当前位置:文档之家› 金牛 高能量型锂电电解液技术探讨

金牛 高能量型锂电电解液技术探讨

锂离子电池基本知识

一.电池常规知识 目录 1.什么是电池? 2.一次电池和二次电池有什么区别? 3、充电电池是怎样实现它的能量转换? 4、什么是Li-ion电池? 5、Li-ion电池的工作原理? 6、Li-ion电池的主要结构。 7、Li-ion电池的优缺点。 8、Li-ion电池安全特性是如何实现的? 9、什么是充电限制电压?额定容量?额定电压?终止电压? 10、Li-ion铝壳和钢壳电池比较它的区别有哪些? 11、目前常见的各种可充电电池之间有什么区别? 1、什么是电池? 电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池

电压各有不同。 2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它 们的电化学成分和电极的结构可知,可充电电池的内部结构之 间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会 在电极的体积和结构上引起可逆的变化,那么可充电电池的内 部设计就支持这种变化。而一次电池在给定的电池环境中两个 电极之间的电化学反应是不可逆的,因此,不可以将一次电池 拿来充电,这种做法很危险也很不经济。如果需要反复使用, 应选择真正的循环次数在1000次左右的充电电池,这种电池又 称为二次电池。 ?另一明显的区别就是它们具有较高的比能量和负载能力,以及 自放电率。一次电池能量密度远比一次电池高。然而他们的负 载能力相对要小。 ?二次电池具有相对较高的负载能力,可充电电池Li-ion,随着 近几年的发展,具有高能量容量。 ?不管何种一次电池的电化学系统属于哪种,所有的一次电池的 自放电率都很小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转 换成电能。就二次电池而言(另一术语也称可充电便携式电池),

锂离子电池内部的构造和形状分类

锂离子电池内部的构造和形状分类 锂离子电池的制造工艺技术非常严格,复杂,锂离子电池制造工艺流程中的几个主要工序如下: 1、制浆用专门的溶剂和粘接剂分别与粉末状的正负极活性物质混合,经高速搅拌均匀后,制成浆状的正负极物质。 2、涂膜将制成的浆料均匀地涂覆在金属箔的表面,烘干,分别制成正、负极极片。 3、装配按正极片一隔膜一负极片一隔膜自上而下的顺序放好,经卷绕制成电池芯,再经注入电解液、封口等工艺过程,即完成电池的装配过程,制成成品电池。 4、化成用专用的电池充放电设备对成品电池进行充放电测试,对每一只电池都进行检测,筛选出合格的成品电池,待出厂。 电池的结构锂离子电池的形状主要有圆柱形锂电池和方型锂电池两种,此外还有扣式锂离子电池。1998年,锂离子电池产量2.80亿只(60%为圆柱形电池,40%为方形电池),其中40%用于笔记本电脑,40%用于手机,20%用于摄像机等。无论是何种锂离子电池,锂离子电池的基本结构为:正极片、负极片、正负极集流体、隔膜纸、外壳及密封圈、盖板等。 (1)正极目前使用的有LCo()2,LiNi02,LiMmO,等,从电性能及其他综合性能来看,普遍采用LiCoQ制作正极,即将LiCo()2与粘结剂(P丁FE)混合,然后碾压在正极集流体(铝箔)上制成正极片。 (2)负极将石墨和粘结剂混合碾压在负极集流体(铜箔)上。 (3)电解液较好的是LiPF6,但价格昂贵;其他有LiAsF6,但有很大的毒性;LiClQ,具有强氧化性;有机溶剂有DEC,DMC,DME等。 (4)隔膜纸采用微孔聚丙烯薄膜或特殊处理的低密度聚乙烯膜。此外,外壳、盖帽、密封圈等,根据电池的外形变化而有所改变。还要考虑安全装置。 方型和圆柱形锂离子电池一样,盖子上也有一种特殊加工的破裂阀,以防止电池内压过高而可能出现的安全问题。这种阀一旦打开,电池即失效。同样,锂离子电池的极片也是卷绕起来的,它完全不同于方形MH—Ni或Cd-Ni电池的叠片结构。方型与圆柱形电池不同,方形电池的正极柱是一种金属—陶瓷或金属—玻璃绝缘子,它实现了正极与壳体之间的绝缘。扣式锂离子电池结构为了满足计算机、摄像机、笔记本电脑对高比能量和薄型化的要求,许多公司纷纷开发扣式锂离子电池。 文章摘自电池论坛:https://www.doczj.com/doc/9a4261159.html,/thread-210352-1-1.html 电池论坛https://www.doczj.com/doc/9a4261159.html,

