当前位置:文档之家› 油田开发中高温泡沫调剖技术研究

油田开发中高温泡沫调剖技术研究

油田开发中高温泡沫调剖技术研究
油田开发中高温泡沫调剖技术研究

油田开发中高温泡沫调剖技术研究

摘要:油田开发中高温泡沫调剖主要应用耐高温表面活性剂与氮气在高温下产生的气体在油层中共同作用,形成泡沫。虽然氮气泡沫调剖在许多油田已经取得较好的效果,但是其技术施工工艺复杂、车组庞大、时间长、成本高。为了简化施工工艺、降低生产成本,新型的蒸汽增效剂(地下自生非凝析气+泡沫剂)。主剂是在高温下能够分解产气的物质,气体的膨胀能够产生附加驱动能量,强化回采;气体和泡沫剂能够生成泡沫,对大孔道或汽窜通道具有一定的封堵作用,即扩大了蒸汽的波及体积。

关键词:高温泡沫调剖氮气

1 地下自生非凝析气方法

非凝析气可以是氮气、天然气、空气、二氧化碳等,实践证明在有二氧化碳存在的同时又有氨气生成时效果最佳。能够同时产生CO2和NH3的物质何种最优。

2 碳酰胺分解

该方法的优点:(1)反应能化合蒸汽中的冷凝水,有利于保持蒸汽干度。(2)氨水能和石油中的环烷酸、长链脂肪酸发生化学反应,生成具有表面活性的物质,能够降低油水之间的界面张力,提高洗油效果。

(3)二氧化碳极易溶于原油中,使原油膨胀,降低原油的粘度。(4)二氧化

凝胶微球深部调剖体系研究综述

中国石油大学(北京)研究生考试答题纸 姓名:赵胜绪学号: 2015212184 考试课程:油气田开发工程系统导论课程编号: 1302053 装 订 线 第1页(共 8 页)

凝胶微球深部调剖体系研究综述 摘要 随着常规堵水调剖的效果日渐式微,凝胶微球深部调剖体系作为一项有效的稳油控水技术,得到了国内外油田的广泛应用。本文从发展现状、注入封堵性能评价、与储层孔喉尺度的匹配关系、深部调剖机理以及现场应用5个方面对国内外凝胶微球深部调剖体系研究的最新进展进行了总结和分析,系统梳理了凝胶微球注入封堵性能的基本要求、表征参数、影响因素、存在的问题及对策,并对凝胶微球的发展前景进行展望,以期为凝胶微球更进一步的研究和应用提供参考。 关键词:提高采收率;油藏深部调剖;凝胶微球;综述 1 引言 近些年,针对水驱低效或无效循环的问题,国内外在深部调剖体系的研究与应用方面取得了许多新进展。凝胶微球深部调剖体系,以其良好的注入封堵性能和调剖效果,被国内外油田广泛地用于研究和现场应用,为高含水油田改善水驱开发效果,提高采收率发挥着至关重要的作用[1]。 “微球”指的是纳/微米级的聚合物凝胶颗粒,在溶剂中有一定的膨胀性,受力易变形,广泛用于涂料、制药、水净化等多个领域。1949年Baker首先引入了凝胶微球的概念,1999年Saunders B R和Vincent B从凝胶微球的合成理论、性能和应用方面做了系统总结,此阶段的合成工艺通常采用的是无皂乳液聚合,可形成空间上稳定的无胶核凝胶颗粒,颗粒具有窄尺寸分选[2]。此后,分散聚合、乳液聚合、悬浮聚合等多种聚合方式都成功合成出了单分散的聚合物微球[3]。 2凝胶微球的发展现状 凝胶微球随水注入油层,通过孔喉向油层深部运移,有效封堵高渗层或大孔道,不断改变注入水流向,从而实现深部调剖。基于这种思路,研究人员相继开展了很多该方面的研究工作。 1997年BP,Mobil,Chevron-Texaco和Ondeo Nalco能源服务公司进行技术合作,率先研发了一种具有延时性、膨胀性和热敏性的磺化聚丙烯酰胺凝胶微球用于深部调剖,该技术被命名为“Bright Water”,而且经十多年不断完善,被证明是一种成功的深部调剖技术。Chauveteau等(1999)研究出了一项粒径可控的乳酸锆/磺化聚丙烯酰胺凝胶微球深部调剖技术。大量研究表明,该凝胶微球体系与本体凝胶相比较为优越,微球是通过聚合物交联体系在剪切作用下形成的,具

