当前位置:文档之家› 第六章 分子和气体定律

第六章 分子和气体定律

第六章 分子和气体定律
第六章 分子和气体定律

第六章 分子和气体定律

知识点一:阿伏伽德罗常数

1摩尔任何物质含有的微粒数相同,这个数叫做阿伏伽德罗常数,用A N 表示,且

236.0210/A N mol =?。

注意:(1)阿伏伽德罗常数是联系微观世界和宏观世界的桥梁。如果已知物质的宏观量:

摩尔质量M ,摩尔体积V ,就可以推算出分子质量,分子体积,估算出分子之间的距离等这些微观量。

(2)利用油膜法测量分子的直径,其测定结果表明,分子的直径的数量级是10

10

m -。

【例1】对于液体和固体(不计分之间的空隙),若用M 表示摩尔质量,0m 表示分子质量,

ρ表示物质密度,V 表示摩尔体积,0V 表示单个分子的体积,A N 表示阿伏伽德罗常数,

则下列关系中正确的是( ) (A )0A V N V =

(B )0A V N m ρ= (C )A M

N V

ρ= (D )M V ρ= 【例2】黄金的密度为3

3

19.310/kg m ρ=?,摩尔质量为1

3

1.9710/u kg m -=?,求: (1) 金分子的质量 (2) 金分子的半径

【例3】将3

1cm 油酸溶于酒精,制成3

200cm 的油酸酒精溶液。每3

1cm 该溶液有20滴。现将1滴该溶液滴到水面上,随着酒精溶解于水,油酸最终在水面上形成面积为2

0.50cm 的单分子膜层。试估测出油酸分子的直径。

知识点二:分子的热运动

1、扩散现象

不同的物质相互接触时彼此进入对方的想象叫扩散现象。

(1) 扩散的快慢与温度有光,温度越高,分子运动越激烈,扩散就越快。 (2) 扩散现象不仅可以在气体分子间发生,在固体之间和液体之间也会发生。 2、布朗运动

液体中悬浮微粒的无规则运动叫布朗运动。

(1) 布朗运动产生的原因:由于液体分子的无规则运动对悬浮颗粒撞击的不平衡引起的。 (2) 布朗运动的特点:颗粒越小,布朗运动越明显;温度越高,布朗运动越显著。 (3) 布朗运动的意义:反映了液体分子的无规则运动,分子的无规则运动无法直接观察,

即使布朗运动也需要借助于显微镜才能观察。因此,通过悬浮颗粒的无规则运动,间接反映了液体分子的无规则运动,布朗运动是研究分子热运动的一种途径

注意:(1)布朗运动是悬浮颗粒的无规则运动,不是液体分子的无规则运动,也不是微粒

内分子的运动。

(2)凡是能用肉眼看到的微粒都不是布朗运动

(3)影响布朗运动的是液体的温度,而不是微粒的温度,布朗运动的剧烈程度和温度有关,但在任何温度下,布朗运动都不会停止。

【例4】对于扩散现象,下列说法正确的是( ) A 、扩散现象是相互接触的物体发生了化学反应 B 、扩散现象是自发进行的,与外界因素无关 C 、温度低于0C 时,扩散现象将停息 D 、温度升高,扩散现象将会加剧

【例5】关于布朗运动,下列说法正确的是( ) A 、 只有悬浮在液体中的颗粒才能发生 B 、 任何颗粒在液体中都会发生 C 、 布朗运动在气体、液体中均能发生 D 、 布朗运动可直接用肉眼观察

【例6】布朗运动是说明分子运动的重要实验事实,则悬浮在液体中的固体微粒的布朗运动说明了( ) A 、 液体分子的运动

B 、 悬浮在液体中的固体分子的运动

C 、 悬浮颗粒的运动

D 、 液体分子与固体分子的共同运动

知识点三:分子间的相互作用力

1、分子之间同时存在着引力与斥力,它们的大小都跟分子间的距离有关,实际表现出来的

分子力是引力和斥力的合力。 2、分子间的作用力与距离的关系

F 引和F 斥都随着分子间的距离的变化而变化,当分

子间的距离增大时,F

引和

F 斥都减小,当分子间的

距离减小时,

F 引和F 斥都增大。具体情况分子如下: (1)0r r =时,F 引=F 斥,对外表现的分子力F=0.

(2)0r r <时,F 引时,

F 引>F 斥,并且随着分子间距离的增大斥力减小得更快,对外表现的分

子力F 为引力。分子力F 随着距离的增大先增大后减小,当分子间距离的数量级大于9

10m -(010r )时,分子力已经变得十分微弱,可以忽略不计。 【例7】下列现象中,说明分子间存在相互作用力的是( ) A 、 气体很容易被压缩

B 、 两块纯净的铅压紧后能和在一起

C 、 高压密闭的钢管中油沿铜壁溢出

D 、 滴入水中的墨水向不同方向扩散

【例8】如右图所示,两个分子从靠近得不能再靠近的位置开始,两者之间的距离逐渐增大,

直到0r r >(0r 为分子的平衡位置)。这一过程中,关于分子间相互作用力,下列说法中正确的是( )

A 、 两个分子间的距离由较小逐渐增大到0r r =的过程中,引力

和斥力同时减小,分子力表现为斥力

B 、 分子间相互作用的合理,先减小和增大,再减小为0

C 、 分子间的斥力在减小,引力在增大

D 、 分子间的引力、斥力都在增大

知识点四:气体的状态参量

一.气体的状态参量。气体在一定条件下,具有一定的宏观状态。我们用某些物理量来描述气体的状态,这些量叫气体的状态参量。对于一定质量的某种气体,用气体的压强、体积和温度就可以描述它所处的状态,所以对于一定质量的某种气体,气体的压强、体积和温度就是它的状态参量.

1.气体的温度。温度在宏观上表示物体的冷热程度,微观上是分子平均动能的标志。温度

有两种表示法。国际单位制用热力学温度表示,其符号用“T”表示,单位是开尔文,单位符号“K”实际生活中还常用摄氏温度表示,其符号“t”单位是摄氏度,单位符号“C”。热力学温度和摄氏温度的关系是T=273+t 。

2.气体的体积。气体的体积等于容器的容积,因为气体分子能够充满整个容器的空间。体积的国际单位是m3,常用的单位有dm3(l)、cm3(ml)。

3.气体的压强。气体压强是由大量气体分子对器壁频繁碰撞产生的,其大小等于气体对容器壁单位面积上产生的压力。压强的国际单位为Pa ,常用单位有atm 、cmHg 、mmHg 。换算关系是1atm=76cmHg=760mmHg=1.01×105Pa 。

注意:研究气体状态变化时,如何确定气体的压强很关键,一般处理方法如下:

