇 TORQUE WRENCH 扭矩扳手 COAL DRILL 煤钻 GRINDER 电砂轮 Segment data: 管片参数: Outside diameter: 15,000mm 外径: 15,000mm Inside diameter 13,700mm 内径: 13,700mm Length 2,000mm 宽度: 2,000mm Ring distribution: 9+1 管片分布: 9+1 MIX shield with back-up system 混合式盾构机及后配套系统 Shield body 盾体 segmental steel structure (front and rear shields) 钢结构块(前盾和后盾) pressure wall 压力壁 submerged wall (air bubble chamber) 分隔板(气泡调压舱) pressure sensors 土压传感器 Access door in the pressure wall 压力舱壁中的进入门 Access door in the submerged wall 分隔板中的进入门 flange manlock 人闸法兰 lange for material lock 材料闸法兰main drive support 主驱动支架agitators ? 1,900mm 搅拌器? 1,900mm front gate 前闸门 protection grid 保护隔条 Flushing circuit in the excavation chamber 开挖舱内的冲洗回路

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

盾构选型及参数计算方法

盾构选型及参数计算方法 1.1、序言 盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。 采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。 1.2盾构机选型主要原则 1.2.1盾构的选型依据 盾构选型主要应考虑以下几个因素: 1)工程地质、水文条件及施工场地大小。 2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。 4)盾构的先进性、适应性与经济性。 5)盾构机厂家的信誉与业绩。 6)盾构机能否按期到达现场。 1.2.2 盾构的型式 1)敞开式型盾构 敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。有人工开挖盾构、半机械开挖盾构、机械开挖盾构。 2)部分敞开式型盾构 部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。根据以往大量工程经验,通常都将挤压胸板和网格切削装置组合在一起安装在盾构上,形成网格挤压盾构。这种盾构适用于不能自立、流动性在的松软粘性土层、尤其是对隧道沿线地面变形无严格要求的工程。当盾构采用网格开挖时,应将安装在网格后面的挤压胸板部分或大部分拆除,利用网格孔对土层的摩擦力或粘结力对开挖面土层进行支护,当盾构向前推进时(一般是盾构穿越江湖、海底或沼泽地区),应将挤压胸板装上,盾构向前推进时,可将土体全部

海瑞克盾构机技术说明

目录 隧道掘进机的技术说明 5.1 概述 (3) 5.2 功能(EPB盾构) (4) 5.2.1 土料挖掘 / 推进 (5) 5.2.2 控制 (6) 5.2.3 管环拼装周期 (7) 5.3 技术数据/总览 (8) 5.4 操作步骤 (16) 5.4.1 进入开挖室 (16) 5.4.2 人行气闸 (19) 准备和注意事项 (19) 加压 (21) 加压步骤 (22) 加压图 (24) 通过通道室加压(加压附加人员) (26) 附加人员加压图 (27) 卸压 (28) 卸压步骤: (29) 卸压图 (31) 对一个人员的紧急卸压图 (33) 紧急情况下,通道室和主室内应分别采取的措施 (36) 紧急情况卡卡样 (37) 5.4.3 将开挖工具送入压力室 (39) 5.4.4 拼装管环 (40) 5.4.5 回填 (42) 通过尾部机壳进行回填 (42) 灌浆泵的工作原理 (43) 5.4.6 压缩空气供给 (45) 工业用空气 (45) 压缩空气调节 (46) 5.4.7 发泡设备说明 (47) 安装设计 (47) 设备功能 (48)

高压聚合物系统 (48) 5.5 隧道掘进机各部件 (49) 5.5.1 盾构 (50) 概述 (50) 前部盾构 (50) 中间盾构 (51) 尾部机壳 (51) 推力缸 (51) 盾构关节油缸 (52) 5.5.2 人行气闸 (53) 5.5.3 刀盘驱动装置 (55) 原理 (55) 旋转工作机构系统,主轴承 (55) 齿轮润滑 (55) 密封系统 (56) 5.5.4 拼装机 (57) 技术说明 (57) 支架梁 (57) 行走机架 (58) 旋转机架 (58) 带抓取头的横向行走装置 (59) 旋转机架的动力提供 (60) 安全设备 (60) 5.5.5 螺旋输送机 (61) 一般说明 (61) 伸缩缸 (61) 前部闸阀 (61) 前部闸阀 (62) 驱动装置 / 密封系统 (63) 安全装置 (63) 5.5.6 后援装置 (64) 一般说明 (64) 桥 (65) 龙门架1 (66) 龙门架2 (67) 龙门架3 (69) 龙门架4 (70) 龙门架5 (72)