氮气泡沫驱机理

一、氮气泡沫驱简介 我国现已发现的油田大部分属于陆相沉积储层,受地层非均质性及不利水油流度比的影响,水驱效果往往不是很理想。而对于低渗、超低渗油藏,注水压力高,开采难度大,该类油藏普遍采取压裂措施,压裂后产量快速上升,但有效生产周期较短,表现为含水率快速上升,产油量快速降低。 与CO2和空气相比,氮气具有较高的压缩系数和弹性能量,且为惰性气体,无生产安全隐患。氮气密度小,在地层中可向油藏高部位运移,在高部位形成次生气顶,增加了油藏的弹性能。另外,氮气分子比水分子小很多,可以进入原来水驱不能进入的油藏基质,将基质的原油挤压、驱替出油藏,从而提高了采收率。但受油藏非均质性的影响,氮气更易沿高渗透层窜进,造成生产井产气量高,氮气含量高。不仅造成了资源的浪费,而且对生产井气体正常使用造成一系列影响。 氮气泡沫驱是近年来国比较成熟的技术,泡沫在地层中具有较高的视黏度,遇油消泡、遇水稳定,在含水饱和度较高的部位具有较高的渗流阻力,封堵能力随着渗透率的增加而增加,可以有效增加中低渗透部位的驱替强度,同时发泡剂一般都是性能优良的表面活性剂,可在一定程度上降低油水界面力。因此,泡沫调驱既可以改善波及效率,也可以提高驱油效率。 二、氮气泡沫微观渗流阻力分析 泡沫在多孔介质中产生的渗流阻力本质上是泡沫在孔道中产生的毛细管效应附加阻力。根据气泡在多孔介质中的存在状态,主要可以分为以下3种情况。 (1)液体近壁边界层引起的附加阻力 由于固体表面与水分子之间的相互作用,使得靠近固体表面的水层具有不同于自由水的性质,这一水层称为静水边界层。 考虑固体表面的微观结构和水分子的结构与性质,可以清楚地知道润湿实际上是水分子(偶极子)时固体表面的吸附形成的水化作用。水分子是极性分子,固体表面的不饱和键也具有不同程度的极性,水分子受到固体表面的作用并在固体表面形成紧贴于表面的水层,即静水边界层。静水边界层中,水分子是有秩序排列的,它们与普通自由水分子的随机稀疏排列不同。最靠近固体表面的第一层水分子,受表面键能吸引最强,排列得最为整齐严密。随着键能和表面势能影响的减弱,离表面较远的各层水分子的排列秩序逐渐渴乱。表面键能作用不能达到的距离处,水分子已为普通水分子那样的无秩序状态。所以静水边界层实际是固体边界与普通水间的过渡区域。图2-1所示的静水边界层结构充分地表示出固体表面附近水分子的排列状况。

低渗透油田注水井调剖效果影响因素分析

低渗透油田注水井调剖效果影响因素分析 摘要:注水开发过程中注入水平面上单向突进和剖面上的尖峰状吸水现象普遍存在,注水井调剖可以调整地层渗透性差异,控制注水窜流、提高水驱波及系数。本文通过对该油田近几年水井调剖取得的成果,对注水井调剖效果影响因素进行了多方面分析。分析认为,在详细研究油藏特征和单井生产资料的基础上,选用适宜的调剖体系、合理的堵剂用量和段塞结构能扩大水井的调剖效果;重复调剖效果是逐次递减的,如何减缓重复调剖效果的递减是下一步工作所要面对的主要问题。 关键词:油藏特性;调剖体系;施工参数;重复调剖;影响因素 一、引言 低渗透油田开发过程中,原始地层存在的天然裂缝、溶洞以及在开发过程中产生的人为诱导裂缝对低渗透储层的油藏动态会产生明显的影响,以及长期注水开发引起的地层出砂、胶结物的大量流失、胶结结构遭到破坏,使地层出现高渗透层、大孔道,导致注入水平面上单向突进和剖面上的尖峰状吸水现象普遍存在。由此造成水驱储量动用程度低,注水沿着主砂体带方向、能量较低部位突进,造成主向部分油井水淹,含水上升速度快,而侧向油井注水不见效的后果。注水井调剖是油田开发中的一项主要控水稳油技术。针对某油田的实际情况,2010年以来不断加大注水井调剖力度,共实施注水井调剖70井次,取得较好效果。 二、油藏特性对调剖效果的影响 油藏类型直接决定调剖体系的组成和调剖的技术思路;油层的物理化学性质通过改变调剖体系的性能来影响调剖效果,其中油藏温度、地层水矿化度是影响调剖体系性能的两大因素。 2.1油藏类型 该油田属低渗透裂缝性发育丰富油藏,该类油藏和渗透性油藏有很大的不同,调剖难度相对较大,堵剂体系既要做到对大裂缝进行有效封堵,又不至于对微裂缝堵死,同时还要使堵剂在地层运移过程中既能有效控制油水流度比,又能起到一定的驱油作用。对这样的油藏进行调剖,应依据“堵”、“调”结合的原则,选用深部复合调堵体系,并通过体系优化、段塞优化和参数优化实现理想的调剖效果。 2.2油藏温度 聚合物在深部调剖体系中扮演重要的角色,除自身具有驱油功能外还有两方面用途:(1)与其他化学剂交联形成强度更高的堵剂;(2)与颗粒性堵剂同注,起到携带作用。聚交体系是油藏调剖的主体段塞,其在油藏中的稳定性将直接影响调剖的效果,对其影响因素的研究至关重要。温度是影响聚交体系稳定性的重要因素,将厂家提供的相关数据进行整理,得出聚合物质量浓度为0.1%的交联体系成胶时间和胶体强度随温度变化的关系曲线,如图1和图2。 由图1可知,温度对体系的成胶时间有很大影响,温度越高成胶时间越短。体系在50℃左右时成胶时间发生突变,由40℃到60℃成胶时间缩短了一半以上。该油田主力层油藏温度在70℃以上,注入聚交体系成胶时间短。为了使聚交体系能够顺利推向油藏深部,要适当延长聚交体系成胶时间。