(1)研究用液体封闭在静止容积中的气体压强时,就用连通器原理,选取低液面液体平衡法。

(2)研究用活塞封闭在静止容积中的气体压强时,选取活塞或气缸为研究对象,进行受力分析,列平衡方程求解。

(3)研究容器加速运动时封闭气体的压强,选择活塞或液柱为研究对象,进行受力分析,根据牛顿第二定律列方程求解。

【例9】关于气体的状态参量,下列说法正确的是( ) A 、 一定量气体的体积等于这些气体分子所能达到的空间体积

B 、 一定量气体的压强是由组成这些气体的所有分子所受到的重力所产生的

C 、 一定量气体的质量等于组成这些气体的所有分子的质量之和

D 、 气体温度的高低反映了大量分子无规则热运动的剧烈程度

【例10】如右图所示,两个半球壳拼成的球形容器内部已抽成真空,球形容器的半径为R ,大气压强为0p ,使两个球壳沿箭头方向相互分离,应施加的力F 至少为( )

A 、204R p π

B 、202R p π

C 、20R p π

D 、2

012

R p π

【例11】写出下面各图中各种压强的关系。

(1)

(2) (3)

(4) (5)

(6) (7)

(8)

(9)

(10)

(11)

知识点五:气体定律

玻意耳定律: 1122p V p V = (等温过程) 查理定律:

12

12

p p T T = (等容过程) 盖·吕萨克定律:

12

12

V V T T = (等压过程) (注意温度T 的单位是开尔文K ) 定律成立的条件是:气体质量保持不变。

以上公式可以综合成一个理想气体状态方程:pV nRT =。在做题中,只需要看p,V,T 中哪个是固定量,根据理想气体状态方程判断变化过程中的关系。

注意:解题步骤:

(1) 确定研究对象(某一定质量的气体),分析和列出气体在初末两个状态的状态量 (2) 判断气体在状态变化过程中是否满足定律适用条件 (3) 利用定律的数学表达式列出方程,解出结果 (4) 检查结果饿合理性,最后写出答案。

【例12】如右图所示,玻璃管上端封闭,开口的下端插在水银槽中,管内水银面高出槽内水银面h,用拉力F 提着玻璃管缓慢上升少许,在此过程中( ) A 、 高度差h 增大 B 、 气柱长度增大 C 、 气体压强增大 D 、 拉力F 增大

【例13】如右图所示,质量为m ’的气缸内有一个质量为m 的活塞,活塞面积为S ,将一定量的理想气体密封在气缸内,活塞可自由地无摩擦的移动。气缸与地面间的动摩擦因数为u ,开始时活塞离汽缸底部距离为d,当时大气压为p0,现在用恒力拉着活塞并带动气缸一起向右以加速度a 做匀加速运动,求这时活塞离气缸底部的距离?(设气体温度保持不变)

【例14】和上题图一样,一气缸水平放置,活塞的截面积为2

100S cm =,大气压强为

5010p Pa =,封在缸内的气柱长为L ,求:

(5) 将活塞向左推L/3,需加多大的力? (6) 将活塞向右拉L/3,需加多大的力?

【例15】如右图所示是一个呈圆柱形、上部有挡板的气缸,缸内用一极薄的质量不计的活塞封住一定质量的气体。已知缸的内部高度为a ,开始时活塞处在离底部a/2高度处,此时外界大

气压强5

010p Pa =,温度为27 C ?,若将气体加热到427 C ?,

则此时气缸内气体的压强为多大?

【例16】如下图所示,四个玻璃管均为两端封闭、水平放置,管内空气都被一段汞柱分隔成左、右两部分,按图中标明的条件,汞柱处于静止状态,按图中标明的条件,让管内空气升高相同温度,汞柱会向左移动的是( )

,a b a b V V T T << ,a b a b V V T T >=

A B

,a b a b V V T T => ,a b a b V V T T <>

C D

【例17】如右图所示为一种测温装置,管内汞面的高度x 可反映泡内气体的温度,即环境

温度,并可由管上的刻度直接读出。设管的体积与泡的体积相比可略去不计。

(1)在一个标准大气压下(76cmHg )对管进行温度刻度。当温度

27t C =?时,管内汞面高度116x cm =,此高度为27C ?的刻度线,

为0t C =?时的刻度线2x 为多少厘米?

(2)若大气压变成75cmHg ,利用该装置测温度时所得示数为27C ?,对应的实际温度为多少?

知识点六:气体状态变化的图像

一定质量的某种理想气体的等温过程,等容过程,等压过程在p-V 图,p-T 图,V-T 图上的图像分别如下图所示:

应用上述图像可以完成图像的相互转换,可以确定一定质量的理想气体在某确定的过程中,内能的变化情况和热传递变化情况,应用一定质量理想气体的p-V图上的等温线可以比较气体温度的高低,在p-T图上的等容线可以比较气体的压强,在V-T图上的等压线可以比较气体的体积。利用图像也可以比较两个不同质量气体的质量。

时,体积为,在它从下图所示p-V图中A状【例18】1mol气体在1atm,0C

态沿直线变化到B状态的过程中,气体所达到的最高温度是。

【例19】如下图所示,一定质量的理想气体从状态A变化到状态B,在此过程中,气体的体积如何变化?

【例20】如下图甲所示,实线表示1mol的理想气体发生状态变化时的p-V图线,变化过程是由状态A出发,经过B、C、D各状态,最后又回到状态A,试将这全部过程准确地画在下图乙所示的V-T图中,并在图像上标出对应的A、B、C、D四个状态,同时用箭头表示出变化方向。

同步练习:

1、 试估算标准状态下氧气分子间的距离(只保留一位有效数字)

2、 利用油膜法可以粗略测出阿伏伽德罗常数,把密度3

3

0.810/kg m ρ=?的某种油用滴管

滴出一滴在水面上形成油膜。已知这滴油的体积为3

3

0.310V cm -=?,形成油膜的面积为2

0.5S m =,油的摩尔质量0.1/M kg mol =。把油膜看成单分子层,每个分子看做球形,那么

(1) 油分子的直径是多少?

(2) 由以上数据可粗略测出阿伏伽德罗常数A N 是多少?(保留一位有效数字)

3、有关布朗运动的下列叙述中,正确的是( )

A 、把碳素墨水滴入清水中,观察到布朗运动,这是碳分子的无规律运动

B 、布朗运动是否显著与悬浮在液体中的固体颗粒的大小无关

C 、布朗运动的激烈程度与液体的温度有关,颗粒大小一定时,液体温度越高,布朗运动越显著

D 、布朗运动的无规则反映了液体内部分子运动的无规则性

4、放在房中的香水,打开瓶塞后,位于房间另一处的人将( ) A 、立即嗅到香味,因为分子热运动速率很大,穿过房间所需要的时间极短 B 、过一会儿才能嗅到香味,因为分子热运动速率不大,穿过房间需要一段时间

C 、过一会儿才能嗅到香味,因为分子热运动速率虽大,但由于是无规则运动,且与空气分子不断碰撞,要嗅到足够多的香水分子必须经过一段时间

D 、过一会儿才能嗅到香味,因为分子热运动速率虽大,但必须有足够多的香水分子才能引起嗅觉

5、分子间同时存在着吸引力和排斥力,下列说法正确的是( ) A 、固体分子间的吸引力总是大于排斥力

B 、分子能充满任何容器是因为分子间的排斥力大于吸引力

C 、分子间的吸引力和排斥力都随着分子间距离的增大而减小

D 、分子间吸引力随着分子间距离的增大而增大,而排斥力随分子间距离的增大而减小

6、两端封闭的玻璃管如右图所示竖直放置,管内有一段汞柱将空气分隔成上下两部分,下列判断中正确的是( )

