当前位置:文档之家› 中心极限定理及其初步应用

中心极限定理及其初步应用

中心极限定理及其初步应用
中心极限定理及其初步应用

中心极限定理及其初步应用

【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。它们表明了当n充分大时,方差存在的n个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理在定期寿险业、决策问题及生产供应需求三个方面的应用,说明其与现实有紧密的联系。

【关键词】中心极限定理,定期寿险, 决策问题

【Abstract】The production of the central limit theorem has objective background, the most common forms are the De Moivre -Laplace central limit theorem and Lindeberg-Levy central limit theorem. They show that when n is sufficiently large and variance exists, the sum of n independence identity distribution random variables approximates normal distribution. So it has widespread application in reality. The article discusses the application of the central limit theorem in three aspects, which are the regular life insurance industry, the policy-making question and producti on’s supply and demand. They have the close relation with the reality.

【Keywords】central limit theorem,regular life insurance, policy-making question

目录

第一章中心极限定理 (4)

1.1中心极限定理产生的客观背景 (4)

1.2常见的中心极限定理 (4)

1.2.1德莫佛-拉普拉斯中心极限定理 (4)

1.2.2林德贝格-勒维中心极限定理 (4)

1.3中心极限定理的意义 (5)

第二章中心极限定理的应用 (6)

2.1中心极限定理在定期寿险中的应用 (6)

2.1.1保险学的概率论数学原理 (6)

2.1.2定期寿险的保险金给付模型 (7)

2.1.3定期寿险业的盈亏预测 (9)

2.1.4实例分析 (10)

2.2中心极限定理在决策问题中的应用 (11)

2.3中心极限定理在生产供应需求中的应用 (14)

2.1.1根据现有生产能力及用户需求状态,估算能满足社会需求的

可靠程度 (14)

2.1.2根据社会需求状态来确定生产任务 (15)

2.1.3根据需求及产品质量情况来确定生产量 (15)

2.1.4例题分析 (16)

第三章结束语 (19)

参考文献 (20)

致谢 (21)

附录一:文献综述 (22)

附录二:外文文献

译文1 (25)

原文1 (31)

译文2 (37)

原文2 (43)

附录三:远雄人寿千喜男性一年定期寿险费率表 (49)

附录四:中国人寿保险业经验生命表(1990-1993)(男性) (50)

第一章 中心极限定理

1.1 中心极限定理产生的客观背景

在实际问题中,常常需要考虑许多随机因素所产生的总的影响,如测量误差、炮弹射击的落点与目标的偏差等。同时许多观察表明,若一个随机变量是由大量相关独立的随机因素的综合影响所构成的,而其中每一个随机因素的单独作用是微小的,则这样的随机变量通常服从或近似服从正态分布。这种现象就是中心极限定理产生的客观背景。 1.2 常见的中心极限定理

中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。其简要内容分如下: 1.2.1 德莫佛-拉普拉斯中心极限定理

德莫佛-拉普拉斯中心极限定理是历史上最早得到的中心极限问题的研究成果。它的内容是:设()x Φ为标准正态分布的分布函数,对x -∞<<+∞,有

lim )()n P x x →+∞

≤=Φ

其中1q p =-。这个定理可以简单地说成二项分布渐近正态分布,因此当n 充分大时,可以利用该定理来计算二项分布的概率。 1.2.2 林德贝格-勒维中心极限定理

它的内容是:设{}n ξ是一列独立同分布的随机变量,记

n S =1

n

k k ξ=∑,1E a ξ=,2

1Var ξσ=,

则中心极限定理成立,即

(0,1)d

N ??→ 所以由定理的条件知,它也被称为同分布的中心极限定理,同时可知德莫佛-拉普

[1]