水井调剖

第1章绪论 1.1 国内外低渗透裂缝性油藏发展现状 1.1.1发展现状 自1939年玉门油田开发以来,我国的石油工业取得了飞速的发展,截止2006年底,我国年产油量已达1.8368亿吨,居世界第五位。从投入开发的油气田类型来看,大致可以分为6种类型的油气藏:中高渗透多层砂岩油气藏、低渗透裂缝性油气藏、复杂断块油气藏、砾岩油藏、火成岩油藏、变质岩油藏。 低渗透储层是我国陆相沉积盆地中的一种重要类型,他们广泛分布在我国各含油气盆地中,占目前已探明储盆和数量的1/3以上,随着各盆地勘探程度的不断提高,其所占比重还将会逐年增大,在这种储层中,由于岩石致密,脆性程度大,因而在构造应力作用下容易形成裂缝成为油气的主要渗流通道,控制着渗流系统,从而使其开发具有特殊的难度[1]。 国外关于裂缝性储层的研究和开发有上百年的历史,许多学者发表了大量的研究成果,从国外裂缝性油藏的研究情况来看,对井点裂缝的识别比较有把握,对裂缝分布规律预测还没有很成熟的技术,但大家都在从不同的角度对裂缝认识进行探索,并且他们还对裂缝性储层基质进行大量的研究,对裂缝性油藏的开发提出了许多突破性的认识。 国内关于低渗透裂缝性油藏的开发与研究也有几十年的历史,自四川碳酸岩盐和华北古潜山油藏发现并大规模投入开发以来,揭开了我国关于裂缝性储藏研究的序幕,石油工程师经过几十年的努力逐渐完善低渗透裂缝性油藏开发技术,解决油田开发过程中的一系列难题,近年来发现的大庆外围低渗透裂缝性储层、吉林裂缝性低渗透储层、玉门青云低渗透裂缝性储层等,地质状况非常复杂,开发难度也非常大。通过早期系统地综合研究,对这些油藏进行了合理的开发部署,确立正确的开发方案,使得开发效果和经济效益得到很大的改善[2]。 低渗透裂缝性油藏注水后,高低渗透区的吸水指数差异很大,裂缝的渗透率高,注入水很容易沿裂缝窜流,导致沿裂缝方向上的采油井过早水淹,而中低渗透区油层的动用程度很差甚至没有动用,动用程度非常不均衡,油田含水率上升速度快,在开发不久油井就进入高含水阶段,油井注水见效及水淹特征的方向性明显,注水井注入压力低,吸水能力强,这为油藏如何实现稳油控水、提高最终采收率,提高低渗透油田的整体开发水平具有重要的理论和现实意义。尤其随着