A 、 当它转过90?成水平状态时,原下部空气柱体积会增加

B 、 当它竖直向上加速运动时,下部空气柱体积增大

C 、 当它自由下落时,上部空气柱体积增大

D 、 当它完全浸没在冰水中后,上部空气柱体积增大

7、一定质量的气体在体积不变的情况下,温度由50C ?升高到100C ?,以下各选项中,正确的是( )

A、温度每升高1C ?,压强增加为原来压强的1/273 B、气体压强变为原来的2倍 C 、气体压强比原来增加了50/273 D 、气体压强是原来的373/323倍

8、如图所示,一只存有空气的密闭烧瓶,用玻璃管与水银气压计连接,气压计两端内的水

银面在同一水平面上,现降低烧瓶内空气的温度,同时移动气压计右管,使水银气压计左管的水银面保持在原来的水平面上,则表示气压计两管内水银面高度差h ?与烧瓶内所降低的温度t ?之间的关系图线是图中的( )

9、如右图所示,玻璃管内封闭了一段气体,气柱长度为l ,管内外水银面高度差为h ,若温度保持不变,把玻璃管稍向上提起一段距离,则( )

A 、h 、l 均变大

B 、h 、l 均变小

C 、h 变大l 变小

D 、h 变小l 变大

10、如下图所示,一定量理想气体从状态1变化到状态2,再变化到状态3,在这三个状态中,气体压强大小的关系是 ,气体体积大小的关系是 。

11、一定质量理想气体的状态经历了如右图所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( ) A 、ab 过程中不断增加 B 、bc 过程中保持不变 C 、cd 过程中不断增加 D 、da 过程中保持不变

12、如右图所示,直线ABC 为一定质量气体的等容线,由此可知,图中A 点的温度为

C ?,气体处于B 状态时的压强 为 Pa ,在C 状态时的温度 为 C ?。

13、某压缩时喷雾器贮液桶的总容量是7.5L ,装入药液后,药液上方气体的体积是1.5L 。设打气筒每次能压入压强为5

1.010Pa ?的空气2503

cm 。要使喷雾器里空气的压强达到

54.010Pa ?,应打气几次?从这时候开始喷射药液,直到不能喷射时,喷雾器内剩下的药

液是多少?(假设打入空气和喷射药液时温度保持不变)

14、如右图所示,一圆形气缸静置于地面上,气缸筒质量为M,

手柄活塞质量为m,活塞横截面积为S,大气压为

p,平衡时气

缸内容积为V。设气缸足够大。现用手握住活塞缓慢上提,气体

温度保持不变,,并不计气缸内气体的重力及一切摩擦,那么当气

缸刚提离地面时活塞上升多少距离?

15、如图所示,在粗细均匀的U形管两边灌有水银,底部有一空气柱,尺寸如图所示,单

位是cm。大气压强

070

p cmHg

=。当温度由原来的0C?上升到273C?时,空气柱长度将增大到多少?

例题答案:

1、 ABD

2、25

3.2710kg ?,101.6010m -? 3、105.010m -? 4、D 5、C 6、A 7、

B 8、AB 9、ACD 10、

C 11、(1)10P P =(2)01P P gh ρ=+(3)

10p p gh ρ=+(4)10()P P g a h ρ-=+(5)10sin P P gh ρθ=+(6)01P P gh

ρ=+(7)

10P P gh ρ=+(8)012,121P P gh P P gh ρρ=+=+(9)

10,20,234P P P P gh P P P ρ==+=+(10)10P S P S Mg

=+(11)

00PaSa P Sb PbSb P Sa +=+ 12、ABD 13、020(')'p dS

d p S u m m g m a

=

-+-

14、(1)500N (2)250N 15、5

1.1710Pa ? 16、CD 17、(1)21.4cm (2) 22C ? 18、2

2.4L ,56C ? 19、体积增大了

20

习题答案:

1、9

310m -? 2、10

610

m -?,24110/mol ? 3、CD 4、C 5、C 6、AD 7、D 8、

C 9、A 10、123p p p =>,123v v v << 11、AB 12、-273,4

2.7310?,473

13、18次,1.5L 14、0()()M m gV

p S Mg S

+- 15、38.0cm

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

专题三:气体实验定律_理想气体的状态方程

专题三:气体实验定律 理想气体的状态方程 [基础回顾]: 一.气体的状态参量 1.温度:温度在宏观上表示物体的________;在微观上是________的标志. 温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的). 绝对零度为____0 C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到. 2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________. 3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律 1.玻意耳定律(等温变化) 一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化) (1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化) (1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体 能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程: 2 2 2111T V P T V P = 3.密度方程: 2 22111ρρT P T P = [重难点阐释]: 一.气体压强的计算

高三物理《理想气态的方程及气体分子动理论》教案

理想气态的方程及气体分子动理论 一、学习目标 1、知道什么是理想气体,能够由气体的实验定律推出理想气体状态方程。 2、掌握理想气体状态方程,并能用来分析计算有关问题。 3、知道理想气体状态方程的适用条件。 4、掌握克拉珀龙方程并能利用方程计算有关问题。 5、明确摩尔气体常量,R是一个热学的重要常数,其重要性与阿伏加德罗常数是一样的。 6、应用克拉珀龙方程解题时,由于R=8.31J/(mol· K)=0.082atm·L/(mol· K)。因此p、 V的单位必须与选用的R的单位相对应。 7、明确p-V, p-T, V-T图线的意义。 8、能够在相应的坐标中表达系统的变化过程。 二、重点难点及考点 1、这一节的内容重点在于能够知道用理想气体状态方程解决问题的基本思路和方法,并 能解决有关具体问题,还要注意到计算时要统一单位,难点在于用理想气体状态方程 解题时有时压强比较难找。 2、本节重点是克拉珀珑方程的应用,应用克拉珀龙方程可以解决很多气体问题,如果把 它学习好,对学生的学习气体这一节会有很大帮助,本节难点是对克拉珀龙方程的应用,但本节在高考中所占比例并不是特别大,因为这一节为现行教材中的新增长率加 内容。 3、本节重点是把气体的三个状态量用分子动理论来描述清楚,难点是用分子动理论解释 气体三定律,要从逻辑严谨的理相气体模型出发解释每个气体定律,本节在高考中涉 及的题目不多但出曾出现过。

