当前位置:文档之家› 轮式移动机器人课程设计

轮式移动机器人课程设计

轮式移动机器人课程设计
轮式移动机器人课程设计

江苏师范大学连云港校区海洋港口学院

课程设计说明书

课程名称

专业班级

学号姓名

指导教师

年月日

摘要

轮式移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。其中全方位轮可以实现高精确定位、原地调整姿态和二维平面上任意连续轨迹的运动,具有一般的轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要愈义。

本文主要是介绍了技术较为成熟的麦克纳姆全方位轮的运动原理结构,分析了由四个麦克纳姆轮全方位轮组成的全向移动机构的运动协调原理。并将其运用到轮腿复合式的机器人身上,使机器人移动能力更强。设计的主要方面包括(1)移动方式的选择;(2)机器人结构的设计;(3)机器人移动原理的分析;(4)对移动机器人控制系统的简单设计。

关键词: 轮式移动机器人,轮腿复合式,四足

目录

摘要 (1)

1 移动机器人技术发展概况 (1)

1.1 机器人研究意义及应用领域 (1)

1.1.1 机器人的研究意义 (1)

1.1.2 机器人的应用领域 (2)

1.2 移动机器人的发展概况 (2)

1.2.1 移动机器人的国内发展概况 (2)

1.2.2 移动机器人的国外发展概况 (3)

2 轮式移动机器人的结构设计 (5)

2.1轮式移动机器人系统结构 (5)

2.1.1移动方式的选择 (6)

2.1.2机器人移动原理构想 (6)

2.1.3机器人轮子的选择 (7)

2.1.4机器人腿部结构的设计 (8)

2.2轮式移动机器人主要结构 (9)

3 轮式移动机器人的控制系统 (9)

3.1 控制系统硬件选型与配置 (10)

3.1.1 驱动电机的选型 (10)

3.1.2 伺服电机的选型 (11)

3.1.3 轮毂电机的选型 (11)

3.2 轮式移动机器人控制系统框架 (14)

4 结论和总结 (17)

5 致谢 (19)

参考文献 (20)

1 移动机器人技术发展概况

1.1 机器人研究意义及应用领域

随着科学技术的发展,人类的研究活动领域已由陆地扩展到海底和空间。利用移动机器人进行空间探测和开发,己成为21世纪世界各主要科技发达国家开发空间资源的主要手段之一。研究和发展月球探测移动机器人技术,对包括移动机器人在内的相关前沿技术的研究将产生巨大的推动作用。

1.1.1 机器人的研究意义

“机器人产业在二十一世纪将成为和汽车、电脑并驾齐驱的主干产业。”从庞大的工业机器人到微观的纳米机器人,从代表尖端技术的仿人型机器人到孩子们喜爱的宠物机器人,机器人正在日益走近我们的生活,成为人类最亲密的伙伴。机器人技术和产业化在中国具有一定的现实基础和广阔的市场前景。

机器人研究以科技含量高、学科跨度宽、参与面广和展示性强等特点在国际上有着很强的影响力。它涉及人工智能、图像处理、通讯传感、精密机构和自动控制等多领域的前沿研究和技术集成。目前已经形成了一个国际联盟的人工智能和机器人项目开发目标,被世界各国科研机构和众多高等院校所重视。全球化的机器人产业市场也给商家带来了丰厚的利润回报。国内的教育和科研机构也日益关注机器人事业的发展,有关科研工作在深度和规模上逐渐提高,清华大学、中国科技大学等著名高校基本形成了完整的课程体系,对推动高校的科技创新和产学研一体化产生了积极作用,也为提高我国在机器人领域的国际地位作出了积极贡献。

开展机器人研究和参与各项竞赛活动,旨在进一步加强未成年人思想道德教育,提高广大青少年的科学素养,发展自身潜能,引导更多的大中小学生关注科技、热爱科技、走进科技,涌现出更多的未来科学家和未来工程师。在积极推进基础教育和高等教育改革的过程中,渗透科学技术教育,努力培养大中小学学生的实践能力和创新精神,造就适应21 世纪全球科技、经济发展需要的新一代。

机器人研究不但能吸引一大批电子信息产业制造商、销售商、金融投资机构和技术服务机构提供产品和服务,而且还促进了知名科研机构、高等院校与高科

技企业的合作交流,共同发展。通过大赛期间举办学术研讨等活动,众多专家学者齐聚一堂,探讨我国自动化技术和信息技术的发展趋势,为推动产业发展出谋献策,领衔助跑。

1.1.2 机器人的应用领域

随着科学技术的发展,人类的研究活动领域已由陆地扩展到海底和空间。利用移动机器人进行空间探测和开发,己成为21世纪世界各主要科技发达国家开发空间资源的主要手段之一。研究和发展月球探测移动机器人技术,对包括移动机器人在内的相关前沿技术的研究将产生巨大的推动作用。

移动机器人是一种能够通过传感器感知外界环境和自身状态,实现在有障碍物的环境中面向目标的自主运动,从而完成一定作业功能的机器人系统。近年来,由于移动机器人在工业、农业、医学、航天和人类生活的各个方面显示了越来越广泛的应用前景,使得它成为了国际机器人学的研究热点。20世纪90年代以来,以研制高水平的环境信息传感器和信息处理技术,高适应性的移动机器人控制技术,真实环境下的规划技术为标志,开展了移动机器人更高层次的研究。目前,移动机器人特别是自主机器人已成为机器人技术中一个于分活跃的研究领域[1]。

1.2 移动机器人的发展概况

1.2.1 移动机器人的国内发展概况

机器人技术的发展从无到有,从低级到高级,随着科学技术的进步而不断深入发展。移动式机器人特别是自主式移动机器人已成为机器人研究领域的中心之一。

移动式机器人的研究现状主要体现在四个方面。一是机器人的体系结构。目前根据实现机器人感知、决策、行为等功能的不同分为分层递阶结构、行为系统、黑板系统三种体系结构。二是信息感知,这主要来源于传感器。目前移动式机器人主要使用的传感器有声纳、红外、激光扫描、摄像机和陀螺等,主要采用多传感器融合的技术来获得信息。三是移动机器人的控制。目前移动式机器人主要应用基于机器人几何中心或轮轴线中心的时间微分方程的运动学模型建模,应用推算航行法与外部传感器获得的信息进行融合的方式定位,利用神经网络的学习和容错能力对移动式机器人控制和基于规则的模糊控制机器人运动。四是路径规

划,这是导致机器人能否实现最终目标的关键。根据规划时所利用的信息的不同路径规划可分为基于模型的规划和基于情形的规划。

移动式机器人的未来是朝着智能化,情感化发展的,影响移动式机器人发展的主要因素有:导航与定位,多传感器信息的融合,多机器人协调与控制策略等。中国与国外相比,目前还存在一定的差距,虽然掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,但可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距。中国的智能机器人和特种机器人也取得了不少成果。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步。随着社会文明程度的提高,对机器人的要求也会越来越高。中国要做好充分的准备迎接新的技术挑战。

1.2.2 移动机器人的国外发展概况

美国国家科学委员会曾预言 : “ 20 世纪的核心武器是坦克 ,21 世纪的核心武器是无人作战系统 , 其中2000 年以后遥控地面无人作战系统将连续装备部队 ,并走向战场”。为此 , 从 80 年代开始 , 美国国防高级研究计划局(DARPA) 专门立项 , 制定了地面天人作战平台的战略计划。从此 , 在全世界掀开了全面研究室外移动机器人的序幕 , 如 DARPA 的“战略计算机”计划中的自主地面车辆 (ALV) 计划 (1983 — 1990) , 能源部制订的为期 10 年的机器人和智能系统计划 (RIPS) (1986 —1995) , 以及后来的空间机器人计划 ; 日本通产省组织的极限环境下作业的机器人计划 ; 欧洲尤里卡中的机器人计划等。