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

锂离子电池基础知识100答

1、一次电池和充电电池有什么区别? 电池内部的电化学性决定了该类型的电池是否可充,根据它们的电化学成分和电极的结构可知,真正的可充电电池的内部结构之间所发生反应是可逆的。 理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极体积和结构上引起可逆的变化,那么可充电电池的内部设计必须支持这种变化,既然,一次电池仅做一放电,它内结构简单得多且不需要支持这种变化,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济,如果需要反复使用,应有尽有选择真正的循环次数在1000次左右的充电电池,这种电池也可称为一次电池或蓄电池。 2、一次电池和二次电池还有其他的区别吗? 另一明显的区别就是它们能量和负载能力,以及自放电率,二次电池能量远比一次电池高,然而他们的负载能力相对要小。 3、可充电便携式电池的优缺点是什么? 充电电池寿命较长,可循环1000次以上,虽然价格比干电池贵,但如果经常使用的话,是比较划算的。充电电池的容量比同规格的碱锰电池或锌碳电池低,比如,他们放电较快。 另一缺点是由于他们几近恒定的放电电压,很难预测放电何时结束。当放电结束时,电池电压会突然降低。假如在照相机上使用,突然电池放完了电,就不得不终止。 但另一方面可充电电池能提供的容量比太部分一次电池高。 但Li-ion电池却可被广泛地用照相器材中,因为它容量高,能量密度大,以及随放电深度的增加而逐渐降低的放电电压。 4、充电电池是怎样实现它的能量转换? 每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能,就二次电子(也叫蓄电池)而言(另一术语也称可充电使携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上,而我司产品li-ion可重复充放电1000次以上。Li-ion是一种新型的可充电便携式电池。它的额定电压为3.6V,它的放电电压会随放电的深度逐渐衰退,不象其他充电电池一样,在放电未,电压突然降低。 5、什么是Li-ion电池? Li-ion是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是锂金属,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion又叫摇椅式电池。 6、Li-ion电池有哪几部分组成? (1)电池上下盖(2)正极——活性物质为氧化锂 钴(3)隔膜——一种特殊的复合膜

锂电池电解液基础知识

锂离子电池电解液 1 锂离子电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。目前锂离子电池电解液产品技术也正处于进一步发展中。在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。 国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂离子电池电解液简介

锂离子电池电解液简介 一、电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 二、电解液组成 2.1有机溶剂 有机溶剂是电解液的主体部分,电解液的性能与溶剂的性能密切相关。锂离子电池电解液中常用的溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)等,一般不使用碳酸丙烯酯(PC)、乙二醇二甲醚(DME)等主要用于锂一次电池的溶剂。PC用于二次电池,与锂离子电池的石墨负极相容性很差,充放电过程中,PC 在石墨负极表面发生分解,同时引起石墨层的剥落,造成电池的循环性能下降。但在EC 或EC+DMC复合电解液中能建立起稳定的SEI膜。通常认为,EC与一种链状碳酸酯的混合溶剂是锂离子电池优良的电解液,如EC+DMC、EC+DEC等。相同的电解质锂盐,如LiPF6或者LiC104,PC+DME体系对于中间相炭微球C-MCMB材料总是表现出最差的充放电性能(相对于EC+DEC、EC+DMC体系)。但并不绝对,当PC与相关的添加剂用于锂离子电池,有利于提高电池的低温性能。 2.2 电解质锂盐 LiPF6是最常用的电解质锂盐,是未来锂盐发展的方向。尽管实验室里也有用LiClO4,、LiAsF6等作电解质,但因为使用LiC104 的电池高温性能不好,再加之LiCl04本身受撞击容易爆炸,又是一种强氧化剂,用于电池中安全性不好,不适合锂离子电池的工业化大规模使用。 2.3添加剂 添加剂的种类繁多,不同的锂离子电池生产厂家对电池的用途、性能要求不一,所选择的添加剂的侧重点也存在差异。一般来说,所用的添加剂主要有三方面的作用: (1)改善SEI膜的性能 (2)降低电解液中的微量水和HF酸 (3)防止过充电、过放电 三、锂离子电池电解液种类 3.1液体电解液 电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在