三、例题分析 第一阶段 [例1]在密闭的容器里装有氧气100g,压强为10×106Pa,温度为37oC,经一段时间后温度 降为27oC,由于漏气,压强降为6.0×105Pa,求该容器的容积和漏掉气的质量。 思路分析: 本题研究的是变质量气体问题,由于容器的容积和气体种类(设氧气摩尔质量为M)仍未变,只是质量变为m2,再由克拉珀龙方程列出一个方程,联解两个方程,即可求得容器的容积和漏掉的氧气,抓住状态和过程分析是解题的关键。根据题意可得: ①② 方程①可得: 将V代入②可求: 所以漏掉的氧气质量△m=m1-m2=38g 答案:该容器的容积8.05×10-3m3,漏掉气的质量是38g, [例2]一个横截面积为S=50cm2竖直放置的气缸,活塞的质量为80kg,活塞下面装有质量m=5g的NH3,现对NH3加热,当NH3的温度升高△T=100oC时,求活塞上升的高度为多少?设大气压强为75cmHg,活塞与气缸无摩擦。 思路分析:本题研究的是定质量气体问题,首先确定定研究对象HN3,确认初态压强与末态压强相等,由于温度升高,NH3变化过程是等压膨胀,体积发生变化。由克拉珀龙方程可列两个状态下的方程,求出体积变化。再由体积变化和横截面积求出活塞上升的高度。确认等压膨胀是解本题的关键。 根据题意:根据克拉珀龙方程得: 所以活塞上升高度

第二章-热力学第一定律--题加答案

第二章热力学第一定律 1. 始态为25 °C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。途经a先经绝热膨胀到-28.47 °C,100 kPa,步骤的功;再恒容加热到压力 200 kPa的末态,步骤的热。途径b为恒压加热过程。求途径b的及。(天大2.5题) 解:先确定系统的始、末态 对于途径b,其功为 根据热力学第一定律 2. 2 mol某理想气体,。由始态100 kPa,50 dm3,先恒容加热使压力增大到200 dm3,再恒压冷却使体积缩小至25 dm3。求整个过程的。(天大2.10 题) 解:过程图示如下 由于,则,对有理想气体和只是温度的函数 该途径只涉及恒容和恒压过程,因此计算功是方便的

根据热力学第一定律 3. 单原子理想气体A与双原子理想气体B的混合物共5 mol,摩尔分数,始态温 度,压力。今该混合气体绝热反抗恒外压膨胀到平 衡态。求末态温度及过程的。(天大2.18题) 解:过程图示如下 分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。因此, 单原子分子,双原子分子 由于对理想气体U和H均只是温度的函数,所以 4. 1.00mol(单原子分子)理想气体,由10.1kPa、300K按下列两种不同的途 径压缩到25.3kPa、300K,试计算并比较两途径的Q、W、ΔU及ΔH。

(1)等压冷却,然后经过等容加热; (2)等容加热,然后经过等压冷却。 解:C p,m=2.5R, C V,m=1.5R (1) 10.1kPa、300K 10.1kPa、119.8 25.3kPa、300K 0.2470dm30.09858 dm30.09858 dm3 Q=Q1+Q2=1.00×2.5R×(119.8-300)+ 1.00×1.5R×(300-119.8) =-3745+2247=-1499(J) W=W1+W2=-10.1×103×(0.09858-0.2470)+0=1499(J) ΔU=Q+W=0 ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0 (2) 10.1kPa、300K 25.3kPa、751.6 25.3kPa、300K 0.2470dm30.2470dm30.09858 dm3 Q=Q1+Q2=1.00×1.5R×(751.6-300)+ 1.00×2.5R×(300-751.6) =5632-9387=-3755(J) W=W1+W2=0-25.3×103×(0.09858-0.2470) =3755(J) ΔU=Q+W=0 ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0 计算结果表明,Q、W与途径有关,而ΔU、ΔH与途径无关。 5. 在一带活塞的绝热容器中有一固定的绝热隔板。隔板靠活塞一侧为2 mol,0 °C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 °C的双原子理想气体B,其体积恒定。今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T 及过程的。 解:过程图示如下 显然,在过程中A为恒压,而B为恒容,因此

物化试卷 理想气体与热力学第一定律

第二小组测试卷一 2012—2013学年第一学期 一、选择题 ( 共10题 20分 ) 1. 物质临界点的性质与什么有关?------------------ -----------( ) A. 与外界温度有关 B. 与外界压力有关 C. 是物质本身的特性 D. 与外界物质有关 2. 下列说法错误的是------------------------------------------------( ) A . 压力是宏观量 B . 压力是体系微观粒子相互碰撞时动量改变量的量度 C . 压力是体系微观粒子碰撞器壁时动量改变量的量度 D . 压力是体系微观粒子一种运动行为的统计平均值 3. 范德华气体方程式中的常数a 与b 应取何值?-------------( ) A. 都大于零 B. 都小于零 C. a 大于零,b 小于零 D. a 小于零,b 大于零 4. 理想气体的分子运动论公式为 PV=3 1Nmu2 式中,u 是-( ) A. 分子平均运动速率 B. 最可几速率 C. 分子运动最大速率 D. 根均方速率 5.成年人每次呼吸大约为500ml 空气,若其压力为100kPa ,温度为20℃,则 其中有多少氧分子? --------------------------------------------( ) A . 4.305×103 mol B . 0.0205mol C . 22.32mol D . 4.69mol 6. 在同一温度下,同一气体物质的摩尔定压热容C p ,m 与摩尔定容热容C V ,m 之间的关系为-----------------------------------------------------( )。 考试科目 物理化学(上) 考试成绩 试卷类型 考试形式 闭卷 考试对象 11化本 学院—化学与材料工程--- 班级---- 06化本----- 姓名------------------------------------- 学号-------------------------------------

气体定律练习题

气体定律练习题 A 基础达标 1.一定质量的理想气体处于平衡状态Ⅰ.现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则() A.状态Ⅰ时气体的密度比状态Ⅱ时的大 B.状态Ⅰ时气体的平均动能比状态Ⅱ时的大 C.状态Ⅰ时分子间的平均距离比状态Ⅱ时的大 D.状态Ⅰ时每个分子的动能都比状态Ⅱ时的分子平均动能大 2. (09·全国卷Ⅰ·14)下列说法正确的是() A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 3.(09·全国卷Ⅱ·16)如图12-3-9,水平放置的密封气缸内的气体被一竖直隔板分隔为左右两部分,隔板可在气缸内无摩擦滑动,右侧气体内有一电热丝。气缸壁和隔板均绝热。初始时隔板静止,左右两边气体温度相等。现给电热丝提供一微弱电流,通电一段时间后切断电源。当缸内气体再次达到平衡时,与初始状态相比() A.右边气体温度升高,左边气体温度不变 B.左右两边气体温度都升高 C.左边气体压强增大 D.右边气体内能的增加量等于电热丝放出的热量 4.(09·上海物理·9)如图为竖直放置的上细下粗的密闭细管,水银柱将气体分隔成A、B两部分,初始温度相同。使A、B升高相同温度达到稳定后,体积变化量为?V A、?V B,压强变化量为?p A、?p B,对液面压力的变化量为?F A、?F B,则() 12-3-9