1.3 中心极限定理的意义

首先,中心极限定理的核心内容是只要n足够大,便可以把独立同分布的随机变量和的标准化当作正态变量,所以可以利用它解决很多实际问题,同时这还有助于解释为什么很多自然群体的经验频率呈现出钟形曲线这一值得注意的事实,从而正态分布成为概率论中最重要的分布,这就奠定了中心极限定理的首要功绩。其次,中心极限定理对于其他学科都有着重要作用。例如数理统计中的参数(区间)估计、假设检验、抽样调查等;进一步,中心极限定理为数理统计在统计学中的应用铺平了道路,用样本推断总体的关键在于掌握样本特征值的抽样分布,而中心极限定理表明只要样本容量足够地大,得知未知总体的样本特征值就近似服从正态分布。从而,只要采用大量观察法获得足够多的随机样本数据,几乎就可以把数理统计的全部处理问题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地位[3]

第二章中心极限定理的应用

由上述可知中心极限定理意义重大,应用也相当广泛,所以这里仅仅以它在定期寿险业、决策问题及生产供应需求方面的应用为例来进行说明。

2.1 中心极限定理在定期寿险中的作用

2.1.1保险学的概率论数学原理

保险体现了“人人为我,我为人人”的互助思想,它以数理统计为依据。保险中的风险单位是发生一次风险事故可能造成标的物损失的范围,也就是遭受损失的人、场所或事物。风险单位是保险公司确定其能够承担的最高保险责任的计算基础。理想状态下的风险单位应独立同分布,这种现象的意义在于保险人可以据此向每个潜在的被保险人收取同样的保费。同时根据中心极限定理,含有n个风险单位的随机样本的平均损失符合正态分布,这个结论对保险费率的厘定极为重要。保险公司各险种的交费标准是经过精算后以同期银行利率比照制定的,所以在此基础上应尽可能地多承保风险单位,也就越可能有足够的资金赔付保险期内发生的所有索赔,从而使保险公司的运营更加平稳,也就越有利于投保人或被保险人[4]

既然可利用中心极限定理能合理地厘定保险费率,为何老年人投保一再被提高门槛呢?京江晚报3月28日就有报道“对保险公司来说,老年人属于高风险人群,存在的不确定因素较多,老年人发生医疗费用支出和意外事故的风险要比年轻人大。所以,从赔付率的角度考虑,保险产品在推出前会经过精密测算,设置相应的年龄门槛和不同的缴费标准”[5]

我们以最简单的一年定期寿险为例说明保险公司为何对中老年人保险总提高门槛,老年人投保寿险与年轻人有何区别。如表1所示是台湾远雄人寿千喜男性一年定期寿险的部分费率及死亡率(见附录三、四)。为说明问题,我们选取25-29岁作为年轻人的代表,61-65岁为老年人的代表,将这两个年龄段进行比较。

远雄人寿千喜男性一年定期寿险的部分费率及死亡率表1

单位:元/每万元基本保额

现假定每个年龄各有1000个人投保,则按照下列计算公式得出表2: 总保费=1000 ?单个人的保费(元)=0.1 ?单个人的保费(万元),

赔付额=4101000i i

i E E E i ξξξ?=(元)(万元),为个年龄为岁的个体在一年内死亡的期望。 不同年龄的总保费及赔付额 表2

单位:万元

由于计算中假定每个年龄的投保数相同,而老年人的死亡率比年轻人高,则导致赔付额的基数较大,所以还不能很好的解释问题,这里再引入赔付率(赔付率=赔付额/总保费),得出表3。 各年龄的赔付率 表3

从表3可知,25-29岁总体的赔付率呈下降趋势,而61-65岁总体的赔付率呈上升趋势且赔付率处于较高水平。那么对于一个保险公司,她的经营主要是以盈利为目的,老年人身体状况较差,是疾病、死亡的多发群体,面临的风险大,所以为老年承保寿险时保险公司的赔付率相对较高。因此老年人投保寿险一再被提高门槛。同时,老年人寿险的保费若定价较高,但老年人收入相对偏低,可能买不起,而定价过低,保险公司也承受不起,从而更加影响公司的盈利。因此,寿险公司更愿意把目光投向年轻人群体。 2.1.2 定期寿险保险金的给付模型

在上述比较中,我们知道了保险公司更青睐于年轻群体,但是在保险公司追求利益的同时还应考虑到他们的偿还能力。我国《保险法》规定“保险公司应该具有与其业务相适应的最低偿付能力。”下面我们就将建立定期寿险保险金给付模型。