锂离子电池开题报告

武汉理工大学 本科毕业论文(设计) 开题报告 题目锂离子电池正极材料Li2MnO3的掺杂改性院、系材料科学与工程研究院 专业无机非金属材料科学与工程 10级 学生姓名马娟 学号 0121001040227 指导教师郝华

1、研究背景 锂离子电池是20世纪70年代以后发展起来的一种新型储能电池。由于其具有高能量、寿命长、低能耗、无公害、无记忆效应以及自放电小、内阻小、性价比高、污染少等优点,锂离子电池在逐步应用中显示出巨大的优势,广泛应用于移动电话、笔记本电脑、摄像机、数码相机、电动汽车、储能、航天等领域。特别是新能源汽车的开发与应用,要求具有高比能量的锂离子电池,而传统的正极材料难以满足能量密度的需要,因此迫切需要开发新型高比容量的锂离子电池正极材料。 高比容量,绿色环保,以及价格便宜都将是锂离子电池必不可少的因素。正极材料作为整个电池的重要组成部分,直接影响电池的使用性能和制造成本。近年来锂离子电池电极材料的研究和开发一直受到社会的广泛关注,其中正极材料的研究是对锂离子蓄电池研究和开发有着重要的价值。目前使用的正极材料主要有 Li2CoO2,LiNi0.9Co0.lO2。由于钴价格较锰将近贵到40倍,若将资源丰富、价格便宜、对环境污染小的锰用于阳极材料取代现在的钴,将会带来很大的经济效益。层状结构Li2Mn03基正极材料以其理论容量高,环境友好以及原料价格便宜等优势得到广泛关注。但该材料体系电导率低,制约了它的进一步应用。 制备正极材料的方法很多,而溶胶凝胶法由于其特有的优点备受关注。溶胶凝胶法在配位化合物、纳米材料、金属簇合物的合成中已经得到了广泛的应用。一般的合成方法中均采用两种或者两种以上的配合剂,将采用配合物低分子基团柠檬酸,且该物质对人体无害,目的在于减少有机物用量和环境污染,同时具有溶胶凝胶法合成材料的优点。

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

锂离子电池电解液

锂电池电解液特性 锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。 基本信息 中文名称锂电池电解液 组成锂盐和有机溶剂 含义离子传输的载体 分类电池 锂电池电解液主要成分介绍 1.碳酸乙烯酯:分子式: C3H4O3 透明无色液体(>35℃),室温时为结晶固体。沸点:248℃/760mmHg , 243-244℃/740mmHg;闪点:160℃;密度:1.3218;折光率:1.4158(50℃);熔点:35-38℃;本品是聚丙烯腈、聚氯乙烯的良好溶剂。可用作纺织上的抽丝液;也可直接作为脱除酸性气体的溶剂及混凝土的添加剂;在医药上可用作制药的组分和原料;还可用作塑料发泡剂及合成润滑油的稳定剂;在电池工业上,可作为锂电池电解液的优良溶剂 2.碳酸丙烯酯分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 本品应储存于阴凉、通风、干燥处,远离火源,按一般低毒化学品规定储运。 3.碳酸二乙酯分子式:CH3OCOOCH3 无色液体,稍有气味;蒸汽压1.33kPa/23.8℃;闪点25℃(可燃液体能挥发变成蒸气,跑入空气中。温度升高,挥发加快。当挥发的蒸气和空气的混合物与火源接触能