A .水银柱向上移动了一段距离 B .?V A <?V B C .?p A >?p B D .?F A =?F B 5.(08全国卷2)对一定量的气体, 下列说法正确的是 ( ) A .气体的体积是所有气体分子的体积之和 B .气体分子的热运动越剧烈, 气体温度就越高 C .气体对器壁的压强是由大量气体分子对器壁不断碰撞而产生的 D .当气体膨胀时,气体分子之间的势能减小,因而气体的内能减少 6.(08重庆卷)地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压 强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)( ) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 7.(08年上海卷)已知理想气体的内能与温度成正比。如图12-3-10 所示的实线汽缸内一定质量的理想气体由状态1到状态2的变化 曲线,则在整个过程中汽缸内气体的内能 ( ) A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 8.(08年上海卷)如图12-3-11所示,两端开口的弯管,左管插入 水银槽中,右管有一段高为h 的水银柱,中间封有一段空气,则 ( ) A.弯管左管内外水银面的高度差为h B.若把弯管向上移动少许,则管内气体体积增大 C.若把弯管向下移动少许,则右管内的水银柱沿管壁上升 D.若环境温度升高,则右管内的水银柱沿管壁上升 9.(海南省民族中学2009届高三月考试卷.物理.3)如图12-3-12所示,导热性能良好的 气缸内用活塞封闭一定质量的空气,气缸固定不动,外界温度恒定。一条细线左端连接在活 塞上,另一端跨过定滑轮后连接在一个小桶上,开始时活塞静止。现在不断向小桶中添加细 沙,使活塞缓慢向右移动(活塞始终未被拉出气缸)。忽略气 12-3-10 12-3-11

第一章 热力学第一定律及应用练习题.

第一章 热力学第一定律及应用练习题 一、 填空:(填<、>或=) 1、理想气体的自由膨胀:△U 0;△H 0;Q 0;W 0; 2、理想气体的等压膨胀:△U 0;△H 0;Q 0;W 0;△H △U ; 3、理想气体的等容升压:△U 0;△H 0;Q 0;W 0;△H △U ; 4、理想气体的等温压缩:△U 0;△H 0;Q 0;W 0;Q W ; 5、理想气体的节流膨胀:△U 0;△H 0;Q 0;W 0; 6、理想气体绝热抗恒外压膨胀:△U 0;△H 0;Q 0;W 0; 7、实际气体的绝热自由膨胀:△U 0; Q 0;W 0;△T 0; 8、实际气体的恒温自由膨胀:△U 0; Q 0;W 0;△U Q ; 9、实际气体的节流膨胀:△H 0; Q 0; 10、实际气体经循环过程恢复原状:△U 0;△H 0; 11、0℃、P 压力下冰融化为水:△U 0;△H 0;Q 0;W 0; 12、水蒸气通过蒸气机对外作功后恢复原状: △U 0;△H 0;Q 0;W 0;Q W ; 13、100℃、P 压力下的H 2O (l )向真空蒸发成同温同压下的蒸气: △U 0;△H 0;Q 0;W 0;△U Q ; 14、H 2(g )和O 2(g )在一绝热恒容反应器中剧烈反应生成水: △U 0; Q 0;W 0; 15、对于理想气体:V T U ??? ???? 0;P T U ??? ???? 0;T V U ??? ???? 0; T P U ??? ???? 0;V T H ??? ???? 0;P T H ??? ???? 0;T V H ??? ???? 0;

T P H ??? ???? 0;V T U ??? ???? P T U ??? ????;V T H ??? ???? P T H ??? ????; 二、单项选择题: 1.热力学第一定律的数学表达式△U =Q —W 只能适用于 (A)理想气体 ; (B)封闭物系; (C)孤立物系 ; (D)敞开物系 2、1mol 单原子理想气体,在300K 时绝热压缩到500K ,则其焓变△H 约为 (A )4157J ;(B )596J ;(C )1255J ;(D )994J 3、同一温度下,同一气体物质的等压摩尔热容Cp 与等容摩尔热容C V 之间 存在 (A )CpC V ;(C )Cp=C V ;(D )难以比较 4、对于任何循环过程,物系经历了i 步变化,则根据热力学第一定律应 该是 (A )∑i Q =0 ; (B )∑i W =0 ; (C )∑∑-][i i W Q >0 ; (D )∑∑-][i i W Q =0 ; 5、对于理想气体,下列关系中哪个是不正确的? (A )0=??? ????V T U ; (B )0=??? ????T V U ; (C )0=??? ????T P H ; (D )0=??? ????T P U 6、3mol 单原子理想气体,从初态T 1=300 K ,P 1=1atm 反抗恒定的外压0.5atm 作不可逆膨胀至终态T 2=300K .P 2=0.5atm 。对于这个过程的Q 、W 、 △U 、△H 的值下列正确的是 (A )Q=W=0;(B )△U=△H=0;(C )Q=△U=0;(D )Q=△H=0 7、实际气体的节流膨胀过程中,哪一组的描述是正确的? ’· i (A )Q=0,△H=0,△P<0; (B )Q=0,△H<0,△P>0;

高中物理人教版选修气体分子动理论单元测试题

物理同步测试—分子运动理论能量守恒气体 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的) 1.下列说法中正确的是() A. 物质是由大量分子组成的,分子直径的数量级是10-10m B. 物质分子在不停地做无规则运动,布朗运动就是分子的运动 C. 在任何情况下,分子间的引力和斥力是同时存在的 D. 1kg的任何物质含有的微粒数相同,都是6.02×1023个,这个数叫阿伏加德罗常数 2.关于布朗运动,下列说法正确的是( ) A.布朗运动是在显微镜中看到的液体分子的无规则运动 B.布朗运动是液体分子无规则运动的反映 C.悬浮在液体中的微粒越小,液体温度越高,布朗运动越显着 D.布朗运动的无规则性反映了小颗粒内部分子运动的无规则性 3.以下说法中正确的是( ) A.分子的热运动是指物体的整体运动和物体内部分子的无规则运动的总和 B.分子的热运动是指物体内部分子的无规则运动 C.分子的热运动与温度有关:温度越高,分子的热运动越激烈 D.在同一温度下,不同质量的同种液体的每个分子运动的激烈程度可能是不相同的

4.在一杯清水中滴一滴墨汁,经过一段时间后墨汁均匀地分布在水中,只是由于() A.水分子和碳分子间引力与斥力的不平衡造成的 B.碳分子的无规则运动造成的 C.水分子的无规则运动造成的 D.水分子间空隙较大造成的 5.下列关于布朗运动的说法中正确的是() A.将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映 B.布朗运动是否显着与悬浮在液体中的颗粒大小无关 C.布朗运动的激烈程度与温度有关 D.微粒的布朗运动的无规则性,反映了液体内部分子运动的无规则性 6.下面证明分子间存在引力和斥力的试验,错误的是() A.两块铅压紧以后能连成一块,说明存在引力 B.一般固体、液体很难被压缩,说明存在着相互排斥力 C.拉断一根绳子需要一定大小的力说明存在着相互吸引力 D.碎玻璃不能拼在一起,是由于分子间存在着斥力 7.下列叙述正确的是()A.悬浮在液体中的固体微粒越大,布朗运动就越明显B.物体的温度越高,分子热运动的平均动能越大 C.当分子间的距离增大时,分子间的引力变大而斥力减小