首先,根据国际精算协会的惯例,采用下列符号:

t

x p :

(x )活过年龄x+t 岁的概率,即(x )至少再活t 年的概率; ()t μ:(x )活到t 岁的个体恰好在此年龄死亡的可能性,称为死亡力。且当()t μ为常数时有

t

x p =t

e

μ-

δ:是衡量在某个确切时点上利率水平的指标,称为利息力,简称息力;

v :称为贴现因子,表示1年后得到1元在年初时刻的现值;

T (x ): 个体(x )的未来生存时间[9]

现假定利率为常数i ,则有:

1

ln(1),,11i i d v i i

δ=+=

=++ 再记n 年定期寿险的保险人给付额的现值为Z ,则Z 的精算现值为 1

:x n

A =1

()t t x v p x dt μ?

Z 的j 阶矩为

1:j

x n A =1

:@x n A j δ(其中@j j δδ表示计算时采用利息力)

=0

()n

jt t x v p x dt μ?

现假定1000个x 岁独立的个体投保一年定期寿险,死亡保险金为1万元,在死亡后立即给付。死亡力为常数μ=0.06。死亡给付是由某投资基金提供,投资基金的利息力为δ=0.04。若要能够支付未来死亡保险金的概率不低于0.975,现在所需资金最低额度是多少?

记1000个个体的未来生存时间分别为121000(),(),...,()T x T x T x ,总给付金额的现值为1000

()

1j T x i v

=∑,则精算现值为

1

1

1

()0.1:1

()(1)0.6(1)0.0571t

t t x t x A

v p x dt e e dt e e δμμδμμμμδ

---+-===

-=-=+??,

二阶矩为

1

2

112(2)0.14:1:1

3

@2(1)(1)0.056027

t t x x A A e e dt e e δμμδμδμμδ---+-===

-=-=+? 因此方差211

()

2:1:1()()j T x x x D v

A A =-=0.0527。设W 为满足要求所需的最低资金额

度,利用中心极限定理,我们可以得到:

1000

1

()

:1

1

1000

:1

()

1

10001

()

:1

1000()100052.7

)7.26

52.7

(

)7.26

j j j T x x x T x j T x x v

A P v

W P v

A W P W =-≤=≤--=≤-=Φ∑∑∑

再利用正态分布0.975的分为点1.96,得

52.7

1.967.26

W -≈ 即W ≈67万元。所以,若需要能够支付未来死亡保险金的概率不低于0.975,现在所需资金的最低额度是67万元。 2.1.3 定期寿险业的盈亏

我们已经知道寿险公司的经营是为了盈利,而一个保险公司的盈亏,是否破产,我们也可以运用中心极限定理的知识做到估算和预测。例如设某寿险公司在一段时间内有n 个同一年龄的人投保一年定期寿险,他们是相互独立彼此互不影响的,且在一年内没有新的投保人加入该项保险业务,也没有人退保。那么就可以利用中心极限定理估计该公司接下这些保单的盈亏概率。设每份保单的保费为M ,保额为Q ,该年龄的死亡率为p ,令

i X =10i i ??

?,第个人死亡

,第个人仍活着

,i=1,2,…,n , 则有

1

(,)n

i

i X

N n p =∑ ,

再结合中心极限定理有该保险公司的亏本概率为

()()n M

np

n M P n M x Q P x P Q ?-??