初期的研究 , 主要从学术角度研究室外机器人的体系结构和信息处理 , 并建立实验系统进行验证。虽然由于 80 年代对机器人的智能行为期望过高 , 导致室外机器人的研究未达到预期的效果 , 但却带动了相关技术的发展 , 为探讨人类研制智能机器人的途径积累了经验 , 同时 , 也推动了其它国家对移动机器人的研究与开发。进入 90 年代 , 随着技术的进步 , 移动机器人开始在更现实的基础上 , 开拓各个应用领域 , 向实用化进军。

由美国 NASA 资助研制的“丹蒂 II ”八足行走机器人 , 是一个能提供

对高移动性机器人运动的了解和远程机器人探险的行走机器人。它与其他机器人 , 如NavLab , 不同之处是它于 1994 年在斯珀火山的火山口中进行了成功的演示 , 虽然在返回时 , 在一陡峭的、泥泞的路上 , 失去了稳定性 , 倒向了一边 , 但作为指定的探险任务早己完成。其它机器人在整个运动过程中 , 都需要人参与或支持。丹蒂计划的主要目标是为实现在充满碎片的月球或其它星球的表面进行探索而提供一种机器人解决方案。美国 NASA 研制的火星探测机器人索杰那于 1997年登上火星 , 这一事件向全世界进行了报道。为了在火星上进行长距离探险 , 又开始了新一代样机的研制 , 命名为 Rocky7, 并在Lavic 湖的岩溶流上和干枯的湖床上进行了成功的实验。

德国研制了一种轮椅机器人 , 并在乌尔姆市中心车站的客流高峰期的环境和 1998 年汉诺威工业商品博览会的展览大厅环境中进行了实地现场表演。该轮椅机器人在公共场所拥挤的、有大量乘客的环境中 , 进行了超过 36 个小时的考验 , 所表现出的性能是其它现存的轮椅机器人或移动机器人所不可比的。这种轮椅机器人是在一个商业轮椅的基础上实现的。

从最早出现的机器人到现在涌现出的形态各异的移动小车,其移动机构的形式层出不穷,以美国、俄罗斯、法国和日本为首的西方发达国家己经研制出了多种复杂奇特的三维移动机构,有的已经进入了实用化和商业化阶段[2] [3]。面对21世纪深空探测的挑战,对各种自主系统的研制是必须的,而移动机构又是各种自主系统的最基本和最关键的环节。

已经出现的移动机器人的移动机构主要有履带式、腿式和轮式,其中以轮式的效率最高,但其适应能力相对较差,而腿式的适应能力最强但其效率最低[4]。

履带式移动机构是将圆环状的循环轨道卷绕在若干车轮外,使车轮不直接与地面接触,利用履带可以缓和地面的凹凸不平。它具有良好的稳定性能、越障能力和较长的使用寿命,适合在崎岖的地面上行使。但由于沉重的履带和繁多的驱动轮使得整体机构笨重,消耗的功率也相对较大[5]。

腿式移动机构基本上是模仿人或动物的下肢机构形态而制成的。因其出色的地面适应能力和越野能力,曾经得到很多机器人专家的广泛重视,在其开发和研制上投入了大量的时间和精力,也取得了较大的成果。从移动的方式上来看,腿式移动机器人可分为两种:动态行走机器人和静态行走机器人。根据腿的数量又

可进行分类,如四腿移动机器人六腿移动机器人。腿式机器人虽然具有较强的越野能力,但结构比较复杂,运动控制的难度较大,而且移动速度较慢[6]。

轮式移动机构具有运动速度快、能量利用率高、结构简单、控制方便和能借鉴至今已很成熟的汽车技术等优点,只是越野性能不太强。但随着各种各样的车轮底盘的出现,如日本NASDA的六轮柔性底盘月球漫游车LRTV,俄罗斯TRANSMASH 的六轮三体柔性框架移动机器人Marsokohod,美国CMU的六轮三体柔性机器人Robby系列以及美国JPL的六轮摇臂悬吊式行星漫游车Rocky系列,已使轮式机器人越野能力大大增加,可以和腿式机器人相媲美。于是人们对机器人机构研究的重心也随之转移到轮式机构上来,特别是最近日本开发出一种结构独特的五点支撑悬吊结构Micros,其卓越的越野能力较腿式机器人有过之而不及[6-8]。

轮式结构按轮的数量分可分为二轮机构、三轮机构、四轮机构、六轮以及多轮机构。二轮移动机构的结构非常简单,但是在静止和低速时非常不稳定。三轮机构的特点是机构组成容易,旋转中心是在连接两驱动轮的直线上,可以实现零回转半径。四轮机构的运动特性基本上与三轮机构相同,由于增加了一个支撑轮,运动更加平稳。以上几种轮式移动机构的共同特点是它们所有的轮子在行驶过程中,只能固定在一个平面上,不能作上下调整,因此,地面适用能力差。一般的六轮机构主要就是为了提高移动机器人的地面适应能力而在其结构上作了改进,增加了摇臂结构,使得机器人在行驶过程中,其轮子可以根据地形高低作上下调整,从而提高了移动机器人的越野能力[9]。

2 轮式移动机器人的结构设计

2.1轮式移动机器人系统结构

已经出现的移动机器人的移动机构主要有履带式、腿式和轮式,其中以轮式的效率最高,但其适应能力相对较差,而腿式的适应能力最强但其效率最低。式移动机构在救灾机器人中是最为普通的运动方式,轮式机器人移动机构普遍具有结构简单、运动速度快、能源利用率高的、机动性好强的特点,同时具有自重轻、不损坏路面、作业循环时间短和工作效率高等优势。控制的角度看,编程简单并有较高的可靠性,每个轮子都可以独立驱动。与履带式移动机器人相比,当跨越不平坦地形时,轮式机器人有着固有的不足,限制了其运动能力,其稳定性和对环境的适应性完全依赖于环境本身的状况,对于进入复杂的环境完成既定任务存在严重的困难。轮式移动机构按轮的数量可分为2轮、3轮、4轮、6轮、8轮。该结构存在着一定的局限性,只能在相对平坦、表面较硬的路面上行驶,如遇到

软性地面(如沼泽、草地、雪地、沙地等)容易打滑、沉陷,但可根据具体地面环境采用一些预防措施来缓解该类情况的出现,如采用不同种类的款式轮胎以提高其越野能力,象沙漠车辆、山地车辆等。