海瑞克盾构机电气系统概述

海瑞克盾构机电气系统概述

————————————————————————————————作者:————————————————————————————————日期:

海瑞克盾构机电气控制系统概述 李剑祥 (中铁六局集团有限公司深圳地铁2号线项目部广东深圳 518056) 摘要:对海瑞克土压平衡盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分的设计进行总结,以加深对其整个电气控制系统原理的理解。 关键词:电气系统配电系统可编程控制系统计算机控制及数据采集分析系统 0 海瑞克盾构机电气系统简介 盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备,其技术先进、结构庞大。如果把机械部分比喻成人的四肢,那么液压系统比喻成人的血液系统,则电气控制系统就是人的神经系统。当前盾构机电气控制系统均采用世界上最先进、可靠的技术以保证系统稳定可靠地运行。海瑞克盾构机电气控制系统分为配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分。下面对该三个部分进行介绍。 1 配电系统 盾构施工是参考工厂式的流程化作业施工,盾构机的配电系统设计原则也是参照工厂供配电原理设计的。配电系统分为高压系统和低压系统,其用电设备列表如下: 序号用电设备设备容量备注 1 刀盘驱动945kW 2 超挖刀7.5kW 3 推进系统75kW 4 管片安装机45kW 5 螺旋输送机250kW 6 皮带输送机22kW 7 注浆泵30kW 8 砂浆储存罐的搅拌器7.5kW 9 液压油过滤泵11kW 10 主轴承润滑4kW 11 管片吊机2x2kW 12 排水泵12kW 13 冷却水系统7.5kW 14 二次通风机11kW 15 空压机110kW

盾构机参数

随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID 控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应也就越迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E, 也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行 I和D,I调至数值上限,D设定为 0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 - 0.03Mpa 的系统偏差,接下来逐渐增大 P 值,使螺旋机转速逐渐增大,当 P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的 85% - 90% 设定为系统的比例系数。 (2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方向增加或减小操作量,操作量的变化程度随积分时间I的变化而变化,此时可以根据操作人员的操作习惯来确定积分时间,一般来说,I在数值上为P值的70% 左右。 (3)微分时间D,在盾构机PID 控制中,管理对象是土仓内的土压,如果掘进速度一定,则土压与切削土量减排土量之差的时间累积成正比,另一方面,系统的控制对象是螺旋机转速,而螺旋机转速同单位时间的排土量成正比,这样从系统输入来看,系统的输出是

盾构机司机操作流程及参数控制

盾构机操作流程及参数控制1开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查ZED导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示土木工程师并记录有关盾构掘进所需要的相关参数,如掘进模式(敞开式、半敞开式或土压平衡式等),土仓保持压力,线路数据,注浆压力等; 16)请示机械工程师并记录有关盾构掘进的设备参数; 17)若需要则根据土木工程师和机械工程师的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式; 4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理;

5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 ?根据ZED 面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; ?选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 ?慢慢开启螺旋输送机的后门; ?启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则;