1n M

np β?-=-Φ= (7)

若计算出的β较小,则对公司的盈利有好处,若β偏大,则为了盈利着想,寿险公司可通过增加保费等手段来降低亏本率。 2.1.4 实例分析

例1 :某保险公司的老年人寿保险有10000人参加,每人每年交200元。若老人在该年内死亡,公司付给其家属1万元。设老年人的死亡率为0.017,问:(1)保险公司在一年内的这项保险中亏本的概率多大? (2)保险公司一年的利润不少于20万元的概率多大? 解:设ξ表示一年内参保人的死亡数。则由题可知ξ(10000,0.017)B 。 (1)要使保险公司亏本,必须满足

200?10000-10000ξ<0

∴ξ>200

则P (ξ>200)=1- P (0≤ξ ≤200) ≈

1-[ Φ-Φ]

=1- (2.3256)Φ-(13.1783)Φ-=0.01 即保险公司亏本的概率为1%。

(2)要使保险公司一年的利润不少于20万元,必须满足

200 ?10000-10000ξ≥200000

∴ξ≤180

则P (0≤ξ ≤180)

≈Φ-Φ

=(0.78)

Φ-(13.1783)

Φ-=0.7823

即保险公司一年的利润不少于20万元的概率为78.23%。

例2:某出租车公司有500辆的士参加保险,在一年里的出事故的概率为0.006. 参加保险的的士每年交800元的保险费。若出事故,保险公司最多赔偿50000元,试利用中心极限定理,计算保险公司一年赚钱不少于200000元且不多于250000

元的概率。

设X为一年里出事故的总次数,则X B(500,0.006)。

要使保险公司一年赚钱不少于200000元且不多于250000元,则

200000≤500?800-50000X≤250000

∴3≤X≤4

∴P(3≤X≤4)=

Φ-Φ

=(0.58)(0)

Φ-Φ=21.9%

即保险公司一年赚钱不少于200000元且不多于250000元得概率为21.9%。

2.2 中心极限定理在决策问题中的应用

决策是为了达到某种预定的目标,在若干可供选择方案中决定一个合适方案的过程。那么在就某事的可行性进行决策时,单个人认为是否可行称为个体决策,几个人(至少3个人)按照少数服从多数的方法决定是否可行称为集体决策。俗话说,人多力量大,那么我们习惯上认为的集体正确决策的概率大于每个单个个体正确决策的概率是否正确呢?下面将应用中心极限定理来讨论分析这个问题。

首先,我们给出一些简单的数据,利用特殊法看看该说法是否正确。见表4。记n为参与集体决策的人数,假定每个个体做出正确决策的概率相同,且均为p,决策方式也是根据少数服从多数原则,则在空格中所填数据为集体决策正确的概

率,记为P

集正(其中n=30、40时应用中心极限定理计算P

集正

)。

集体决策做出正确决策的概率表4

从表4中,我们可以看到以下两个情况:

情况一:10.25(0,)210.5210.75(1)2p n P p P n p n P ?

=∈??

?

=≡??

?

=∈??

集正集正集正当时,随着的增加,逐渐下降当时,,与无关当,时,随着的增加,逐渐增加,

由此我们得出第一个猜测,

猜测一:1(0,)211221(1)2p n P p P n p n P ?∈??

?

=≡??

?∈??

集正集正集正当时,随着的增加,逐渐下降当时,,与无关当,时,随着的增加,逐渐增加。

情况二:10.25(0,)20.510.75(1)2

p P p p P p p P p ?=∈

==??

?=∈>?集正集正集正当时,当时,当,时,,

显然由这一情况可知,集体正确决策的概率大于每个单个个体正确决策的概率这一说法是不一定正确的,同时我们也得出了第二个猜测,

猜测二:1(0,)2121(1)2p P p p P p p P p ?∈

?

==??

?∈>??

集正集正集正当时,当时,当,时,。

现在就利用一般法检验两个猜测是否正确,下面将结合中心极限定理来做出判断。设X 为n 个人中做出正确决策的人数,令

1,1,2,...,0,i i X i n i ?==??第个人的决策正确

第个人的决策错误

记(1,(01i i P X p P X p ====-)),则

,,(1)n

X X EX np DX np p ===-∑。

将X 标准化,并由中心极限定理可得

N(0,1)。

当n 成分大时,

()12n n np np

n P X P -->=>=-Φ (8) 为下面讨论方便,令

1()n

np

f n -== ()1(())2n

P X f n ∴>=-Φ (9)

那么对于猜测一:(1)当1

02

p <<时,f(n)是大于0的单调增函数,

若1212,0()()n n f n f n <<<则

12(())(())f n f n ∴Φ<Φ

12((22

n n P X P X ∴>

>)>)。 同理可证明(2),(3)。 所以猜测一是正确的。

对于猜测二:当n 充分大时,我们可以得到

10,(),()0;2211,()0,();

2221

1,(),()122n p f n P X n p f n P X n p f n P X ?