够闪出火花时,把这种短暂的燃烧过程叫做闪燃,把发生闪燃的最低温度叫做闪点。闪点越低,引起火灾的危险性越大。);熔点-43℃;沸点125.8℃;溶解性:不溶于水,可混溶于醇、酮、酯等多数有机溶剂;密度:相对密度(水=1)1.0;相对密度(空气=1)4.07;稳定性:稳定;危险标记7(易燃液体);主要用途:用作溶剂及用于有机合成 ①健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:本品为轻度刺激剂和麻醉剂。吸入后引起头痛、头昏、虚弱、恶心、呼吸困难等。液体或高浓度蒸气有刺激性。口服刺激胃肠道。皮肤长期反复接触有刺激性。 ②毒理学资料及环境行为 毒性:估计能通过胃肠道、皮肤和呼吸道进入机体表现为中等度毒性。刺激性比碳酸二甲酯大。 急性毒性:LD501570mg/kg(大鼠经口);人吸入20mg/L(蒸气)×10分钟,流泪及鼻粘膜刺激。 生殖毒性:仓鼠腹腔11.4mg/kg(孕鼠),有明显致畸胎作用。 危险特性:易燃,遇明火、高热有引起燃烧的危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 ③泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 ④防护措施 呼吸系统防护:空气中浓度较高时,建议佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴安全防护眼镜。 身体防护:穿防静电工作服。

锂离子电池的现状及发展趋势

锂离子电池的现状与发展趋势 新能源技术被公认为21 世纪的高新技术,电池行业作为新能源领域的重要组成部分,已成为全球经济发展的一个新热点。目前锂离子电池已经作为一种重要的能量源被人们大范围的使用,无论是在电子通讯领域,还是在交通运输领域等,它都担当着极为重要的角色,有着广泛的应用前景。 锂离子电池是一种二次电池,是在锂电池的基础上发展起来的一种新型电池,它主要依靠锂离子在正极和负极之间移动来工作。自20世纪70年代以来,以金属锂为负极的各种高比能量锂原电池分别问世,并得以广泛应用。 锂离子电池工作电压高、比能量高、容量大、自放电小、循环性好、使用寿命长、重量轻、体积小,是现代高性能电池的代表,是移动电话、笔记本电脑等便携式电子设备的理想电源,并有望成为未来电动汽车、无绳电动工具等的主要动力来源之一。 我国锂离子电池产业发展历史不长,但发展很快,2012年我国锂离子电池的总产量达41.8亿只。在国际锂离子电池市场上,中国、日本和韩国形成了三足鼎立的态势,但总体而言,我国锂离子电池产业在技术先进程度和市场竞争力方面和日本、韩国还有较大差距。我国锂离子电池产业的技术发展是从模仿国外成熟技术开始的,在此过程中,工艺创新是我国锂离子电池产业早期发展的主要成绩,最近几年,随着技术创新投入不断加大,我国锂离子电池产业在技术创新方面发展很快,并形成了基本的产业核心竞争力,在某些领域积累了一定的技术优势。 锂离子电池材料的研究现状及发展趋势 锂离子电池的主要构造有正极、负极、能传导锂离子的电解质以及把正负极隔开的隔离膜。锂离子电池的电化学性能主要取决于所用电极材料和电介质材料的结构与性能,尤其是电极材料的选择和质量直接决定着锂离子电池的特性和价格。 目前锂离子电池正极材料的研究主要集中于钴酸锂、镍酸锂等,同时,一些新型正极材料(如Li-Mn-O系材料、导电高聚物)的兴起也为锂离子电池正极材料的发展注入了新的活力,寻找开发具有高电压、高比容量和良好循环性能的锂离子二次电池正极材料新体系是该领域的重要研究内容。目前,锂离子电池的正极材料仍为LiCoO2、LiNiO2、LiMn2O4等过渡金属氧化物及其复合材料,2005-2010年,高能量密度的聚合物正极材料和有机硫化物、无机硫化物成为锂离子电池的新一代正极材料。锂离子电池的负极材料主要有碳材料、锂金属合金、金属氧化物、金属氮化物、纳米硅等,其中碳材料是目前商业应用的主要负极材料,而锂金属合金、纳米硅已成为研发热点。锂离子电池的电解质材料目前主要是用液态电解其溶剂为无水有机物,多数采用混合溶剂,如EC-DMC和PC-DMC 等,LiPF6是应用最为普遍的导电盐。 就锂离子电池正极材料来说,钴酸锂正极材料在今后仍然具有强劲的生命力,在目前商品化应用的锂离子电池体系中,钴酸锂电池凭借其高充电截止电压和高压实密度双重优势,仍是目前高档3C产品类电池首选电池体系;而层状LiNixCo1–x–yMnyO2正极材料不仅具有较高的能量密度,而且材料的安全性、循环稳定性、高低温性能、制备成本等性能均比较优异,在全球正极材料使用量比重逐年增加,不仅逐步替代了钴酸锂材料的部分应用,而且在新能源汽车动力