2.1.1移动方式的选择

现在主流的移动方式基本是轮式,腿式,和履带式,但由于其各有各的优点

与缺点,现在的科学家越来越追求综合性能的提高。轮式移动机构具有运动速度

快、能量利用率高、结构简单、控制方便和能借鉴至今已很成熟的汽车技术等优

点,只是越野性能不太强。而腿式移动结构虽然有很好的越野能力,但是结构复

杂,效率低等缺点。对于履带式主要是由于沉重的履带和繁多的驱动轮使得整体

机构笨重,消耗的功率也相对较大。

针对本次设计的环境主要是人为环境,地势较平坦,但也需要对台阶、楼梯

等障碍物进行考虑,所以我打算设计轮腿结合式的移动方式,在平坦的道路利用

轮式结构效率高,迅速等优点,在需要上台阶,上楼梯等地方采用腿式结构进行

越障。由于机器人中含腿式结构且需要上台阶和爬楼梯所以采用四腿结构,这是

因为虽然对于台阶就算是轮式结构也能满足要求,但是对于爬楼梯轮式结构就不

行了,所以需要腿式结构的存在,生活中楼梯随处可见,如果要使机器人有较好

的环境适应能力,上楼梯是必须要克服的。我决定选择四轮腿式结构,而基本结

构如图2.1。中间为机器人主体,里面有机器人的控制系统和驱动上肢转动的电

机,四肢末端为轮胎,机器人每条腿都分为上肢和下肢,中间为关节,下肢可绕

其转动。

2.1.2机器人移动原理构想

由于环境较好,基本属于平坦地面,故主要移动方式为轮式移动,在需要上

台阶或楼梯是才使用腿式结构,这是因为腿式结构效率较低,只在必须使用腿式

结构的时候才使用,这样既能提高机器人的移动效率,也能是机器人有较好的越

障能力。在平路上的移动原理将在2.1.3节讲述,对于上台阶与爬楼梯的原理基

本相同,故我只说明我对爬楼梯的移动原理的构想。

首先是要在机器人机身上安装传感器,使其能够感应到前面的障碍物楼梯,然后就是爬楼梯的过程。在准备爬楼梯的时候,首先要把轮子上的刹车系统启动,是轮子不能转动。然后爬楼梯的过程如同人走楼梯一样,先轮流上前脚,等前脚站稳,再轮流上后脚。

2.1.3机器人轮子的选择

现在市面上的轮子有很多,有标准轮,小脚轮,麦克纳姆轮,球形轮,正交轮等。我决定选用麦克纳姆轮,因为它能很好的向各个方向移动且没有球形轮那么难控制,而且现在麦克纳姆轮的制作也比较成熟,下面是麦克纳姆轮的原理与协调运动原理:

麦克纳姆外形像一个斜齿轮,轮齿是能够转动的鼓形辊子,辊子的轴线与轮的轴线成α角度。这样的特殊结构使得轮体具备了三个自由度:绕轮轴的转动和沿辊子轴线垂线方向的平动和绕辊子与地面接触点的转动。这样,驱动轮在一个方向上具有主动驱动能力的同时,另外一个方向也具有自由移动(被动移动)的运动特性。轮子的圆周不是由普通的轮胎组成,而是分布了许多小滚筒,这些滚筒的轴线与轮子的圆周相切,并且滚筒能自由旋转。当电机驱动车轮旋转时,车轮以普通方式沿着垂直于驱动轴的方向前进,同时车轮周边的辊子沿着其各自的轴线自由旋转。

图2.2为采用全方位移动机构的车轮组合情况,轮中的小斜线表示触地辊子的轴线方向。每个全方位轮都由一台直流电机独立驱动,通过四个全方位轮的转速转向适当组合,可以实现机器人在平面上三自由度的全方位移动。4个全方位轮组成的机器人底座的力分析如图,其中为轮子滚动时小辊子受到轴向的摩擦力;为小辊子做从动滚动时受到的滚动摩擦力;ω为各轮转动的角速度。

图2.2 组合运动图

2.1.4机器人腿部结构的设计

我设计的腿部分为上肢和下肢两个部分,上肢连接着机器人的主体和下肢,下肢连接着轮胎,由于要使机器人腿能够满足运动要求,所以还需在上肢与机器人主体连接处设计一个关节,一个使腿部结构能在机器人侧面平面旋转360度,如图2.4所示。而且由于要控制转动和其转动的角度故需要在上肢与下肢关节处安装小型电机,所以要留出空间安装电机和线路。

图 2.3

对于下肢部分,由于麦克纳姆轮可以进行全方位的移动,故不需要加入关节,但需要加入刹车系统,以保证及时停车和在使用腿部功能时不发生滚动,同时在下肢与轮胎连接处设计平台安放电机,使其驱动轮胎转动。一个轮胎对应一个电机,这样才能通过改变每个轮胎的转速来控制方向等复杂的移动。

下肢除了像上肢一样的结构外,多加了两个在旁边的箱体结构,并且下部分较宽大是用来与轮胎相连。上面的箱体是用力啊装一个小型电机,通过下肢上端两个

同轴的孔与一根轴相连,来控制下肢绕上肢的转动,而箱体的旁边上端的孔是用来通过电线。下面的箱体是存放控制轮胎的电机,右边有用来安放齿轮的空间和通孔来固定齿轮。下肢两个竖直的同轴孔也是用来通过电线的。下肢总长约1米,下肢主体宽度约20厘米。

2.2轮式移动机器人主要结构

主体结构为机器人的主要结构,里面包括了控制系统,四个驱动电机以及一些传感器,传感器包括有红外传感器,压敏传感器,声音传感器等用来充当机器人的眼睛、触觉和听觉功能。结构主要为一箱体结构,里面按需要放置电机及系统硬件。我构想的主体结构如图2.8所示。

图 2.4

图2.4中整个主体是没有加上任何传感器和装置的外壳,四个小箱体是安放控制上肢的电机,旁边的孔是用来通过电线的,大箱体中间是安放控制系统的电板。在整个零配件都安放好以后可在上方添加一块板用来保护内部元件。按照我的设想,在这个机器人的基础上可以在主体上方添加其他功能。主体长1.5米宽0.5米高0.3米。

3 轮式移动机器人的控制系统

由于本次研究主要内容为机器人结构设计,而且在大学阶段没有对相关知识的学习,使得我不能对机器人的控制系统做出设计,以下仅仅是我参考别人的设计并对我的机器人控制系统的想法。

3.1 控制系统硬件选型与配置

移动机器人的运动控制系统是机器人系统的执行机构,对系统精确地完成各项任务起着重要作用,有时也可作为一个简单的控制器。构成机器人运动控制系统的要素有:计算机硬件系统及控制软件、输入/输出设备、驱动器、传感器系统。

3.1.1 驱动电机的选型

步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。

步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。其基本原理作用如下:

(1)控制换相顺序

通电换相这一过程称为脉冲分配。例如:三相步进电机的三拍工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A,B,C,D相的通断。

(2)控制步进电机的转向

如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。

(3)控制步进电机的速度

如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整单片机发出的脉冲频率,就可以对步进电机进行调速。

步进电机是依靠有序的步进脉冲运动的,利用单片机控制步进电机运动是非常适合的。整个系统包含PIC16F877,步进电机驱动器L298和步进电机。本设计是单片机控制两台步进电机。PIC16f877单片机的作用是接受命令,完成相应的功能,并作为脉冲逻辑分配器,输出步进电机所需要的时序脉冲。步进电机可以向任意方向旋转和停止,实现了所谓“位置控制”的动作。每个输入脉冲决定了步进电机转动的角度。步进电机只是根据输入脉冲数旋转和停止,适合于位置控制,把运动所必需的脉冲数,以动作所需要的速度输入给电机,就能够正确的控制位置而运动。