<<→+∞>→??

?

==>=??

?<<→-∞>→??

若则此时若则此时若则此时。 由此可知,当n 充分大时,若

112p <<则()2

n

P X >无限趋近于1,而p 是一个大于12小于1的常数,所以必定有()2n P X p >>,即112p <<是()2

n

P X p >>的必要条件;相反当()2n P X p >>时,是否也有112p <<呢?不妨采用反证法说明。若p=1

2

()2n P X

>1n np

-=-Φ=12

>p ,

矛盾。若0

1

2

,则当n 充分大时, ()2n

P X

>1n np

-=-Φ趋于0,

而p 是一个大于0小于

12的常数, 所以()2

n

P X >也不可能大于p,矛盾。即p 只能属于(12,1)。因此,当n 充分大时,112

P p p ><<集正的充要条件为[6]

在验证猜测一与二的基础上,我们可以得出这样的结论:当且仅当0.5

现实生活中,当厂家的生产量大于需求量时,会导致商品的积压以及商品价值难以体现;而当厂家的生产量小于需求量时,供给又难以满足社会需求。为了尽量防止“供”过于大于“求”及尽可能的满足社会需求度,我们就要利用中心极限定理来估算一些值,具体如下。

2.3.1 根据现有生产能力及用户需求状态,估算能满足社会需求的可靠程度

某工厂负责供应某地区n 个人的商品供应,在一段时间内每人需用一件该商品的概率为p ,假定在这段时间内每个人购买与否彼此独立,现该工厂仅生产M 件商品,试估计能满足该地区人们需求的概率β。 若记

10i i X i ?=?

?,第个人购买该商品

,第个人不购买该商品

,i=1,…,n 则

1

()n

i

n

i i X

np

P X M P β=-≤=≤

=Φ=∑∑,

通过查正态分布表可求得β。

2.3.2 根据社会需求状态来确定生产任务

某工厂负责供应某地区n 个人的商品供应,在一段时间内每人需用一件该商品的概率为p ,假定在这段时间内每个人购买与否彼此独立,现该工厂至少有β的把握满足社会需求,试问该工厂需要生产商品的件数M 。 若记

10i i X i ?=?

?,第个人购买该商品

,第个人不购买该商品

,i=1,…,n 则

1

(,)N

i

i X

N n p =∑

∴1

()n

i

n

i i X

np

P X M P β=-≤=≤

=Φ≥∑∑,

()x ββΦ=,

M np x β≥+ (11)

所以该工厂至少需要生产np x + 2.3.3 根据需求及产品质量情况来确定生产量

某工厂负责供应某地区的商品供应,该商品的次品率为p,而在一段时间内共需M 件该商品且要求至少有β的可靠程度来保证居民购买到的是正品,求该工厂的生产量N 。若记

10i i Y i ?=?

?,第件商品是次品

,第件商品不是次品

,i=1,…,N , 则

1

(,)N

i i Y N N p =∑ ,

所以由

1

()N

i i P N Y M β=-≥≥∑

可知

1

()N

i N

i i Y Np

P Y N M P β=-≤-=≤

≥∑∑

()y ββΦ=,

再通过解不等式

≥y β

由上式可解出生产量N 的范围。 2.3.4 例题分析

设某电视机厂生产液晶电视机以满足某地区100家客户的需求,若由以往的统计资料表明:每一用户对该电视机的年需求量服从λ=2的泊松分布,现在该厂这种电视机的年产量为220台,能以多大的把握满足客户的需求量呢?若该厂要有97.5%的把握满足客户的需求,则该厂至少生产多少台这种液晶电视机?现在该厂引进先进技术,将液晶电视机的出厂正品率提高到95%,现估计一年内该地区的社会总需求量为500台,则为了有99.7%的把握保证客户购买到的是正品液晶电视

机,则该厂该年至少生产多少台液晶电视机[11]?