热力学第一定律习题及答案

热力学第一定律习题 一、单选题 1) 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有:( ) A. W =0,Q <0,?U <0 B. W <0,Q <0,?U >0 C. W <0,Q <0,?U >0 D. W <0,Q =0,?U >0 ?2) 如图,用隔板将刚性绝热壁容器分成两半,两边充入压力不等的空气(视为理想气体),已知p右> p左,将隔板抽去后: ( ) A. Q=0, W =0, ?U =0 B. Q=0, W <0, ?U >0 C. Q >0, W <0, ?U >0 D. ?U =0, Q=W??0 ?3)对于理想气体,下列关系中哪个是不正确的:( ) A. (?U/?T)V=0 B. (?U/?V)T=0 C. (?H/?p)T=0 D. (?U/?p)T=0 ?4)凡是在孤立孤体系中进行的变化,其?U 和?H 的值一定是:( ) A. ?U >0, ?H >0 B. ?U =0, ?H=0 C. ?U <0, ?H <0 D. ?U =0,?H 大于、小于或等于零不能确定。 ?5)在实际气体的节流膨胀过程中,哪一组描述是正确的: ( ) A. Q >0, ?H=0, ?p < 0 B. Q=0, ?H <0, ?p >0 C. Q=0, ?H =0, ?p <0 D. Q <0, ?H =0, ?p <0 ?6)如图,叙述不正确的是:( ) A.曲线上任一点均表示对应浓度时积分溶解热大小 B.?H1表示无限稀释积分溶解热 C.?H2表示两浓度n1和n2之间的积分稀释热 D.曲线上任一点的斜率均表示对应浓度时HCl的微分溶解热 ?7)?H=Q p此式适用于哪一个过程: ( ) A.理想气体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5sPa B.在0℃、101325Pa下,冰融化成水 C.电解CuSO4的水溶液 D.气体从(298K,101325Pa)可逆变化到(373K,10132.5Pa ) ?8) 一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1、V2。( ) A. V1 < V2 B. V1 = V2 C. V1 > V2 D. 无法确定 ?9) 某化学反应在恒压、绝热和只作体积功的条件下进行,体系温度由T1升高到T2,则此过程的焓变?H:( ) A.小于零 B.大于零 C.等于零 D.不能确定 ?10) 对于独立粒子体系,d U=?n i d? i+?? i d n i,式中的第一项物理意义是: ( ) A. 热 B. 功 C. 能级变化 D. 无确定意义 ?11) 下述说法中哪一个正确:( ) A.热是体系中微观粒子平均平动能的量度 B.温度是体系所储存能量的量度 C.温度是体系中微观粒子平均能量的量度 D.温度是体系中微观粒子平均平动能的量度 ?12) 下图为某气体的p-V图。图中A→B为恒温可逆变化,A→C为绝热可逆变化,A→D 为多方不可逆变化。B, C, D态的体积相等。问下述个关系中哪一个错误?( ) A. T B > T C B. T C > T D C. T B > T D D. T D > T C ?13) 理想气体在恒定外压p?下从10dm3膨胀到16dm3, 同时吸热126J。计算此气体的??U。( ) A. -284J B. 842J C. -482J D. 482J ?14) 在体系温度恒定的变化过程中,体系与环境之间:( ) A.一定产生热交换 B.一定不产生热交换 C.不一定产生热交换 D. 温度恒定与热交换无关

热力学第一定律与能量守恒定律

热力学第一定律与能量守恒定律 1.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.此定律是标量式,应用时功、内能、热量的单位应统一为国际单位焦耳. 2.三种特殊情况 (1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加; (2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加; (3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量. 例1关于气体的内能,下列说法正确的是() A.质量和温度都相同的气体,内能一定相同 B.气体温度不变,整体运动速度越大,其内能越大 C.气体被压缩时,内能可能不变 D.一定量的某种理想气体的内能只与温度有关 E.一定量的某种理想气体在等压膨胀过程中,内能一定增加 答案CDE 解析质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A错误;宏观运动和微观运动没有关系, 所以宏观运动速度大,内能不一定大,B错误;根据pV T=C可知,如果等温压缩,则内能不 变;等压膨胀,温度增大,内能一定增大,C、E正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,D正确.练习题 1.对于一定质量的理想气体,下列说法正确的是() A.保持气体的压强不变,改变其体积,可以实现其内能不变 B.保持气体的压强不变,改变其温度,可以实现其内能不变 C.若气体的温度逐渐升高,则其压强可以保持不变 D.气体温度每升高1 K所吸收的热量与气体经历的过程有关 E.当气体体积逐渐增大时,气体的内能一定减小 答案CD

气体分子动理论

气体分子动理论 导读:本文是关于气体分子动理论,希望能帮助到您! 教学目标 知识目标 1、知道气体分子运动的特点. 2、知道分子沿各个方向运动的机会均等,分子速率按一定规律分布,这种规律是一种统计规律. 3、知道气体压强的微观解释以及气体实验定律的微观解释. 能力目标 通过用微观解释宏观,提出统计规律,渗透统计观点,以提高学生分析、综合、归纳能力. 情感目标 通过对气体分子定律以及气体实验定律的微观解释,尤其是统计规律的渗透,让学生体会其在科学研究中的作用.培养学生树立科学的探究精神. 教学建议 用微观的方法解释宏观现象,对学生来说,这是第一次接触,应从实际出发,通过模拟和举例来帮助学生理解统计规律的意义.理解气体压强的产生并解释气体的实验定律是本节的重要内容,也是提高学生分析、综合、归纳能力的有效途径.教学设计示例 (一)教学总体设计

1、教师应借助物理规律和课件展示,准确讲解,注意启发点拨,以学生自己讨论归纳. 2、学生应积极思考、认真观察、参与讨论、总结规律、解释现象. 教师通过动画模拟引入微观对宏观的解释、渗透统计思维,指导学生观察动画、分析特点,总结统计规律,解释有关现象.(二)重点·难点·疑点及解决办法 1、重点:气体压强的产生和气体实验定律的微观解释. 2、难点:用统计的方法分析气体分子运动的特点. 3、疑点 (1)气体分子运动与固体、液体分子运动有什么区别. (2)气体的压强是怎样产生的?它的大小由什么因素决定. 4、解决办法 用小球模拟分子碰撞器壁,联系实际,从实例出发理解气体压强的产生机理,并分析影响气体压强的因素. (三)教学过程 1、气体分子运动特点(条件允许,可以播放动画进行模拟演示) 在教师引导下得出结论: ①气体分子间距较大 ②气体分子充满整个容器空间 ③气体分子运动频繁碰撞 ④气体分子向各个方向运动的机会均等