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

锂离子电池的制备及性能测试

福州大学化学化工学院 本科实验报告 课程名称:综合化学实验 实验项目名称:锂离子电池的制备及性能测试实验室名称:六号楼206 学生姓名:陈世昌 学号:11S040902103 学生所在学院:化学化工学院 年级、专业:09级化学类 实验指导教师:郭永榔 2012年10 月8 日

一、实验目的 传统使用的小型可充电电池是镍镉电池,随着便携式电子产品对电池性能要求的不断提高,人们对环境意识的不断增强,对环境友好、性能更优良的绿色电源越来越迫切。与镍镉电池、金属氢化物电池、铅酸蓄电池及可充碱性电池等传统电池相比,可充锂离子电池能量密度大(约为镍镉电池的两倍),循环寿命长,工作电压高(3.6V),环境污染小,已经广泛应用于手机、计算机,便携式电子电器,数码产品等电源,有望成为动力车的理想动力电源。锂离子电池技术是 21 世纪具有战略意义的军民两用技术以及在电子信息、新能源、环境保护等重大技术领域发展中具有举足轻重的地位和作用,这对锂离子电池性能提出了更高的要求,因此对电池材料的开发改进仍然是当前的研究热点。 本实验研究目的: 1、了解可充锂离子电池的工作原理 2、了解电解质溶液的导电机理 3、掌握纽扣锂离子电池的电极材料、电极的制备工艺及纽扣锂离子电池的装配 4、掌握锂离子电池电性能的测试方法 二、实验试剂和仪器 1、实验仪器 管式气氛炉,行星式球磨机,真空干燥箱,真空手套箱,Land 电池充放电测试系统(与计算机连接),低温试验箱,真空泵,扣式电池封口机,电子天平,粉末压片机,玛瑙研钵,干燥器等。 2、试剂 高压氩气(瓶), NH4VO3,LiOH·H2O,氢氧化钠,草酸,1mol/L LiPF6+EC/DMC(体积比 1:1)电解液,粘结剂 PVDF,导电碳黑(CABOT),N-甲基吡咯烷酮(NMP),Celgard2325 隔膜,金属锂片,电池壳(CR2025),铝集流片,360 目砂纸等。试剂名称及分子式、厂家和纯度;主要仪器型号及厂家。 三、实验结果与讨论 1、将实验数据列成表格(如表1所示),标注条件。 表1 实验数据列表 序号姓名铝片重 /g 正极片 重/g 活性物 质重 /mg 理论容 量 (C/mAh ) 0.2C容 量/mAh 0.2C电 流/mA 开路电 压/V 活性物 质重 /mg 11 陈世昌0.0518 0.0534 1.6 0.3808 0.0762 0.076 3.5 1.36 12 陈世昌0.0544 0.0566 2.2 0.5236 0.1047 0.105 2.9 1.87 2、标出 XRD 图中各个峰所对应的晶面,通过对比 XRD 实验数据和标准图谱判断合成材料属何种物质和结构;

锂离子电池电解液材料及生产工艺详解

锂离子电池电解液材料及生产工艺详解液体电解液生产工艺---流程图 电解液生产工艺---精馏和脱水 –对于使用的有机原料分别采取精馏或脱水处理以达到锂电池电解液使用标准。 –在精馏或脱水阶段,需要对有机溶剂检测的项目有:纯度、水分、总醇含量。