解:设这100户客户对这种液晶电视机的年需求量依次为12100,,...,ξξξ。则由统计资料表明:

()(2)k P λξλ= ,

2

2()(0,1,2...;1,2,...,100)!

j

k P j e j k j ξ-====,

那么根据泊松分布的知识知

2k k E D ξξλ===,

再设100η为这100家客户对这种液晶电视机的年需求总量,则

100η=100

1

k k ξ=∑,

由于n=100较大,根据中心极限定理我们有:100η近似服从正态分布N (,n n λλ),即N(200,200)。

现在该厂的年产量为220台,则能满足客户需求的把握为

P (100η≤200)=P

=Φ=0.91924, 即能满足客户需求的把握为91.924%。

又若该厂要有97.5%的把握满足需求,则设该厂安排年产量为M 台,则M 应满足下式:

P(100η≤M)≥97.5%

从而有

)=Φ≥0.975 由正态表查得(1.96)0.975Φ=,而()x Φ是x 的增函数,所以有

≥1.96,M ≥227.7, 即取M=228(台)。

最后我们设N 为当液晶电视机正品率为95%时的生产量,设i η为第i 台电视机含次品的个数,即i η=1表示次品;i η=0表示正品。则

N η=1

N

i i η=∑

为N 台液晶电视机中的次品总数,而N-N η为N 台电视机中的正品总数,它应满足

P(N-N η≥500) ≥0.997,

由题意知

N η B (N ,0.05)

, 从而

E N η=0.05N,D N η=0.95*0.05N=0.0475 N ,

结合中心极限定理知N η近似服从N (0.05N, 0.0475 N ),所以

P(

N η≤≤

)=0.997Φ≥ 再通过查正态分布表知

(2.75)Φ=0.997,

就有

≥2.75

解此不等式得

N ≥541.16,

取N=542(台)所以在这种情况下应生产出542台液晶电视机才能有99.7%的把握客户买到的是正品。

第三章结束语

本文是在中心极限定理最常用的两个定理的基础上讨论了它在定期寿险业、决策问题及生产供应需求中的应用。首先,在寿险业中知道中心极限定理对保费的厘定有指导性作用,从而讨论了老年人寿险与年轻人的区别,但不管怎样,应当具备一定偿还能力,即要应用中心极限定理求出寿险公司的最低准备金。同时出于保险公司是盈利机构,也研究了寿险公司接下保单的盈亏预测。其次,在决策问题中,以“集体决策的正确率是否一定大于个体决策的正确率”这一问题为出发点,利用特殊法与一般法并结合中心极限定理否定该说法,并得出集体决策的正确率大于个体决策的充要条件。最后,在生产供应需求方面,为了防止商品供过于大于求及尽量满足社会需求度,分别利用中心极限定理求出了不同条件下的需求量、生产量及社会需求满意度,并附一个例题说明。

本文仅谈了它在以上三方面的应用,但中心极限定理在生活中的应用十分广泛,如抽样推断、质量检测等都需用到它,这里不再叙述。

参考文献

[1]林正炎,苏中根.概率论[M].浙江:浙江大学出版社,2001.

[2]魏宗书.概率论与数理统计教程[M].北京:高等教育出版社,2005.

[3]杨桂元.中心极限定理及其在统计分析中的应用[J].统计与信息论坛,2000,15(39):13-15

[4]王东红.大数定律和中心极限定理在保险业中的重要应用[J].数学的实践与认识,2005,35(10):128-133

[5]朱朱.买保险防老难住中老年人[N].京江晚报,2009-3-28,(4)

[6]张永良,唐汇龙.中心极限定理的两个应用[J].南京审计学院学报,2005,2(4):70-71

[7]陈志成,张红云.Almost sure local central limit theorem for the maximum[J].西南民族大学学报自然科学版,2008,34(2):252-256

[8]童斌,彭作祥,赵胜利.Almost Sure Versions of Central Limit Theorems for Order Statistics[J].西南大学学报自然科学版,2008,30(9):20-24

[9]杨静平.寿险精算基础[M].北京:北京大学出版社,2002.