第二章热力学第一定律练习题及解答

第 二 章 热力学第一定律 一、思考题 1. 判断下列说法是否正确,并简述判断的依据 (1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。 答:是对的。因为状态函数是状态的单值函数。 (2)状态改变后,状态函数一定都改变。 答:是错的。因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得 变。 (3)因为ΔU=Q V ,ΔH=Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗? 答:是错的。?U ,?H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。 (4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从 外界吸收热量。 答:是错的。根据热力学第一定律U Q W ?=+,它不仅说明热力学能(ΔU )、热(Q )和 功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。所以功的转化 形式不仅有热,也可转化为热力学能系。 (5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH=Q p =0 答:是错的。这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH≠Q p 。 (6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1。如将化学反应安排成反应相 同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH 1=ΔH 2。 答:是对的。Q 是非状态函数,由于经过的途径不同,则Q 值不同,焓(H )是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值?H 1和?H 2相等。 2 . 回答下列问题,并说明原因 (1)可逆热机的效率最高,在其它条件相同的前提下,用可逆热机去牵引货车,能否使火 车的速度加快? 答?不能。热机效率h Q W -=η是指从高温热源所吸收的热最大的转换成对环境所做的功。

分子和气体定律精修订

分子和气体定律 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第六章 分子和气体定律 知识点一:阿伏伽德罗常数 1摩尔任何物质含有的微粒数相同,这个数叫做阿伏伽德罗常数,用A N 表示,且236.0210/A N mol =?。 注意:(1)阿伏伽德罗常数是联系微观世界和宏观世界的桥梁。如果已知物质的宏观量:摩尔质量M ,摩尔体积V ,就可以推算出分子质量,分子体积,估算出分子之间的距离等这些微观量。 (2)利用油膜法测量分子的直径,其测定结果表明,分子的直径的数量级是 1010m -。 【例1】对于液体和固体(不计分之间的空隙),若用M 表示摩尔质量,0m 表示分子质量,ρ表示物质密度,V 表示摩尔体积,0V 表示单个分子的体积,A N 表示阿伏伽德罗常数,则下列关系中正确的是( ) (A )0A V N V = (B )0A V N m ρ= (C )A M N V ρ= (D )M V ρ= 【例2】黄金的密度为3319.310/kg m ρ=?,摩尔质量为131.9710/u kg m -=?,求: (1) 金分子的质量 (2) 金分子的半径 【例3】将31cm 油酸溶于酒精,制成3200cm 的油酸酒精溶液。每31cm 该溶液有20滴。现将1滴该溶液滴到水面上,随着酒精溶解于水,油酸最终在水面上形成面积为20.50cm 的单分子膜层。试估测出油酸分子的直径。 知识点二:分子的热运动 1、扩散现象 不同的物质相互接触时彼此进入对方的想象叫扩散现象。 (1) 扩散的快慢与温度有光,温度越高,分子运动越激烈,扩散就越快。 (2) 扩散现象不仅可以在气体分子间发生,在固体之间和液体之间也会发 生。 2、布朗运动 液体中悬浮微粒的无规则运动叫布朗运动。

第二章 热力学第一定律

第二章热力学第一定律 思考题 1设有一电炉丝浸于水中,接上电源,通过电流一段时间。如果按下列几种情况作为系统,试问ΔU,Q,W为正为负还是为零? (1)以电炉丝为系统; (2)以电炉丝和水为系统; (3)以电炉丝、水、电源及其它一切有影响的部分为系统。 2设有一装置如图所示,(1)将隔板抽去以后,以空气为系统时,ΔU,Q,W为正为负还是为零?(2)如右方小室亦有空气,不过压力较左方小,将隔板抽去以后,以所有空气为系统时,ΔU,Q,W为正为负还是为零? 作业题 1 (1)如果一系统从环境接受了160J的功,内能增加了200J,试问系统将吸收或是放出多少热?(2)一系统在膨胀过程中,对环境做了10 540J的功,同时吸收了27 110J的热,试问系统的内能变化为若干? [答案:(1) 吸收40J;(2) 16 570J] 2在一礼堂中有950人在开会,每个人平均每小时向周围散发出4.2xl05J的热量,如果以礼堂中的空气和椅子等为系统,则在开会时的开始20分钟内系统内能增加了多少?如果以礼堂中的空气、人和其它所有的东西为系统,则其ΔU=? [答案:1.3×l08J;0] 3一蓄电池其端电压为12V,在输出电流为10A下工作2小时,这时蓄电池的内能减少了1 265 000J,试求算此过程中蓄电池将吸收还是放出多少热? [答案:放热401000J] 4 体积为4.10dm3的理想气体作定温膨胀,其压力从106Pa降低到105Pa,计算此过程所能作出的最大功为若干? [答案:9441J] 5 在25℃下,将50gN2作定温可逆压缩,从105Pa压级到2×106Pa,试计算此过程的功。如果被压缩了的气体反抗恒定外压105Pa作定温膨胀到原来的状态,问此膨胀过程的功又为若干? [答案:–1.33×104J;4.20×103J] 6 计算1mol理想气体在下列四个过程中所作的体积功。已知始态体积为25dm3终态体积为100dm3;始态及终态温度均为100℃。 (1)向真空膨胀; (2)在外压恒定为气体终态的压力下膨胀; (3)先在外压恒定为体积等于50dm3时气体的平衡压力下膨胀,当膨胀到50dm3(此时温度仍为100℃)以后,再在外压等于100 dm3时气体的平衡压力下膨胀; (4)定温可逆膨胀。 试比较这四个过程的功。比较的结果说明了什么问题? [答案:0;2326J;310l J;4299J] 习题10试证明对遵守范德华方程的1mol实际气体来说,其定温可逆膨胀所作的功可用下式求算。

高中物理分子动理论-气体和热力学定律专题讲练

《分子动理论 气体与热力学定律》专题讲练 一、考纲要求 六.分子动理论、热和功、气体 热学部分在高考理综中仅仅以一道选择题的形式出现,分值:6分。知识要点是分子动理论、 内能、热力学三定律及能量守恒定律和气体的性质。 二、典例分类评析 1、分子的两种模型及宏观量、微观量的计算 (1)分子的两种模型 ①球体模型:常用于固体、液体分子。V=1/6πd 3 ②立方体模型:常用于气体分子。V=d 3 (2)宏观量、微观量的计算 在此所指的微观量为:分子体积 0V ,分子的直径d ,分子的质量0m .宏观物理量为:物质的体积V 、摩尔体积mol V 、物质的质量m 、摩尔质量M 、物质的密度ρ。阿伏加德罗常数是联系微观 物理量和宏观物理量的桥梁。由宏观量去计算微观量,或由微观量去计算宏观量,都要通过阿伏 加德罗常数建立联系.所以说阿伏加德罗常数是联系宏观量与微观量的桥梁. ①计算分子的质量:0mol A A V M m N N ρ== ②计算分子的体积:0mol A A V M V N N ρ= =,进而还可以估算分子的直径(线度) d ,把分子看成小