稠油氮气泡沫调驱效果分析——【油气田开发技术新进展】

稠油氮气泡沫调驱效果分析 1. 稠油基本概况 (1)稠油及分类标准①稠油:在油层条件下,粘度(不脱气)大于50mPa?s的原油或脱气粘度大于100mPa?s 的原油。常称的重油(Heavy Oil),沥青砂(Tar Sand,Bitumen)都属于稠油范围。②分类 2. 稠油热采开发方式 原油粘度(mPa?s):50~100:水驱。100~500:水驱、非混相、泡沫。500~10000:蒸汽吞吐(蒸汽驱、火烧油层)。10000~100000:SAGD。 3. 国内稠油生产发展趋势 (1)资源动用:扩大特稠油/超稠油储量的动用程度(2)提高稠油采收率蒸汽吞吐转蒸汽驱方式,且呈现热力复合(化学驱、气体、溶剂等)驱替方式。热力采油和蒸汽吞吐是稠油开采的主要途径。稠油油藏历经注蒸汽开采后的特征:(1)剩余油的流动性越来越差——稠油流体的非均相特征;(2)储层强非均质出现汽窜(负效应)——热连通逐渐加强汽窜造成热效率低,油气比低;(3)油层热效率越来越低——油层回采水率越来越低,后续注热效率低,加热范围小。薄油层的加热效率较低,直井开采效率低。 4. 稠油注蒸汽窜流状况:蒸汽吞吐和蒸汽驱均有汽窜现象。解决蒸汽吞吐汽窜方法:组合吞吐、调剖、改变受干扰井的工作制度或关井。当蒸汽吞吐转蒸汽驱后,一旦出现汽窜,只能依靠调流和调驱方式。汽窜程度、井底结构及稠油开发阶段的差异都将影响注蒸汽井调剖方法的选择。稠油油藏提采技术:(1)热力采油改善开发效果方法;(2)热力复合驱替技术;(3)复杂结构井型热力采油技术。 一、氮气泡沫辅助蒸汽驱调驱机理与适应性:泡沫驱机理(1)泡沫体系调剖→提高波及效率(2)表活剂洗油→提高洗油效率。泡沫发泡方式:(1)地面起泡方式(相对较 1

调剖机理

各种调剖机理: 泡沫调剖剂机理 泡沫调剖就是利用泡沫对地层孔喉的封堵作用而迫使蒸汽转向,提高采收率的一种方式。泡沫是气体在液体中的粗分散体系,构成蒸汽泡沫的主要成份是表面活性剂,与普通泡沫不同的是,用于稠油吞吐井中所产生的泡沫必须耐高温,表面活性剂在注蒸汽的地层条件下能产生泡沫并能稳定一定的时间。泡沫调剖依赖其在注汽过程中产生的大量泡沫封堵高渗透地层的咽喉地带,注入蒸汽由于压力增高而转向其它孔隙,平面上提高蒸汽的波及面积,纵向上增加低渗透层的吸汽量,从而提高注汽效率。其优点在于对地层伤害较小,经过半衰期后,其泡沫缓慢、自然解堵;其施工简单、方便。其缺点在于封堵压力较低,有时达不到要求的理想压力,对水窜没有控制能力;泡沫稳定性受稠油特性、储层粘土含量、水质影响很大,使应用受到较大限制。要获得较理想的封堵效果,需要持续不断地挤入药剂,以维持泡沫稳定和处理周期,造成成本过高。另外,目前国内可供选择的起泡剂较少,进口起泡剂成本较高,使现场应用受到很大程度的限制。 聚合物调剖剂机理 聚合物堵水调剖剂一般由聚丙烯酰胺单体等高分子或聚合物单体、引发剂、交联剂等组成的,它是由水井调剖剂转变而来的。在地层条件下,单体在引发剂、交联剂的作用下交联聚合形成具有高弹性、高强度的聚合物凝胶,堵塞地层大孔道,封堵高渗透水层,起到调整吸汽剖面的作用。其特点是具有吸水膨胀性,增加封堵效果。其封堵性能与已成熟应用的水井调剖剂类似,不同点在于选择不同的交联剂,使已形成的冻胶在高温蒸汽的作用下能维持凝胶状态,稳定一定的时间,从而起到促使蒸汽进入低渗透层的目的。其技术的困难之处在于选择交联剂。该技术的优点在于技术成熟、封堵强度高,封堵时间、强度可依现场要求调节。其缺点在于无选择性,封堵高渗透层的同时也会封堵低渗透油层,施工时对机械设备的要求较高,施工时易发生事故,如堵死管柱、挤注管线等,其次其药剂本身具有一定的毒性和吸水膨胀性,会对环境造成污染,也可能会对周围的牲畜造成伤害。 木质素、拷胶类堵水调剖剂利用拷胶、改性拷胶、单宁或提取的木质素与甲醛等配制成堵剂,根据注蒸汽温度及凝胶时间的要求配制成不同浓度。其机理与聚合物调剖剂类似,不同点在于生成的堵剂液与原油有一定的相溶性,从而具有一定的封堵选择性。 固体颗粒调剖剂机理 该类堵水调剖剂侧重于堵水,它由固体颗粒、交联剂、表面活性剂等按比例复合而成,其固体颗粒有生物钙粉、矿物粉、粉煤灰、钠膨润土等等,其交联剂具有固化作用,为弱胶联,可胶结无机颗粒及地层岩石,防止颗粒在流体冲刷下运移,在胶结中以固体颗粒作为骨架材料,表面活性剂可使岩石表面润湿反转,通过交联剂把固体颗粒和岩石松散胶结,提高高渗透层的吸汽阻力。还可以通过颗粒封堵高渗透层和高出水层,从而大幅度降低油井含水。其优点在于对底水及窜槽水封堵效果较好,对高出水层的封堵强度高,有效期长,有效率高。对油井含水大于80%的油井也有较好的封堵效果,尤其对于目前处于吞吐中后期的油井形成的高渗透带、大孔道更具有较好的堵水封窜能力,提高了采收率,也使部分高含水井重新走上正常生产。其缺点在于药剂无明显的选择性,只能依靠地层的选择性,由于稠油井的油水粘度差异大,所以,低粘度的堵剂溶液进入水层的阻力比进入油层的阻力小,堵剂优先进入出水层。它对出水原因较复杂的油井封堵有效率较低,另外在施工中应注意对最终挤注压力的选择,要根据地层的渗透率、含水饱合度等选择不同的最终挤注压力,以免对出油层位的渗透率造成影响。 复合调剖剂机理 复合调剖剂种类较多,它主要是针对单一调剖剂的缺点而设计的,单一的调剖剂有其