[10]李晓林.精算学原理:第三卷[M].北京:经济科学出版社,1999.

[11]吕黎明.生产实践中如何应用D-L定理[J].高等函授学报,2005,18(4):27-29

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

-中心极限定理在保险业务中的应用讲解学习

-中心极限定理在保险业务中的应用

中心极限定理在保险业务中的应用 学生姓名:许红红指导教师:赵连阔 一、引言 保险是以合同的形式来确定双方经济关系,以投保人缴纳保险费所建立起来的保险基金,对保险合同规定范围内的意外所造成的损失,进行经济补偿或给付的一种经济形式。保险费是根据数理统计原理进行制定,对未来发生的成本进行预测和估算,将预期赔偿金额作为纯保险费来收取的。为避免和减少未来风险因素带来的经济损失,保险公司采取一些方法保证自己的偿付能力。 在实际生活中有诸如交通事故发生率、人口死亡率等许多随机因素影响着保险的预期利润和偿付能力,这些随机因素是相互独立的,且每一个因素的影响在总结果中所起到的作用都是很小的随机变量。这些随机变量都通常近似服从正态分布。这种现象就是中心极限定理产生的客观背景条件。 二、中心极限定理 结合上文中心极限定理的产生的客观背景,我们给出中心极限定理的具体内容。我们把描述或验证大量随机变量和的极限是正态分布的那些定理通称为中心极限定理。但其中最常见、最基本且应用最广泛的是两个定理德莫弗—拉普拉斯中心极限定理(二项分布的正态近似)和林德贝格—勒维中心极限定理(独立同分布下的中心极限定理)。

(一)德莫弗——拉普拉斯定理 设n 重伯努利试验(将事件A 重复进行n 次)中,事件A 在每次试验中出现的概率为 ()01p p <<,记n μ为n 次试验中事件A 出现的次数,且记* n Y =,其中1.q p =- 则对任意实数y ,有 {}()2 *2lim . t y n n P Y y dt y -→+∞≤==Φ? 这个定理可以说是二项分布的近似正态分布,当n 充分大时,可以利用该定理来计算二项分布的概率。 即(),A B n p :,其中1q p =-,则当n 很大时,有 ()P a X b ≤≤≈-. (二)林德贝格——勒维中心极限定理 设{}n X 是独立同分布的随机变量序列,且()()2,0i i E X Var X μσ==>记 * n Y 则对任意实数y ,有 *lim () n n P Y y ?→+∞≤=22 ()t y y e dt --∞=. 此定理也可称为独立同分布中心极限定理且应用十分广泛,它只假设{}n X 独立同分布、方差存在,且是随便变量的序列,不管原来的分布是什么,只要n 充分大,就可以用正态分布去逼近。于是有:

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

概率论大数定律及其应用

概率论基础结课论文 题目:独立随机序列的大数事件的定理与应用 作者:信计1301班王彩云130350119 摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ~ ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-)) 0(,,() ()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(, 5.0)(,4.0)(B A B P B A P B P ( ) 。 5、,,A B C 是三个随机事件,C B ?,事件()A C B -与A 的关系是 ( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 · 7、某人下午5:00下班。他所积累的资料表明: * 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P ; (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。

中心极限定理应用

中心极限定理及其应用 【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内容、应用与意义。 【关键词】:中心极限定理 正态分布 随机变量 一、概述 概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn 、…的部分和的分布律:当n →∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。 二、定理及应用 1、定理一(林德贝格—勒维定理) 若 ξ 1 ,ξ 2 ,…是一列独立同分布的随机变量,且 E k ξ=a, D k ξ = σ 2 ( σ 2 >0) ,k=1,2,…则有 dt e x n na p x t n k k n ? ∑∞ -- =∞ →= ≤-2 1 221)(lim π σξ 。 当n 充分大时, n na n k k σξ ∑=-1 ~N (0,1),∑=n k k 1 ξ ~N (2 ,σn na ) 2、定理二(棣莫弗—拉普拉斯中心极限定理) 在n 重伯努利试验中,事件A 在每次试验中出现的概率为错误!未找到引用源。, 错误!未 找到引用源。为n 次试验中事件A 出现的次数,则dt e x npq np p x t n n ?∞ -- ∞ →= ≤-2 2 21 )( lim π μ 其中1q p =-。这个定理可以简单地说成二项分布渐近正态分布,因此当n 充分大时,可

中心极限定理论文:中心极限定理及其简单应用.