液体电解液生产工艺---产品罐 –在对有机溶剂完成精馏或脱水后,检测合格后经过管道进入产品罐、等待使用。 –根据电解液物料配比,在产品罐处通过电子计量准确称取有机溶剂。 –如果产品罐中的有机溶剂短时间未使用,需要再次对其进行纯度、水分、总醇含量的检测,继而根据生产的需要准确进入反应釜。 体电解液生产工艺---反应釜 –依据物料配比和加入先后顺序,有机溶剂依次加入反应釜充分搅拌、混匀,然后通过锂盐专用加料口或手套箱加入所需的锂盐和电解液添加剂。 –在加入物料开始到结束,应控制反应釜的搅拌速度、釜内温度等。不同的物料配比搅拌混匀的时间不同,但都必须使电解液混合均匀,此时对电解液检测的项目有:水分、电导率、色度、酸度 液体电解液生产工艺---灌装 –经检测合格的液体电解液被灌入合格的包装桶,充入氩气保护,最终进入仓库等待出厂。 –由于电解液自身的物理、化学性质等因素,入库的电解液应在短时间内使用,防止环境等因素导致电解液的变质 液体电解液---使用注意事项 –电解液桶有氩气保护,有一定压力,在使用中切勿拆卸气相阀头和液相阀头,也不允许随意按下快开接头的凸头,以免造成泄漏或其它危险。接管时一定要戴防护眼罩,使用时一定要使用专用快开接头

–检测合格的电解液建议一次性用完,开封的电解液很容易因为没有气氛保护等原因而变质,请客户在使用过程中注意及时充入氩气保护,防止变色电解液不建议使用玻璃器皿盛放,玻璃的主要成分是氧化硅,氧化硅和氢氟酸反应生成腐蚀性、易挥发的气体四氟化硅,此气体有毒会对人造成伤害 –现场可以使用的电解液容器和管道材料包括:不锈钢、塑料PP/PE、四氟乙烯等 –本产品对人体有害,有轻微刺激和麻醉作用。使用过程中避免身体直接接触 液体电解液的组成 –有机溶剂 –锂盐 –添加剂 有机溶剂---有机溶剂的选择标准 –有机溶剂对电极应该是惰性的,在电池的充放电过程中不与正负极发生电化学反应 –较高的介电常数和较小的黏度以使锂盐有足够高的溶解度,从而保证高的电导率 –熔点低、沸点高,从而使工作温度范围较宽 –与电极材料有较好的相容性,即电极能够在电解液中表现出优良的电化学性能 –电池循环效率、成本、环境因素等方面的考虑 液体电解液的组成---有机溶剂 –碳酸酯 –醚 –含硫有机溶剂

高比能量锂离子电池富锂锰基正极材料表面改性研究

高比能量锂离子电池富锂锰基正极材料表面改性研究 摘要富锂锰基正极材料具有优异的电化学性能(>250mAh/g),因而受到广泛关注, 但其存在首次不可逆容量损失大、循环稳定性和倍率性能差等缺点。本文采用原位分 散包覆法对层状富锂锰基材料进行表面改性,并通过XRD、SEM、TEM、XPS和恒电流充 放电等分析测试手段,讨论了不同包覆量对活性物质结构和性能的影响,结果表明, 表面包覆不仅能显著提高材料的循环稳定性和倍率性能,还能有效改善正极-电解液界 面性能。 关键词材料表面与界面高比能量锂离子电池表面改性 1 引言 锂离子电池已经成为所有二次电源中性能最优异、应用最广泛的电池,但是各种应用场合比如空间卫星、临近空间飞行器以及民用电动车等都对锂离子电池的比能量提出了更高的要求,由此,世界各国都对高比能量化学储能电源提出了中长期发展规划,比如NASA和SAFT等国外机构都将近期锂离子电池的比能量目标确定为250~300Wh/kg,而传统的钴酸锂/石墨体系锂离子电池无法满足这一比能量指标,因此势必需要开发新型的高比容量电极材料。目前正在研发的新型锂离子电池正极材料中,由Li2MnO3和Li[Ni x Co y Mn(1-x-y)]O2形成的富锂锰基正极材料由于放电比容量达250mAh/g以上,被认为是后续最有可能获得应用的新一代高比能量锂离子电池正极材料,具有比容量大、高温性能好等优点[1、2]。 但是富锂锰基材料仍存在首次不可逆容量损失大、循环稳定性差、倍率性能差及安全性等问题。表面改性是改善活性物质电性能的重要手段之一,通过表面包覆C[3]、AlF3[4]、Al2O3[5]等,一方面可以抑制活性材料在首次充电过程中O2的释放,减少结构中O和Li空位的消除,增强材料的结构稳定性,减少首次不可逆容量损失,提高首次库仑效率;另一方面,还能保护活性材料,减少高电压下与电解液的反应,改善正极与电解液接触的界面性能,提高电池的循环性能和倍率性能。 在各类包覆材料中,磷酸盐是一类比较常见且包覆方法相对简单的表面改性材料,而且磷酸盐中强的P=O键(键能=5.64eV)能有效抵御电解液对电极材料的化学攻击。Lee S. H.等[6]以Co(NO3)2·6H2O和(NH4)2HPO4为包覆材料,通过溶胶凝胶法在Li[Li0.2Mn0.55Ni0.15Co0.1]O2表面包覆Co3(PO4)2,包覆后材料的热稳定性、循环稳定性和倍率性能都得到了一定程度的提高。Wu Y.等[7]同样用溶胶凝胶法在富锂锰基材料表面包覆AlPO4,包覆后材料的首次效率和首次放电容量由原先的77.1%和253mAh/g提高到了91.2%和279mAh/g,但循环稳定性并没有明显改善。大多数的磷酸金属盐包覆都采用溶胶凝胶法,包覆工艺相对复杂,且不适宜大规模应用。本文采用较为简单的原位分散包覆技术,在富锂材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2表面包覆AlPO4,讨论了不同包覆量对材料结构与性能的影响。 2 实验 将原位分散辅助共沉淀法合成的富锂锰基材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2作为包覆对象,首先将活性物质加入聚丙烯酰胺溶液中,充分搅拌至分散均匀,然后按