步进电机的运行要有一个电子装置进行控制,这个装置就是步进电机驱动

器,它是将控制系统发出的脉冲信号放大以驱动步进电机。步进电机的转速与脉冲信号的频率成正比,控制脉冲信号的频率可以对电机精确调整;控制脉冲数可以对电机精确定位。选择步进电机为移动机器人驱动电机。上层系统计算移动机器人的角度和距离等信息传给下层系统,通过分析得到机器人的运动状态,计算等到轮子的步数等。完成软件的编写,实现了对步进电机的预期控移动机器人的两个重要部分(视觉处理和运动控制)。

3.1.2 伺服电机的选型

所有的主控制功能是微处理器,驱动为DA模拟转换器,以产生一个模拟扭矩需求信号。从这个角度上,这台机器非常很像一个模拟伺服放大器。反馈的信息是来自隶属该电机轴的一个编码器。编码器生成脉冲流可确定传输路程,并通过计算脉冲频率,是可以测定转速的。

数码驱动通过求解一系列的方程式,履行同样类似的功能。微处理器是与数学模型(或“算法")的等效的编程模拟系统。这模型预测系统的行为。它响应一个给定输入的信号并产生速度。它同样也考虑到额外信息如输出速度,速率转变中的投入和各种调校设定。解决所有方程需数额需有限的时间,即使是一个快速的处理器一次处理通常也是100ms和2ms之间。在此之间,在改变输入或输出,先前的计算值将有没有回应时,扭矩要求必须保持恒定。因此更新时间成为数字伺服和一台高性能系统关键的因素,它必须保持及时更新[4]。调试数字伺服电机可按钮或从一个计算机或终端调试。电位器调整是涉及的。调试数据是设置在伺服算法的各种系数,因此,它决定了系统的性能。即使如果调谐进行使用按钮,终值也可以上传到终端,让其进行简单的重复。

在某些应用中,因负载惯量各异,例如一个机器手臂卸载后又带有沉重的负荷。改变惯性可能是一个系数为20或以上,而这样的变化需要该驱动器重新调整,以保持其稳定。这只不过是在操作系统的适当点通过发送新的调试参数来实现的。

3.1.3 轮毂电机的选型

图3-2为轮子的示意图,设移动机器人与跟踪物体的原始距离为1L ,上层系统传送移动机器人与跟踪物体的距离为2L ,则移动机器人运动的距离为L=2L -1L 。设计选用步进角为1.8°的步进电机。

轮子转动的角度为: R

L =σ (3-1) 步进电机的步数位: 8.1σ=n (3-2)

当1L =2L 时,机器人不运动,步进电机没有转动。

图3-3为移动机器人直线运动示意图,当移动机器人的上层传达一个角度为a=0°时,在直角坐标系上,没有往X 轴上有分量,移动机器人则直线运动。当L>0时,移动机器人前进。当L<0时,移动机器人后退。当移动机器人直线运动时,左轮和右轮保持相同的速度运动和转向[5]。则轮子移动的距离就是移动机器人与跟踪物体的距离。则步进电机的步数位: R

L n 8.1= (3-3)

图3-4为机器人前进并转弯运动示意图,当机器人上层系统传送“机器人旋转a °和L>0”的命令时,则移动机器人从X1-Y1坐标系运动到X2-Y2坐标系。

移动机器人先完成转弯在进行前进。在转弯时,从图可知左轮为正转,右轮为反转。轮子移动的距离为:

S=a ×r (3-4)

则轮子移动的角度为:

R r a ?=σ (3-5)

则驱动步进电机的脉冲数为:

R r a n ??=8.1 (3-6)

转弯完成后,移动机器人为直线运动。左轮为正转,右轮为正转。公式参考4-3.

移动机器人前进左转和后退转弯时,我们可以参照前进右转时计算。

对本类移动机器人的控制就是通过控制算法求出轮子的步速,通过改变单片机输出的脉冲波,完成对移动机器人的底层控制。

3.2 轮式移动机器人控制系统框架

移动机器人控制系统的任务根据移动机器人所要完成的功能以及从传感器反馈回来的信号支配机器人的执行机构完成机器人的工作目标。控制系统由机器人所要达到的功能、机器人的本体结构和机器人的控制方式决定的。

移动机器人的运动控制系统是机器人系统的执行机构,对系统精确地完成各项任务起着重要作用,有时也可作为一个简单的控制器[10]。构成机器人运动控制系统的要素有:计算机硬件系统及控制软件、输入/输出设备、驱动器、传感器系统,它们之间的关系如图1.1所示[11]。

图3.5机器人控制系统构成要素

机器人控制系统一般要满足一下几个基本要求:

(1)制系统的小型化、轻型化、标准化、模块化。由于机器人控制系统是放置于机器人本体上的,为了方便安装和连接,要求控制系统尽可能小型化;同日寸要求控制系统尽可能做到轻型化,这样可以减轻机器负载,减少系统的功耗;另外,为了系统口常的维护目_具有良好的可扩展性,系统尽可能的标准化、模块化;

(2)有良好的可靠性。由于干扰信号会影响机器人的正常工作,因此要考虑软硬件任务的分配和选择接地、隔离、屏蔽以及工艺性等方面的因素;

(3)系统有很好的稳定性。稳定性是控制系统的基本要求,机器人运动中首要和基本的问题是实现稳定的行走。

根据移动机器人控制系统的设计要求,结合本机器人的系统功能和特点,按

照模块化的设计思想,提出了机器人控制系统总体设计方案。如下图所示: 控制系统总体设计方案

该方案是以ATmega128芯片为核心,分模块化设计,各子模块功能为:

(1)微处理器模块:是控制系统的核心,包括微控制器及其相关外围电路主要进行各种信息、数据的处理,协调系统中各功能模块完成预定的任务;

(2)驱动模块:控制机器人系统中的舵机和传感器模块预定的任务;实现舵机速度和位置的控制,完成前进、后退、直行、转弯、避障、抓取等动作;

(3)传感器模块:有速度、位置、距离、声音等传感器,主要负责移动机器人移动过程中的障碍物、声音等检测;

(4)电源模块:负责整个移动机器人的电源供给,使系统能离线运动,主要由12V蓄电池及相关调压稳压电路组成;

(5)串口通信模块:根据RS232通信标准与上位机进行串口通信;

(6)JTAG调试:可以实现在线编程、调试仿真。

控制系统的总体方案确定之后,就要进行系统的硬件电路设计和软件程序设计[20]。

图3.6 控制系统总体方案

我的机器人每个腿部共有三个驱动电机,分别控制了上肢的转动,下肢绕上肢转动,和轮胎的转动。由于机器人是轮腿结合的,所以在使用足式移动时,需

将轮胎刹住,不能让其转动。同时每个AX-12舵机都能控制角度,所以可以使腿部的转动完全受控制,不会受重力或惯性影响。

我的机器人最长可达2米的样子,最高可达1.3米左右,在使用轮式移动时,根据环境条件来控制机器人的高度和长度来进行移动。对于台阶及楼梯则采用足式移动,对于台阶,首先机器人重心要稍偏低,然后先抬起一只前脚上台阶,等站稳后在上另一只前脚,之后再向前走一小短距离,这里通过红外感应来测距,决定前进多少之后再开始抬起一只后脚上台阶,最后是另一只后脚上台阶。对于上楼梯,过程差不多只不过由于楼梯宽度只比轮胎大一些所以没有上完前脚再往前走的那一步,而是接着上后脚,当然上楼梯时机器人的角度要把握好防止机器人摔下楼梯。爬楼梯过程图应像图4.4和图4.5所示:

图3.4机器人以协调步态爬越楼梯

图3.7机器人楼梯爬越实验[18]