氮气泡沫调剖技术研究与应用

氮气泡沫调剖技术研究与应用 针对注水油田层间矛盾大,注水效果差的问题,利用氮气泡沫调剖技术,调整吸水剖面,达到改善断块水驱效果的目的。 标签:氮气;调剖 1.前言 氮气在油田开发中的应用是20世纪70年代发展起来的新技术。美国和加拿大已开发出多种氮气应用技术,并达到相应的应用规模,其技术处于世界领先地位。我国在20世纪80年代开始进行了一系列的室内实验研究,90年代初开始现场试验。通过优化研究,金海采油厂进行了氮气泡沫调剖技术现场试验,取得了较好的增油降水效果。 2.氮气泡沫调剖技术 海26块注水开发早期主要采取的是笼统注水,由于储层纵向上非均质性,造成相对吸水较少的低渗透层所对应的油井收效甚微,而吸水量较大的高渗透层所对应的油井水淹严重,层间矛盾十分突出。氮气泡沫调剖技术主要是针对海26块生产中出现的问题提出的,通过调整油层吸水剖面,降低水相渗透率、界面张力、原油粘度及重力分异驱替原理,提高水泾效果。 2.1发泡剂的筛选。 实验在带玻璃观察窗和磁力搅拌转子的不锈钢高温高压反应釜内进行。实验过程如下:将复配的5种发泡剂,用蒸馏水配制发泡剂含量为0.5%的发泡剂溶液,取150ml倒入高温高压反应釜中,均匀注入氮气,使得反应釜内压力为1MPa;仪器温度分布设置在30℃、100℃、150℃、200℃、250℃和300℃,测量发泡体积和半衰期。通过实验筛选出一种耐温280℃,100℃时半衰期>240min的发泡剂。 2.2发泡剂使用浓度优化。 为了确定发泡剂在多孔介质中产生泡沫所需的最低浓度,配置了不同浓度的发泡剂,先把填砂管饱和水、水测渗透率,然后注入0.1PV发泡剂溶液,在氮气注入压差为0.8MPa下发泡(气体体积固定为0.8PV,大气压下),考察后续注水时阻力因子随浓度的變化。 用不同浓度的表面活性剂水溶液进行水气交替注入实验时,发现当发泡剂浓度为0.3%时,发泡后的后续水驱出口端有时看不到泡沫的产生,发泡前后阻力因子变化较小,而且气液比例对发泡前后水驱阻力因子的影响也不敏感;当发泡剂浓度达到0.5%时,阻力因子呈跳跃性增大,这是由于此时达到了发泡剂的临