球,由30432d V π??= ??? ,得d =(注意:此式子对固体、液体成立) ③计算物质所含的分子数:A A A mol m V V n N N N M V M ρ===. 例1、下列可算出阿伏加德罗常数的一组数据是 ( ) A .水的密度和水的摩尔质量 B .水的摩尔质量和水分子的体积 C .水分子的体积和水分子的质量 D .水分子的质量和水的摩尔质量 例2、只要知道下列哪一组物理量,就可以估算出气体中分子间的平均距离 ( ) A.阿伏加德罗常数,气体摩尔质量和质量 B .阿伏加德罗常数,气体摩尔质量和密度 C .阿伏加德罗常数,气体质量和体积 D .该气体的密度、体积和摩尔质量 例3、某固体物质的摩尔质量为M ,密度为ρ,阿伏加德罗常数为A N ,则每个分子的质量和单 位体积内所含的分子数分别是 ( ) A .A N M 、A N M ρ B .A M N 、A MN ρ C .A N M 、 A M N ρ D .A M N 、 A N M ρ 例4、若以 μ表示水的,υ表示在标准状态下水蒸气的摩尔体积, ρ为表示在标准状态下水蒸气 的密度,N A 为阿伏加德罗常数,m 、Δ分别表示每个水分子的质量和体积,下面是四个关系式中 正确的是 ( ) A . N A = ─── υρ m B .ρ = ─── μA N Δ C . m = ─── μA N D .Δ= ─── υA N 例5、已知地球半径约为6.4×106 m ,空气的摩尔质量约为29×10-3 kg/mol,一个标准大气压约为 1.0×105 Pa.利用以上数据可估算出地球表面大气在标准状况下的体积为 ( ) A.4×1016 m 3 B.4×1018 m 3 C. 4×1030 m 3 D. 4×1022 m 3 2、分子热运动和布朗运动 (1)布朗运动 ①布朗运动是指悬浮小颗粒的运动,布朗运动不是一个单一的分子的运动——单个分子是看不见 的,悬浮小颗粒是千万个分子组成的粒子,形成布朗运动的原因是悬浮小颗粒受到周围液体、气 体分子紊乱的碰撞和来自各个方向碰撞效果的不平衡,因此,布朗运动不是分子运动,但它间接 证明了周围液体、气体分子在永不停息地做无规则运动, ②布朗运动与扩散现象是不同的现象.布朗运动是悬浮在液体中的微粒所做的无规则运动.其运 动的激烈程度与微粒的大小和液体的温度有关.扩散现象是两种不同物质在接触时,没有受到外 力影响。而能彼此进到对方里去的现象.气、液、固体都有扩散现象,扩散快慢除和温度有关外, 还和物体的密度差、溶液的浓度有关.物体的密度差(或浓度差)越大,温度越高,扩散进行的越 快. ③布朗运动的激烈程度与微粒的大小和液体的温度有关。颗粒越小,布朗运动越明显;温度越高,

第七章 气体分子动理论

第七章气体动理论 研究对象:由大量分子(原子)组成的系统。分子视为刚性小球,分子间作弹性碰撞。 研究方法:由于分子的数量极其庞大,彼此之间的相互作用又非常频繁,而且还具有偶然性,所以只能用统计的方法进行处理。研究微观量(m,v,p,f)集体表现出来的宏观特征。 §7-1 物质的微观模型统计规律性 1. 分子的数密度和线度:单位体积内的分子数叫分子数密度。气体(n氮=2.47*1019/cm3)、液体(n水=3.3*1022/cm3)、固体(n =7.3*1022/cm3)。不同种类的分子大小不等,小分子约为10-铜 10m的数量级。实验表明:标准状态下,气体分子间距为分子直 径的10倍。 2.分子力:当rr0时,分子力主要表现为吸引力,并 且随r的增加而逐渐减小(当r约为10-9m)时,可以忽略)。 3.分子热运动的无序性及统计规律性 (1)系统由大量分子(原子)组成的。由于分子的数量极其庞大,彼此之间的相互作用又非常频繁(标准状态下, 气体分子平均每秒钟要经历109次碰撞),在总体上表现 为热运动中所具有的无序性。 (2)物质内的分子在分子力的作用下欲使分子聚集在一起,形成有序的排列;而分子的热运动则要使分子尽量分 开;这样一来,分子的聚合将决定于环境的温度和压 强,从而导至物质形成气、液、固、等离子态等不同的 集合体。 (3)个别分子的运动具有偶然性,大量分子的整体表现具有规律性。称其为统计规律性。 §7-2 理想气体的压强公式 1.理想气体的微观模型 (1)气体分子看成是质点 (2)除碰撞外,分子间作用力可以忽略不计 (3)分子间以及分子与器壁间的碰撞可以看成是完全弹性碰撞 2.理想气体的压强公式 (1)定义:压强为单位面积上,大量气体分子无规则运动撞

内能与热力学第一定律(答案)

内能与热力学第一定律(参考答案) 一、知识清单 1.【答案】 二、选择题 2.【答案】BDE 【解析】实际气体的内能包括分子之间相互作用的势能和分子热运动的动能,与整体的重力势能和动能均无关。改变气体内能的方式有做功和热传递。 【易错警示】本题易忽视题中所研究的为实际气体,从而错误地按理想气体模型处理,而导致漏选B。3.【答案】ACE 【解析】把物体缓慢举高,外力做功,其机械能增加,由于温度不变,物体内能不变,选项A对;物体的内能与物体做什么性质的运动没有直接关系,选项B错;电流通过电阻后电阻发热,是通过电流“做功”的方式改变电阻内能的,选项C对;根据分子间作用力的特点,当分子间距离等于r0时,引力和斥力相等,不管分子间距离从r0增大还是减小,分子间作用力都做负功,分子势能都增大,故分子间距离等于r0时分子势能最小,选项D错,E对. 4.【答案】D 5.【答案】B 【解析】根据温度是分子平均动能的标志知,温度升高,分子热运动的平均动能增大;温度降低,分子热运动的平均动能减小,选项A错误,B正确。理想气体的温度升高,内能增大;温度降低,内能减小,选项C错误。晶体熔化或凝固时温度不变,但是内能变化,熔化时吸收热量,内能增大;凝固时放出热量,内能减小,选项D错误。 6.【答案】B 【解析】解:A、所有分子动能与势能之和是物体的内能,对一个分子不能谈内能,不能比较一个水分子与一个分子的内能关系,故A错误; B、一定质量的0℃的水结成0℃的冰要释放热量,其内能一定减少,故B正确; C、分子势能与分子间分子力和分子间距离有关,与物体的位置高度无关,故C错误; D、物体内所有分子动能与势能之和是物体的内能,物体内能由物质的量、物体的温度与物体体积决定,物体内能与物体是否运动无关,故D错误; 7.【答案】ADE 【解析】对封闭气体,由题图可知a→b过程,气体体积V不变,没有做功,而温度T升高,则为吸热过程,A项正确。b→c过程为等温变化,压强减小,体积增大,对外做功,则为吸热过程,B项错误。c→a过程为等压变化,温度T降低,内能减少,体积V减小,外界对气体做功,依据W+Q=ΔU,外界对气体所做的功小于气体所放的热,C项错误。温度是分子平均动能的标志,T ap c,显然E项正确。 8.【答案】 C 【解析】由热力学第一定律ΔU=W+Q可知,若物体放出热量,如果外界对物体做正功,则ΔU不一定为负值,即内能不一定减少,故A项错误;同理可分析出,B项和D项错误,C项正确。 9.【答案】ABE 【解析】在p-T图象中过原点的倾斜直线都是等容线,a、c在同一等容线上,体积相等,A正确。一定质

相关主题
文本预览
相关文档 最新文档