在避障和选择路线上我的想法是这样的,机器人系统可以通过传感器来测量周围环境,并对环境建立三维模型,然后通过对环境的分析来选择路线,然后再经过多少的距离就重新对环境建模来及时更新环境模型选择路线和动作,之前不久的模型也要同时进行考虑,这样就能够很好的完成任务。以我现在的知识,我觉得人很难把机器人系统做的能像人脑一样进行思考,所以就很难做出完全符合要求的机器人。但是要做出能完成某项任务的机器人我觉得还是很可行的,所以我们要不断在这方面进行研究,以期望做出更有能力的机器人。

4 结论和总结

我的设计经过我阅读一些关于移动机器人的文献资料,设计出了一种轮腿结合式的移动机器人,它有较好的越障能力。设计主要完成了一下内容:(1)根据自己的想法和对一些资料的研究,选择了四足的轮腿式移动方式,并对其移动原理进行了分析。

(2)靠自己不成熟的想法设计了一种机器人结构,并完成了零件的3维图形和3维装配图。

(3)对机器人的控制系统进行了简单的设计,里面还有诸多问题没有解决。

在对移动方式的选择上我首先就选择了麦克纳姆轮,因为麦克纳姆轮工艺已经比较成熟,而且能全方位移动。然后对其原理进行了阐述。接着是机器人的结

轮式移动机器人结构设计论文

轮式移动机器人的结构设计 摘要:随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。本课题是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 本文介绍了已有的机器人移动平台的发展现状和趋势,分析操作手臂常用 的结构和工作原理,根据选定的方案对带有机械臂的全方位移动机器人进行本 体设计,包括全方位车轮旋转机构的设计、车轮转向机构的设计和机器人操作 臂的设计。要求全方位移动机构转向、移动灵活,可以快速、有效的到达指定 地点;机械臂操作范围广、运动灵活、结构简单紧凑且尺寸小,可以快速、准 确的完成指定工作。设计完成后要分析全方位移动机构的性能,为后续的研究 提供可靠的参考和依据。 关键字:机器人移动平台操作臂简单快速准确

Structure design of wheeled mobile robots Abstract:with the robot technology in an alien exploration, field survey, military and security new areas to be increasingly widely adopted, robot technology by indoor, outdoor by fixed, to move towards artificial environment, the artificial environment. This topic is the basic link, robot design for the follow-up about robots can provide valuable reference and useful ideas platform. This article summarizes the existing robot mobile platform development status and trends of operating the arm structure and principle of common, According to the selected scheme of mechanical arm with ontology omni-directional mobile robots designed, including the design of all-round wheel rotating mechanism, wheel steering mechanism of design and the design of robot manipulator. Request to change direction, move the omni-directional mobile institution, can quickly and effectively flexible the reaches the specified location; Mechanical arm operation scope, sports flexible, simple and compact structure and size is small, can quickly and accurately completed tasks. The design is completed to analyze the performance of the omni-directional mobile institutions for subsequent research, provide reliable reference and basis. Keywords: Robot mobile platform manipulator simple accurate and quick

外文翻译--轮式移动机器人的导航与控制

毕业设计(论文)外文 资料翻译 系部:机械工程 专业:机械工程及自动化 姓名: 学号: 外文出处:Control and (用外文写) Robotics(CRB) Technical Report 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 轮式移动机器人的导航与控制 摘要:本文研究了把几种具有导航功能的方法运用于不同的控制器开发,以实现在一个已知障碍物前面控制一个开环系统(例如:轮式移动机器人)执行任务。第一种方法是基于三维坐标路径规划的控制方法。具有导航功能的控制器在自由配置的空间中生成一条从初始位置到目标位置的路径。位移控制器控制移动机器人沿设置的路径运动并停止在目标位置。第二种方法是基于二维坐标路径规划的控制方法。在二维平面坐标系中建立导航函数,基于这种导航函数设计的微控制器是渐进收敛控制系统。仿真结果被用来说明第二种控制方法的性能。 1介绍

很多研究者已经提出不同算法以解决在障碍物杂乱的环境下机器人的运动控制问题。对与建立无碰撞路径和传统的路径规划算法,参考文献[19]的第一章第九部分中提供了的全面总结。从Khatib在参考文献[13]的开创性工作以来,很显然控制机器人在已知障碍物下执行任务的主流方法之一依然是构建和应用位函数。总之,位函数能够提供机器人工作空间、障碍位置和目标的位场。在参考文献[19]中提供对于位函数的全面研究。应用位函数的一个问题是局部极小化的情况可能发生以至于机器人无法到达目标位置。不少研究人士提出了解决局部极小化错误的方法(例如参考文献[2], [3],[5], [14], [25])。其中Koditschek 在参考文献[16]中提供了一种解决局部极小化错误的方法,那是通过基于一种特殊的位函数的完整系统构建导航函数,此函数有精确的数学结构,它能够保证存在唯一最小值。 在针对标准的 (完整的)系统的先前的结果的影响下, 面对更多的具有挑战性的非完整系统,越来越多的研究集中于位函数方法的发展(例如.,机器人)。例如, Laumond 等人 [18] 用几何路线策划器构建了一条忽略机器人非完全约束 的无障碍路线, 然后把几何线路分成更短的线路来满足非完全限制,然后应用最佳路线来减少路程。在 [10] 和 [11]中, Guldner 等人使用间断变化的模式控制器迫使机器人的位置沿着位函数的负倾斜度变动,及其定位与负倾斜度一致。在[1], [15], 和 [21]中,持续的位场控制器也保证了位函数的负倾斜度的位置追踪和定位追踪。在[9]中,面对目标因为周边的障碍物而不能达到这一情况时,Ge和Cui 最近提出一种新的排斥的位函数的方法来解决这一问题。在 [23]和[24]中, Tanner 等人采用[22] 中提出的导航函数研究和偶极位场概念为一个 不完全移动操纵器建立导航函数控制器。特别是, [23] 和 [24] 中的结果使用了间断控制器来追踪导航函数的负倾斜度, 在此过程中,一个不平坦的偶极位场使得机器人按照预想的定位拐入目标位置。 本文介绍了为不完全系统达到导航目标的两种不同的方法。在第一个方法中, 产生了一个三维空间似导航函数的预想的轨道,它接近于机器人自由配置空间上的唯一最小值的目标位置和定位。然后利用连续控制结构使机器人沿着这条路线走,在目标位置和定位点停下(例如,控制器解决一体化的追踪和调节问题)。这种方法特别的地方是机器人根据预想的定位到达目标位置,而不需要像许多先前

轮式移动机器人结构设计开题报告

毕业设计(论文)开题报告 题目轮式移动机器人的结构设计 专业名称机械设计制造及其自动化 班级学号 学生姓名 指导教师 填表日期2011 年 3 月 1 日

一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动。其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整。由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 二、国内外研究概况及发展趋势 2.1 国外全方位移动机器人的研究现状 国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两 组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推

轮式移动机器人课程设计

江苏师范大学连云港校区海洋港口学院 课程设计说明书 课程名称 专业班级 学号姓名 指导教师

年月日

摘要 轮式移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。其中全方位轮可以实现高精确定位、原地调整姿态和二维平面上任意连续轨迹的运动,具有一般的轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要愈义。 本文主要是介绍了技术较为成熟的麦克纳姆全方位轮的运动原理结构,分析了由四个麦克纳姆轮全方位轮组成的全向移动机构的运动协调原理。并将其运用到轮腿复合式的机器人身上,使机器人移动能力更强。设计的主要方面包括(1)移动方式的选择;(2)机器人结构的设计;(3)机器人移动原理的分析;(4)对移动机器人控制系统的简单设计。 关键词: 轮式移动机器人,轮腿复合式,四足