中心极限定理论文:中心极限定理及其简单应用 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极pH定理的内容并简单介绍了它在实际中的应用。关键词:中心极限定理正态分布随机变量一、概述概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn、…的部分和的分布律:当n→∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。二、定理及应用中心极限定理有多种形式:1、独立同分布下的中心极限定理定理 1[1],设x1,X2,…,Xn,…是独立同分布随机变量,EXi=μDXi=σ2(i=1,2,…,n)则它表明当n充分大时,n个具有期望和方差的独立同分布的 随机变量之和近似服从正态分布。定理1也称为林德伯格定理或列维——林德伯格定理。其中上下同除n,分子中有xi,其在数理统计中可表示样本的均值,可见独立同分布的样本均值近似地服从正态分布。这使得中心极限定理在数理统计中有着广泛而重要的作用。而上述定理应用到伯努利实验序列的情形,我们可以得到如下定理。定理2[1](拉普拉斯定理),在n重伯 努利试验中,事件A在每次实验中出现的概率P(0 2、同分布下中心极限定理的简单应用独立同分布的中心极限定理可应用于求随机变量之和Sn落在某区间的概率和已知随机变量之和Sn取值的概率,求随机变量的个数。 例1[3],设各零件的重量都是随机变量,它们相互独立且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是多少? 解:设Xi(i=1,2,…,5000)表示第i个零件的重量X1, X2,…,X5000独立同分布且E(Xi)=0.5,D(Xi)=0.12。由独立同分布的中心极限定理可知=I-φ(1.414)=1-0.9215 =0.0785 例 2[3],一生产线生产的产品成箱包装,每箱的重量是随机的且同分布,设每箱平均重50kg,标准差为5kg,若用最大载重为50吨的汽车承运,每辆车最多可以装多少箱才能保证不超载的概率大于0.977?解:设Xi(i=1,2,…,n)是装运第i箱的重量,n为所求箱数。由条件可把X1,X2,…,Xn看作独立同分布的随机变量,而n箱的总重量为Tn=X1+X2+…+Xn,是独立同分布的随机变量之和。由E(Xi)=50、D(Xi)=52得:E(Tn)=50n,D(Tn)=52n 根据独立同分布的中心极限定理:即最多可以装98箱。例3[2],报名听 心理学课程的学生人数K是服从均值为100的泊松分布的随机变量,负责这门课的教授决定,如果报名人数不少于120,就分成两班,否则就一班讲授。问 该教授讲授两个班的概率是多少? 分析:该教授讲授两个班的情况出现当且仅当报名人数x不少于120,精确解为P(x≥120)=e-100100i/i!很难求解,如果利用泊松分布的可加性,想到均值为100的泊松分布随机变量等于 100个均值为1的独立泊松分布随机变量之和,即X=Xi,其中每个Xi具有参数1的泊松分布,则我们可利用中心极限定理求近似解。解:可知 E(X)=100,D(X)=100 ∴P(X≥120)=1-φ()=1-φ(2)=0.023 即教授讲授两个班的概率是0.023。例4[1],火炮向目标不断地射击,若每

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

中心极限定理的内涵和应用知识分享

中心极限定理的内涵 和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ -= ∑=1 则对任意实数y ,有 {}? ∞ -- ∞ →=Φ=≤y t n n t y y Y P .d e π 21)(lim 2 2 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设 μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ?? ???? =)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 1 1)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??? ???+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 2 2?2 2 t e -

相关主题
文本预览
相关文档 最新文档