氮气泡沫调驱技术研究与实践

doi:10 3969/j issn 1006 6896 2010 07 011 氮气泡沫调驱技术研究与实践 由艳群 大庆油田采油工程研究院 摘要:针对大庆油田老区注入水无效循 环问题,开展了氮气泡沫调驱技术研究。首 先进行氮气泡沫层内封堵机理研究,针对不 同渗透率储层,筛选了3套配方体系,讨论 了影响氮气泡沫质量的因素;并利用H QY -3型多功能物理模拟装置测定了氮气泡沫 调剖的各参数。非均质岩心实验表明,氮气 泡沫驱能提高油田采收率,在改善大庆油田 聚驱后油藏的开发效果方面效果明显。 关键词:泡沫;控制水窜;稳定性;阻 力因子 大庆油田老区已进入到特高含水期开采阶段, 注入水窜流严重。依靠化学深、浅调剖改善注水井 吸水剖面,提高采收率的效果逐年变差。为控制产 水,降低含水上升速度,提高油井产油量,开展了 注泡沫控制水窜技术研究[1-2]。泡沫不仅具有显著 的选择性封堵的特点,而且具有明显的提高驱油效 率的作用,能明显控制水窜。 1 泡沫剂体系及封堵机理 氮气泡沫驱替液主要由发泡剂、稳泡剂和水组 成,本文研制了3种氮气泡沫驱替液。从表1中可 以看出,氮气泡沫驱替液的表界面张力要比纯水低 得多,这主要是因为氮气泡沫驱替液含有大量的表 面活性剂分子[3]。根据Gibbs原理,系统总是趋向 较低表面能的状态,低表面张力可使泡沫系统能量 降低,有利于泡沫的稳定。 表1 泡沫驱替液的组成和性质 名称发泡剂 浓度/ % 稳泡剂 浓度/ m g L-1 发泡 体积/ mL 半衰期/ h 表面 张力/ m N m-1 界面 张力/ mN m-1 SW-10 33048028 625 30 27 SW-20 370047551 725 60 30 SW-30 5150047515925 70 32 泡沫剂注入地层后,在氮气驱替作用下形成泡沫,该泡沫体系能有效封堵高渗透层,迫使后续液体转向含油饱和度高的部位驱替原油,从而提高波及系数[4]。 泡沫剂是一种表面活性剂,能降低油水界面张力,提高驱油效率;在含油饱和度高的油层部位,泡沫剂易溶于油,不起泡,也不堵塞孔隙孔道,能提高洗油效率。 2 物理模拟实验 评价泡沫在岩心中的封堵能力实验装置采用一维单管模型,实验时单管模型水平置于恒温箱内,单管模型长30cm,直径2 5cm。 (1)最佳气液比优选。气液比对氮气泡沫的质量影响明显,从气液比对封堵性能影响实验表明, 3种泡沫剂体系的最佳气液比都在11~21之间(见表2)。 表2 不同体系的最佳气液比优选 气液比 阻力因子 WT-1W T-2W T-3 实验条件1266 672 2109 6 11100 0123 4154 8 32100 8128 6151 3 2199 6123 2146 4 3172 886 189 6 T=45! P=1 0M Pa K=1 05 m2 V=4m L/min (2)注入方式确定。氮气泡沫调剖的注入方式有两种,一是气和泡沫剂交替注入,二是气和泡沫剂同时注入。室内实验表明,气液混注效果明显好于气液交替注入,在气液交替注入中,交替的频率越高,交替段塞越小,阻力因子越大,泡沫封堵效果越好(见表3)。 表3 注入方式筛选实验 注入方式 基础 压差/ M Pa 工作 压差/ M Pa 阻力 因子 实验条件气、液混注0 066 42107 气、液交 替注入 0 5PV液1PV气0 064 7579 16 1PV液2PV气 0 064 2270 33 气液比21,加 1M Pa回压,注入速 度2mL/min (3)注入速度确定。从不同注入速度产生的阻力因子看,在低注入速度下,随注入速度的增加,泡沫产生的阻力因子增大(见表4)。在现场应用时,为扩大油层纵向波及体积,应在低于地层破裂压力下,尽量提高注入速度。 表4 氮气泡沫调剖注入速度对封堵效果的影响注入速度/ mL min-1 基础压差/ M Pa 工作压差/ M Pa 阻力 因子 实验条件 0 50 02251 54668 7 1 00 026 2 2787 3 1 50 0295 2 90898 6 3 00 0403 9498 5 4 00 0424 18299 6 浓度:0 5% T=45! P=1 0M Pa 气液比=11 K=1 02 m2 21 油气田地面工程第29卷第7期(2010 7)