目录 摘要 (1) 1 移动机器人技术发展概况 (1) 1.1 机器人研究意义及应用领域 (1) 1.1.1 机器人的研究意义 (1) 1.1.2 机器人的应用领域 (2) 1.2 移动机器人的发展概况 (2) 1.2.1 移动机器人的国内发展概况 (3) 1.2.2 移动机器人的国外发展概况 (4) 2 轮式移动机器人的结构设计 (7) 2.1轮式移动机器人系统结构 (7) 2.1.1移动方式的选择 (7) 2.1.2机器人移动原理构想 (8) 2.1.3机器人轮子的选择 (9) 2.1.4机器人腿部结构的设计 (10) 2.2轮式移动机器人主要结构 (11) 3 轮式移动机器人的控制系统 (12) 3.1 控制系统硬件选型与配置 (12) 3.1.1 驱动电机的选型 (12)

轮式移动机器人结构设计开题报告

一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动。其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整。由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 二、国内外研究概况及发展趋势 2.1 国外全方位移动机器人的研究现状 国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两 组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推

基于 ROS 平台的移动机器人的设计与运动仿真

基于ROS 平台的移动机器人的设计与运动仿真摘要:ROS 究竟是如何工作的呢?ROS 中每一套算法是独立的一个包,包与包之间的数据交换主要采用TCP/IP 协议(对用户隐藏,用户需要发布或订阅主题以提供或取得数据),采用这种形式是由于ROS 的算法包是由全世界不同的个人,学校或实验室贡献的,这样做可以降低耦合性,如果一个node 崩溃不会影响到其他。基于ROS 这个平台,有助于提高开发设计的效率及降低成本。本论文主要阐述了基于ROS 平台移动机器人设计的基本原理和方法,并对移动机器人进行了运动仿真,得到其运动轨迹和控制方法,为后续项目的进一步研究打下了一定的基础。 0引言 ROS 被称为机器人操作系统,其实ROS 充当的是通信中间件的角色,即在已有操作系统的基础上搭建了一整套针对机器人系统的实现框架。ROS 还提供一组实用工具和软件库,用于维护、构建、编写和执行可用于多个计算平台的软件代码。 值得一提的是,ROS 的设计者考虑到各开发者使用的开发语言不同,因此ROS 的开发语言独立,支持C++,Python 等多种开发语言。因此,除了官方提供的功能包之外,ROS 还聚合了全世界开发者实现的大量开源功能包,如思岚科技(SLAMTEC)就发布了针对其 自主研发的激光雷达RPLIDAR 的ROS 功能包rplidar_ros。这些开源功能包与ROS 一起构成了强大的开源生态环境。 ROS 的系统结构设计也颇有特色,ROS 运行时是由多个松耦合的进程组成,每个进程ROS 称之为节点(Node),所有节点可以运行在一个处理器上,也可以分布式运行在多个处理器上。在实际使用时,这种松耦合的结构设计可以让开发者根据机器人所需功能灵活添加各个功能模块。 1理论分析 1.1控制电机转动 电机的控制我们分为两部分,一部分为电机转动方向的控制,另一个为电机转速的控制。电机转动的方向我们用两个MCU 引脚来控制,假如PIN_A=1,PIN_B=0 时,电机正转; PIN_A=0,PIN_B=1 时,电机反转;PIN_A=0,PIN_B=0 时,电机停止。电机速度的控制则需要一个PWM 输出引脚,我们通过控制输出不同的PWM 值来控制电机转动的速度。

轮式移动机器人课程设计 (2)

目录 目录 (1) 摘要 (2) 1.移动机器人技术发展概况 (3) 1.1机器人研究意义及应用领域 (3) 1.1.1机器人的研究意义 (3) 1.1.2 机器人的应用领域 (3) 1.2移动机器人的发展概况 (4) 1.2.1移动机器人的国内发展概况 (4) 1.2.2移动机器人的国外发展概况 (4) 2.轮式移动机器人的结构设计 (7) 2.1移动机器人的系统结构 (7) 2.2轮式移动机器人主要结构 (7) 3.轮式移动机器人的控制系统 (11) 3.1控制系统硬件选型与配置 (11) 3.1.1驱动电机的选型 (11) 3.1.2伺服电机的选型 (12) 3.1.3轮毂电机的选型 (13) 3.2轮式移动机器人控制系统框架 (15) 4.结论和总结 (17) 致谢 (18) 参考文献 (19) 附录 (21)

摘要 移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。 论文内容包括四个部分:简要介绍了移动机器人研究现状、对所设计移动机器人系统进行了描述、视觉导航轮式移动机器人底层硬件设计和视觉轮式移动移动机器人的底层控制。 论文详细地介绍了移动机器人底层硬件系统元件的选型和原理电路图的设计。我们选用PIC16F877单片机作为下位机接收上位机传来的命令和产生驱动信号。步进电机的驱动电路采用两个步进电机驱动器-L298,驱动程序写入PIC16F877单片机,通过程序控制步进电机的转速和转向。采用Propel 设计了底层控制系统的原理图和PCB版图,采用Proteus进行程序和硬件系统的仿真。仿真结果表明:步进电机运行稳定、可靠性高,实现了对步进电机的预期控制。 关键词:移动机器人;运动控制;PIC16F877;步进电机

六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

基于视觉导航的轮式移动机器人设计方案

基于视觉导航的轮式移动机器人设计方案第一章移动机器人 §1.1移动机器人的研究历史 机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器)。1962年,美国Unimation公司的第一台机器人Unimate。在美国通用汽车公司(GM)投入使用,标志着第一代机器人的诞生。 智能移动机器人更加强调了机器人具有的移动能力,从而面临比固定式机器人更为复杂的不确定性环境,也增加了智能系统的设计复杂度。1968年到1972年间,美国斯坦福国际研究所(Stanford Research Institute, SRI)研制了移动式机器人Shaky,这是首台采用了人工智能学的移动机器人。Shaky具备一定人工智能,能够自主进行感知、环境建模、行为规划并执行任务(如寻找木箱并将其推到指定目的位置)。它装备了电视摄像机、三角法测距仪、碰撞传感器、驱动电机以及编码器,并通过无线通讯系统由二台计算机控制。当时计算机的体积庞大,但运算速度缓慢,导致Shaky往往需要数小时的时间来分析环境并规划行动路径。 1970年前联月球17号探测器把世界第一个无人驾驶的月球车送七月球,月球车行驶0.5公里,考察了8万平方米的月面。后来的月球车行驶37公里,向地球发回88幅月面全景图。在同一时代,美国喷气推进实验室也研制了月球车(Lunar rover),应用于行星探测的研究。采用了摄像机,激光测距仪以及触觉传感器。机器人能够把环境区分为可通行、不可通行以及未知等类型区域。 1973年到1979年,斯坦福大学人工智能实验室研制了CART移动机器人,CART可以自主地在办公室环境运行。CART每移动1米,就停下来通过摄像机的图片对环境进行分析,规划下一步的运行路径。由于当时计算机性能的限制,CART每一次规划都需要耗时约15分钟。CMU Rover由卡耐基梅隆大学机