海瑞克盾构选型

1.1 盾构机选型 综合本区间隧道工程地质、水文、线路、方向控制、地表沉降、工期和环保要求,类似工程盾构选型经验,结合苏州以往盾构使用情况,根据《盾构法隧道工程施工及验收规程》,土压平衡盾构对于淤泥质粘土、粉质粉土、砂质粉土、粘土层对地层的适应性,通过盾构配备加膨润土、泡沫及水装置,可取得良好效果。因此在本区间隧道工程施工中拟选 1.2 盾构机来源 拟将采用两台日本株式会社小松制作所生产的TM634PSX 加泥式土压平衡盾构机用于本标段的施工,全部来源于新购置。 1.3 盾构机供应方案和工程适应性的描述 1.3.1 土层的适应性能 (1)刀盘结构是针对苏州长三角淤泥质粘土、粉质粘土、砂质粉土、粘土地质条件设计的,采用面板式刀盘,开口率为40%。提高开挖效率,使碴土顺利从切削面流入土舱内。刀盘结构见图1-1。在维修时刀盘面板对土体有一定的支护作用,便于土压力平衡。 (2)刀盘采用中间支承式结构,设置有固定搅拌翼和随刀盘转动的搅拌翼,对土舱中的碴土进行强制搅拌,尤其在本工程中有各种地层且相互交错,对切削下来的碴土需要进行搅拌,使碴土具有塑性,并防止土体的滞留和粘附,盾构机刀盘设有中心刀1 把,切刀120把,刮刀18把,超挖刀 2 把,能够确保施工的进度。 3)刀盘、土舱及螺旋输送机有泡沫、膨润土及水注入系统,通过刀盘和

搅拌翼把注入在开挖面的添加剂与切削下来的碴土在土舱中进行充分搅拌 开挖不同的地层,可通过控制泡沫、膨润土或水的注入量,有效调节碴土的塑性 及粘度、降低透水性 及内摩擦力,提高土体的流塑性,防止螺旋输送机喷涌或产 生泥饼,同时可减少刀盘功率的消耗。 (4)刀盘转速分五档可调 0~1.3rpm ,根据地层情况自动调节速度,且旋转 方向可改变。 1.3.2埋深的适应性能 (1) 盾构机有足够的承载能力、推进力和刀盘扭矩储备,有足够的土压承 受能力及土压调节能力,可以满足本区间隧道施工的需要。 (2) 轴式螺旋输送机,液压驱动,出土量易于调节,并有良好的土压减压 效果。 (3) 主轴承密封可承受3MPA 的泥土压力,主轴承密封有良好的油脂润滑 系统,保证密圭寸系统的可靠 4) 盾尾采用三道钢丝刷密封,油脂注入润滑,保证盾尾密封可靠 (5) 采用管片同步注浆,保证注浆效果和系统可靠。 1.3.3 保持开挖面稳定、减少周边土体扰动、保护环境安全的性能 (1) 区间隧道掘进都在土压平衡状态下,土舱压力可根据埋深、地质、地 表沉降情况调 对于 刀 刀 槽 VII 图1-1盾构机刀盘示意图 VI

海瑞克盾构词汇简

active center cutter 主动中心刀盘 agitator 搅拌器 annulus 注浆环面间隙 back-up system 后配套系统 backloading 背部换刀 bentonite 膨润土 Berlin construction method 柏林施工法 blind hole 盲孔 boulders 漂石 breathing air 可呼吸空气 bucket tooth 齿形铲斗 bypass 旁路 center shield 中盾 CLM 衬砌破碎机 closed TBM 封闭式盾构掘进机compact trailer 集成式拖车 compressed air lock 压缩空气人闸conditioning 土壤改良 cone crusher 锥形破碎器 control stand 控制台 crusher 破碎器 cutterhead (traffic tunnelling) 刀盘(交通隧道) cutting wheel 刀盘 Direct Pipe 直接铺管 disk cutters 滚刀 drive 驱动 ELS 激光标靶 EPB 土压平衡式盾构机 erector 管片安装机 excavation bucket 铲斗 excavation chamber 开挖仓 excavation tools 开挖刀具 excavator 铲斗式挖掘机 exchange of tools 换刀 extension 扩径 front shield 前盾 full face tunnelling machine 全断面隧道掘进机 geology 地质状况 geothermy 地热 guidance system 导向系统 HCS 海瑞克复合式盾构机 HDD 水平定向钻进 heavy duty cutter bit 重型刀具 hydraulic hammer 液压锤 in-situ casting 现场浇注 inclinometer 倾角计 industrial air 工业压缩空气 intermediate jacking station 中继顶压站 jacking pipe 顶管 launch shaft 始发(工作)井 lining segment factory 管片生产工厂 long distance tunnelling 长距离隧道掘进 longitudinal cutting head 纵向刀盘 main drive 主驱动 main jacking station 主顶进站 man lock 人闸 material lock 材料输送闸

相关主题
文本预览
相关文档 最新文档