氮气在油田生产中的应用

收稿日期:2004-10-25;改回日期:2005-04-19 作者简介:沈光林(1958-),男,副研究员,硕士研究生,毕业于大连理工大学化学工程专业,现从事气体膜分离的应用研究和技术开发,完成国家级课题3 项,已发表学术论文60余篇、申请专利10多项。 文章编号:1006-6535(2005)04-0100-03 氮气在油田生产中的应用 沈光林 (中国科学院大连化学物理研究所膜技术国家工程研究中心,辽宁 大连 116023) 摘要:膜法富氮在油田中应用广泛,可用于包括稠油和低渗透油藏在内的各种油田提高采收率、钻井、完井等,一般均具有明显的综合效益。特别是移动式制氮系统的诞生,极大地增强了膜法富氮的市场竞争力。 关键词:膜法富氮;移动式制氮系统;采收率;钻井;完井;油田中图分类号:TE357 文献标识码:A 前 言 由于氮气与油、水互不相溶,而且来源广,是气体非混相驱提高采收率的重要气源。所以氮气在油田系统中的应用非常广泛[1~15],可用于二、三次采油,油气井保护,保持压力和储存气体,钻井平台的惰气保护,管路及设备的吹扫,易燃、易爆物品运输时的保护气等。随着膜法制氮技术的日趋成熟,特别是移动式制氮系统的诞生,更加适应灵活多变的应用现场,而且具有投资少、流程简单、膜组件寿命长且免维护、能耗低、体积小、露点低、可靠性强、操作弹性大、能适应各种恶劣环境、开启迅速、浓度和流量可在线监控等特点。同时,所用原料是取之不尽、用之不竭的空气,所以采用膜法可以得到价廉、洁净、质量稳定、易于控制的富氮空气。氮气浓度一般在9310%~9919%范围内,如果和其它技术集成可满足任意所需的浓度,极大地增强了膜法富氮的市场竞争力。 1 提高采收率 随着油田的不断开发,油田利用天然和人工能量开采的阶段完成后,将进入提高油田采收率的三 采阶段。三采的方法主要有热力驱、气驱和化学驱等。就多数油田而言,气驱应用较多,是国内、外采收率研究的发展趋势。气驱提高采收率方法的发展趋势是非烃气替代烃类气,其中应用最多、效果最好的是二氧化碳。但由于二氧化碳来源有限,容易产生腐蚀等问题,故氮气的应用越来越受到重视。 111 稠油蒸汽吞吐井注氮 蒸汽吞吐是增加稠油产量经济而有效的一种方法,然而由于油稠、生产压差小、排液难度大、蒸 汽与稠油之间存在密度差、随周期增加而增加的地层水、系统热损失加大等诸多不利的客观因素,造成注汽效果差,同时采收率相对低。稠油蒸汽吞吐井注氮,即在注汽的同时,往油套环空注入氮,既保护套管,降低井筒热损失,提高井底蒸汽干度,提高油井的回采水率,简化生产程序和管柱,降低费用,又减少作业对地层的污染和注汽量,还增产并延长有效期等。辽河油田[1]做过效益对比,每周期增加10×104m 3氮气,产生费用超过8×104元;可减少井下隔热管、封隔器、伸缩管和一次小修作业费用,合计4×104元;减少注汽量700t ,节约费用5×104多元;平均增油227t ,创效益2113×104元,提高阶段采收率3%~5%,投入产出比高达1∶315。新疆克拉玛依油田[2]现场试验表明,油井生 产时率由注氮前的3213%提高到注氮后的7818%;平均单井产油量比上个周期提高218t ,生产天数延长51d ,油汽比提高0105~0137,回采水率提高12%~141%。此外,与同时注汽的井相比较,注氮气井平均周期产油量达到1026t ,周期生产天数293d ,单井日产油为35t ,油汽比0145,回采水率104%,而只注蒸汽井平均周期产油238t ,周期生产天数81d ,单井日产油29t ,油汽比0111,回采水率只有4714%,各项生产指标远远低于注氮井;油层吸汽剖面得到明显改善;经济效益显著,实施注氮试 第12卷第4期2005年8月 特种油气藏S pecial Oil and G as Reserv oirs V ol 112N o 14 Aug 12005

低渗透油田注水井深部调剖技术应用

低渗透油田注水井深部调剖技术应用

目录 1项目概要 (1) 1.1问题的提出 (1) 1.1.1油藏概况 (1) 1.1.2开发过程中存在的问题及对策 (2) 1.1.3深部调剖技术研究现状 (3) 1.1.3.1国外调剖技术发展现状 (3) 1.1.3.2国内调剖技术发展现状 (4) 1.2主要研究内容 (14) 1.3研究思路 (14) 1.4项目完成情况 (15) 1.4.1主要工作量 (15) 1.4.2研究成果 (15) 2深部调剖凝胶体系 (16) 2.1铬离子交联凝胶体系 (16) 2.1.1凝胶体系配方筛选 (16) 2.1.1.1聚合物筛选 (16) 2.1.1.2交联剂筛选 (30) 2.1.1.3交联助剂筛选 (37) 2.1.2凝胶体系影响因素分析 (41) 2.1.2.1聚合物浓度 (41) 2.1.2.2交联剂浓度 (43) 2.1.2.3交联助剂浓度 (44) 2.1.2.4温度 (45) 2.1.2.5矿化度 (46) 2.1.3凝胶体系性能评价 (49) 2.1.3.1机械剪切 (49) 2.1.3.2多孔介质剪切 (51) 2.1.3.3稳定性 (52) 2.1.3.4堵水率 (53) 2.1.3.5选择性封堵能力 (54) 2.1.3.6提高采收率 (55) 2.2有机酚醛交联凝胶体系 (57) 2.2.1凝胶体系影响因素分析 (59) 2.2.1.1聚合物浓度 (59) 2.2.1.2交联剂浓度 (60) 2.2.1.3交联助剂浓度 (61) 2.2.1.4温度 (65)