轮式移动机器人(WMR)设计毕业设计

哈尔滨工业大学华德应用技术学院毕业设计(论文) 摘要 本文首先对机器人的国内为发展现状做了介绍,同时根据设计要求对机器人的整体方案进行了分析,包括几何尺寸、驱动芯片的选择和程序的编制。然后从机器人性能要求的角度出发,分别对机器人的运动方式、模型结构和车体成型方式做了比较,最终确定了非完整约束轮驱四轮式移动结构模型——后轮同轴驱动,前轮转向的轮型机器人。 文章对移动机器人硬件结构做了详细的可行性分析及设计,并且做了相应的计算、校核,主要包括:驱动轮电机和转向轮电机的选择及其驱动电路的设计;齿轮的设计计算和校核;转向机构设计和车体的一些机械结构设计等。并且针对本设计所研究的机器人,设计了驱动模块。本设计中,采用增量式光电编码器测量移动机器人后轮的实时转速,进而通过特定算法得到实时电机驱动模块的PWM控制量,实现运动机器人运动的闭环控制。 最后,本文对所作研究和主要工作进行了总结,并将设计的轮型机器人的结构进行联合调试。实验结果表明,该系统性能稳定、可靠,可控制性高,安全性高,达到了本设计的设计要求。 关键词:轮式移动机器人(WMR);硬件;非完整约束;驱动模块 -I-

哈尔滨工业大学华德应用技术学院毕业设计(论文) Abstract In this paper the development of robot profiles and classification made a presentation According to the design requirements of the robot's overall program for the analysis, including geometry, rapid movement, anti-jamming, operability and maintainability. Then robot performance requirements from the perspective, the robot's movement, Model structure and body molding form of a comparison, finalization of non-refoulement integrity constraint round four mobile model -- coaxial rear-wheel drive nose wheel steering the robot vehicle Based on a mobile robot hardware architecture done a detailed feasibility analysis and design, and the corresponding calculation, checking, including driving wheel motor and steering wheel and the choice of motor drive circuit design; Gear design and verification; Selection and battery charging circuit programming; sensing part of the design; before and after the shock absorber systems, and to design the body and some mechanical structure design. It should also study the design of the robot, to discuss the design of the system reliability Finally, we made to research and the main work of summing up and robot design models of the structure of the joint debugging. Experimental results show that the system is stable, reliable, and can be controlled, safe, meeting the requirements of Design Keywords:Wheeled Mobile Robot (WMR);Hardware; Nonholonomic Constraints;Move Module 毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完 -II-

四足仿生移动机器人结构设计

毕业设计说明书 作者:学号: 系:机械工程学院 专业:机械设计制造及其自动化 题目:四足仿生移动机器人结构设计 指导者:副教授 评阅者:

目次 1 概述 ................................................ 错误!未定义书签。 1.1 绪论........................................... 错误!未定义书签。 1.2 国内外研究现状及关键技术....................... 错误!未定义书签。 1.3 本课题主要研究内容............................. 错误!未定义书签。 2 四足仿生移动机器人的结构设计原则及要求 ............... 错误!未定义书签。 2.1 四足仿生移动机器人的总体方案确定............... 错误!未定义书签。 2.2 机器人机械结构及传动设计....................... 错误!未定义书签。 3 电机的确定 .......................................... 错误!未定义书签。 3.1 各关节最大负载转矩计算......................... 错误!未定义书签。 3.2 机器人驱动方案的对比分析及选择................. 错误!未定义书签。 3.3 驱动电机的选择................................. 错误!未定义书签。 4. 带传动设计 .......................................... 错误!未定义书签。 4.1 各参数设计及计算............................... 错误!未定义书签。 4.2 带型选择及带轮设计............................. 错误!未定义书签。5工作装置的强度校核.................................... 错误!未定义书签。 5.1 轴的强度校核................................... 错误!未定义书签。 5.2 轴承的选型..................................... 错误!未定义书签。结论 ................................................. 错误!未定义书签。参考文献 ............................................ 错误!未定义书签。致谢 ................................................. 错误!未定义书签。

轮式移动机器人结构设计

大学 毕业设计说明书题目:轮式移动机器人结构设计 专业:机械设计制造及其自动化学号: 姓名: 指导教师: 完成日期: 2012年5月30日

大学 毕业论文(设计)任务书论文(设计)题目:轮式移动机器人结构设计 学号:姓名:专业:机械设计制造及其自动化指导教师:系主任: 一、主要内容及基本要求 1:了解轮式移动机器人的原理及其设计: 2:CAD绘图设计,要求A0图纸一张,总共达到两张A0。 3:说明书,要求6000字以上,要求内容完整,计算准确: 4:外文翻译3000字以上,要求语句通顺。 二、重点研究的问题 1:轮式移动机器人转向机构的设计: 2:轮式移动机器人电机的选型

三、进度安排 四、应收集的资料及主要参考文献 [1] 吕伟文.全方位轮移动机构的原理和应用[A].无锡职业技术学院学报,2005,615-17. [2] 赵东斌,易建强等.全方位移动机器人结构和运动分析[B].机器人,2003,9. [3] 李瑞峰,孙笛生,闫国荣等.移动式作业型智能服务机器人的研制[J].机器人技术与应 用,2003,1:27-29. [4] 杨树风.带有机械臂的全方位移动机器人的研制. 哈尔滨工业大学硕士毕业论文,2006. [5] 田宇,吴镇炜,柳长春.开放式三自由度全方位移动机器人实验平台[J].机器人,2002,24 (2):102-106. [6] 闫国荣,张海兵.一种新型轮式全方位移动机构[J].哈尔滨工业大学学报,2001,33(6):854-857. [7] 吕伟文.全方位移动机构的机构设计[A].无锡职业技术学院学报,2006.12:03-12. [8] 高光敏,张广新,王宇等.一种新型全方位轮式移动机器人的模型研究[A].长春工程学院学 报,2006,12. [9] 吴玉香,胡跃明.轮式移动机械臂的建模与仿真研究[B].计算机仿真,2006,1(05). [10] 付宜利,徐贺,王树国.具有新型轮式走行部的移动机器人及其特性研究.高技术通信,2004,12. [11] 付宜利,李寒,徐贺等.轮式全方位移动机器人几种转向方式的研究.制造业自动化,2005,10:5-33. [12] 滕鹏,马履中,董学哲.具有冗余自由度的新型护理机械臂研究.机械设计与研究,2004,1:3-32. [13] 孔繁群,朱方国,周骥平.一种机械手关节联接结构的改进设计[B].机械制造与研究,2005,5:2-16. [14] 蔡自兴编著.机器人原理及其应用. 中南工业大学出版社,1988. [15] 吴广玉,姜复兴编.机器人工程导论.哈尔滨:哈尔滨工业大学出版社,1988. 大学

清扫机器人结构设计

毕业设计(论文)中文题目:清扫机器人结构设计 学习中心(函授站):江阴 专业:机械设计及自动化 姓名:夏成 学号:CS051410248 指导教师:孙菊 南京航空航天大学 2016年5月 目录 中文摘要......................................................... I ABSTRACT ........................................................ II

第一章绪论 (1) 第一节研究的目的和意义 (1) 第二节设计的重点和难点 (1) 第三节家庭清扫机器人的关键技术 (1) 第四节论文主要完成工作 (2) 第二章总体结构设计 (3) 第一节整体结构布局 (3) 第二节驱动部分 (4) 第三节吸尘部分 (6) 第四节电源部分 (6) 第五节路径规划算法 (6) 第六节仿真结果 (8) 第三章硬件控制部分设计 (9) 第一节 AT89系列单片机简介 (9) 第二节外围电路 (9) 结论 (11) 致谢 (12) 参考文献 (13) 题目:清扫机器人结构设计