2.2.1.5矿化度 (66) 2.2.2凝胶体系性能评价 (67) 2.2.2.1机械剪切 (67) 2.2.2.2多孔介质剪切 (68) 2.2.2.3稳定性 (69) 2.2.2.4堵水率 (70) 2.2.2.5选择性封堵能力 (71) 2.2.2.6提高采收率 (71) 2.3调剖剂配方 (73) 2.3.1温度34℃ (73) 2.3.2温度42℃ (74) 2.3.3温度51℃ (75) 3注水井深部调剖段塞结构设计 (77) 3.1调剖剂量 (77) 3.1.1调剖层及调剖厚度 (77) 3.1.2调剖方向 (77) 3.1.3调剖半径 (77) 3.1.4调剖剂量 (77) 3.2段塞结构 (78) 3.3施工原则 (79) 4结论与建议 (80) 4.1结论 (80) 4.2建议 (80)

第三章堵水调剖

课题第三章调剖堵水 第一节调剖堵水的基本概念;第二节调剖堵水提高采收率的原理;第三节调剖堵水剂;第四节压力指数值(PI);第五节适合堵水调剖区块的筛选标准;第六节堵水调剖存在的问题。 学时4学时 教学目标与要求理解掌握调剖与堵水基本概念调剖堵水、提高采收率的基本原理及压力指数的计算;对油井出水原因、危害、出水井的出水方式及出水来源分析判断等有较清楚认识,掌握筛选堵水调剖井的基本方法。 重点 调剖与堵水基本概念、PI指数及调剖堵水提高采收率的基本原理。 难点调剖堵水提高采收率的基本原理、PI指数的计算及出水井的出水方式及出水来源分析判断。 教学方法 与手段 详细讲授与多媒体课件结合,引导学生的思路,课堂互动,激发学生课堂提问发言。 参考资料教师备课参考书 赵福麟编著,《EOR原理》石油大学出版社,2001.7 给学生推荐的参考书 1、叶仲斌编著,《提高采收率原理》,石油工业出版社,2007.8 2、侯吉瑞编著,《化学驱原理与应用》,石油工业出版社,1998.3 3、杨承志等著,《化学驱提高石油采收率》,石油工业出版社,1999.12 4、韩冬、沈平平编著,《表面活性剂驱油原理及应用》,石油工业出版社,2001.8

教学内容及过程 第三章调剖堵水 第一节调剖堵水的基本概念 地层的不均质性使注入水沿高渗透层突入油井。为了提高波及系数,从而提高采收率,必须封堵这些高渗透层。 调剖:从注水井封堵这些高渗透层时,可调整注水层段的吸水剖面叫调剖。 堵水:从油井封堵这些高渗透层时,可减少油井产水叫堵水。 二次采油(即注水或注气)的地层需要调剖堵水,三次采油(即注特殊流体)的地层更需要调剖堵水。 调剖:调整注水油层的吸水剖面。在注水井中注入化学剂,降低高吸水层的吸水量,从而相应提高注水压力,达到提高中低渗透层吸水量,改善注水井吸水剖面,提高注入水体积波及系数,改善水驱状况的工艺技术。 油井出水的危害 (1)消耗油层能量,降低油层的最终采收率; a 油层能量推动水向采油井前进; b 油井见水后,在纵向和横向上推进很不均匀,造成油井过早水淹,波及系数降低; c 出水后井内静水压头增大,影响低压气层的产气量,甚至不产气; d 井底附近含水饱和度升高,降低油气相对渗透率,引起水堵。 (2)降低抽油井的泵效; 产水量增加,抽油井做大量无用功 (3)使管线和设备腐蚀和结垢; a 产出水加剧了H2S和CO2的腐蚀作用; b 产出水中离子在地面条件下结垢。(4)脱水负荷加大; a 产水量增加; b 油水乳化。 (5)污染环境 油井出水方式 油井出水按水的来源有注入水、边水、底水、上层水、下层水、夹层水。 出水层位的确定 A 水化学分析法采出水的化验分析结果来判断地层水和注入水; B 地球物理资料有流体电阻测定法、井温测量和放射性同位素法; C 机械法找水; D 找水仪找水。 减少油井出水的办法:注水井调剖、油井堵水。 化学堵水:选择性堵水、非选择性堵水。 第二节调剖堵水提高采收率的原理 按PT图片举例说明堵水调剖提高采收率的效果,主要从以下几方面讲述堵水调剖提高采收率的基本原理。 -封堵高渗透层 -提高注水压力 -启动高含油饱和度的中、低渗透层 -提高波及系数 第三节调剖堵水剂 一、堵剂的定义 堵剂是指注入地层能起封堵作用的物质。从水井注入地层的堵剂叫调剖剂。从油井注入地层的堵剂叫堵水剂。调剖剂和堵水剂都属堵剂。 调剖剂-从水井注入的、堵水剂-从油井注入的。

相关主题
文本预览
相关文档 最新文档