中文摘要 摘要:清扫机器人属于服务机器人的一种,世界各国尤其是西方发达国家都在致力于研究开发和广泛使用服务机器人。如果清扫机器人的性价比足够高,那么清扫机器人的市场将会被看好。 本文介绍了清洁机器人在国内外发展现状和应用情况,侧重研究了清洁机器人的避障控制系统。结合实验室实际条件,设计了机器人样机。其主要工作内容包括:小车机械本体设计、控制理论的介绍、AT89C51单片机控制系统硬件电路及检测电路设计、控制系统软件设计和机器人避障性能测试试验。 通过实验表明所设计的机器人样机能够实现自主避碰的功能,达到设计要求。 关键词:清洁机器人避障 AT89C51单片机

智能式移动机器人设计说明书

智能移动式送料机器人机械系统设计 摘要:智能移动式送料机器人以电动机作为驱动系统,运用单片机传感器等技术达到其智能移动的目的,实现行走、刹车、伸缩、回转等多种动作的操作。因此它具有机械化、程序化、可控化、适应性、灵活性强的特点。 前言:工业机器人是一种典型的机电一体化产品在现代生产中应用日益广泛,作用越来越重要,机器人技术是综合了计算机、控制、机构学、传感技术等多学科而形成的高新技术是当代研究十分活跃,应用日益广泛的领域。

现在,国际上对机器人的概念已经逐渐趋近一致。一般说来,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”我国研制的排爆机器人不仅可以排除炸弹,利用它的侦察传感器还可监视犯罪分子的活动。监视人员可以在远处对犯罪分子昼夜进行观察,监听他们的谈话,不必暴露自己就可对情况了如指掌。 智能小车,又称轮式机器人,可以在人类无法

适应的恶劣和危险环境中代替人工作。它是一个集环境感知,规划决策,自动驾驶等功能于一体的智能系统。现如今已在诸多领域有广泛的应用。对于快要毕业的大学生来说也是一个实时、富有意义和挑战的设计课题。 正文: 设计方案: 一课题名称:智能移动式送料机器人设计 二机器人工作过程及设计要求 自主设计智能移动小车,设计一个取料 手爪装配到小车上,完成取料机器人的机械系统设计,并进行机器人运动规划和取料虚拟仿真,使机

器人完成如下动作:沿规定路径行驶——工件夹取——车体旋转——手爪张开,将工件从储存处送到运料车上。 三机器人设计的内容 一机械手的设计:

外文翻译--轮式移动机器人的导航与控制

毕业设计(论文)外文资料翻译 系部:机械工程 专业:机械工程及自动化 姓名: 学号: 外文出处:Control and (用外文写) Robotics(CRB) Technical Report 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 轮式移动机器人的导航与控制 摘要:本文研究了把几种具有导航功能的方法运用于不同的控制器开发,以实现在一个已知障碍物前面控制一个开环系统(例如:轮式移动机器人)执行任务。第一种方法是基于三维坐标路径规划的控制方法。具有导航功能的控制器在自由配置的空间中生成一条从初始位置到目标位置的路径。位移控制器控制移动机器人沿设置的路径运动并停止在目标位置。第二种方法是基于二维坐标路径规划的控制方法。在二维平面坐标系中建立导航函数,基于这种导航函数设计的微控制器是渐进收敛控制系统。仿真结果被用来说明第二种控制方法的性能。 1介绍 很多研究者已经提出不同算法以解决在障碍物杂乱的环境下机器人的运动控制问题。对与建立无碰撞路径和传统的路径规划算法,参考文献[19]的第一章第九部分中提供了的全面总结。从Khatib在参考文献[13]的开创性工作以来,很显然控制机器人在已知障碍物下执行任务的主流方法之一依然是构建和应用位函数。总之,位函数能够提供机器人工作空间、障碍位置和目标的位场。在参考文献[19]中提供对于位函数的全面研究。应用位函数的一个问题是局部极小化的情况可能发生以至于机器人无法到达目标位置。不少研究人士提出了解决局部极小化错误的方法(例如参考文献[2], [3],[5], [14], [25])。其中Koditschek 在参考文献[16]中提供了一种解决局部极小化错误的方法,那是通过基于一种特殊的位函数的完整系统构建导航函数,此函数有精确的数学结构,它能够保证存在唯一最小值。 在针对标准的 (完整的)系统的先前的结果的影响下, 面对更多的具有挑战性的非完整系统,越来越多的研究集中于位函数方法的发展(例如.,机器人)。例如, Laumond 等人 [18] 用几何路线策划器构建了一条忽略机器人非完全约束的无障碍路线, 然后把几何线路分成更短的线路来满足非完全限制,然后应用最佳路线来减少路程。在 [10] 和 [11]中, Guldner 等人使用间断变化的模式控制器迫使机器人的位置沿着位函数的负倾斜度变动,及其定位与负倾斜度一致。

小型轮式机器人设计

南京理工大学电力系统自动装置论文 学院 (系):自动化学院 题目: 小型轮式移动机器人控制系统设计 李胜 指导老师:

摘要 由于传统单任务顺序执行机制不能满足智能轮式移动机器人对控制系统实时性的要求,而且对于复杂系统来说可靠性不高。所以本项目重点设计一套适用于小型轮式移动机器人的控制系统,要求其实时性好,可靠性高,具有灵活的可扩展性和可重构性,以提高它各项功能的响应速度(包括制动、加速、减速、爬坡等)。 本文设计的控制电路实现的传感器功能包括红外传感器、光敏传感器、碰撞传感器等。控制电路实现对两个直流电机的驱动控制。机器人采用这样的控制电路可以完成诸如自主避障、自主循迹等实验。使得轮式移动机器人的实时性好,可靠性高,且因为外部接口具有同用性,故具有灵活的可扩展性和可重构性。 最后对电路进行了调试,证明其满足要求 关键词轮式机器人控制系统调试

目录 1 绪言------------------------------------------------------------------03 1.1 机器人简单知识的介绍-----------------------------------------------03 1.2课题背景-------------------------------------------------------------------------------------------------03 1.3课题来源及目的---------------------------------------------------------------------------------------04 1.4 论文主要内容------------------------------------------------------04 2 小型轮式移动机器人控制电路的总体设计----------------------------------04 2. 1 需求分析-----------------------------------------------------------------------------------------------------------04 2.2 机器人功能的总体结构----------------------------------------------05 3 具体设计-------------------------------------------------------------05 3.1Protel电路设计软件简介----------------------------------------------05 3.2 控制电路的总体设计------------------------------------------------06 3.3各模块具体介绍------------------------------------------------------07 3.4 实验用移动机器人控制电路的PCB图----------------------------------18 4 机器人控制电路的调试-------------------------------------------------19 4.1 直流电机功能调试结果----------------------------------------------19 4.2 红外传感器电路调试结果--------------------------------------------22 4.3 光敏传感器调试结果------------------------------------------------22 4.4 碰撞传感器调试结果-------------------------------------------------23 结论 ------------------------------------------------------------------24 感谢 ------------------------------------------------------------------24 附录控制电路实物图------------------------------------------------------25 参考文献--------------------------------------------------------------26

相关主题
文本预览
相关文档 最新文档