何计算锂离子电池的容量保持率

何计算锂离子电池的容量保持率 但是计算容量的原理是一样的,同时记录放电时间.0-4。 当然用设备也可以直接测试出来,因此你将电池充满电后.2V。 电池的充放电压区间是3电池的容量是很容易计算的,换成百分比就是了。 容量的保持率就是你将你使用N此后测试的容量除以第一次测试的容量或者标称容量,在以一个恒定的电流放电,将电流乘以时间(小时单位)就得到容量,就是电流乘以时间 锂离子电池在多次充放后容量仍然会下降,时间)可以抽样计算出电池的电量,其原因是复杂而多样的。主要电量统计芯片通过记录放电曲线(电压,电流但是 如何计算锂离子电池的容量保持率~~~电池的容量是很容易计算的。电池的充放电压区间是3.0-4.2V,因此你将电池充满电后,在以一个恒定... 锂离子电池负极克比容量怎样计算~~~电池的容量除以负极的纯粉容量除以过量负极的过量系数。 锂离子电池正负极容量配比怎么计算啊?有公式吗?~~~你讲的概率叫NP比,指的是单位面积容量比; NP=负极面密度*活性物质比率*活性物质克容量/(正极面... 锂离子电池容量的计算公式~~~公式应该没有,但是想知道容量就是放电电流乘放电时间,比如放电电流2安,放电时间2小时整,就是2A*2... 怎么计算电池容量啊?~~~假定充放电效率为100%,灯具恒定功率25W,那么后备5小时对电池容量要求: 用铅蓄电池时,放电电压... 锂离子电池知道正负极容量,怎么计算电池容量~~~正负极什么容量啊说的这么模糊是不是行业内人士啊?知道正极材料的克容量吗克容量×正极物质含量就是... 锂电池电压容量瓦时怎么计算的?~~~单一个锂电池应该以3.7v为标准电压,2个串联7.4v......如此类推。瓦时=安时x电压,如一... 电池容量(毫安时)是如何计算的?~~~电池容量(C)的计算方法: 容量C=放电电池(恒流)I×放电时间(小时)T 反过来: 放电时间T=容... ?如何计算锂离子电池的容量保持率答:电池的容量是很容易计算的。电池的充放电压区间是3.0-4.2V,因此你将电池充满电后,在以一个恒定的电流放电,同时记录放电时间,将... ?锂离子电池理论容量是如何计算的?答:路过,围观一下。看看早有理论容量的文章 ?锂离子电池发热功率如何计算?答:11 ?锂离子电池的隔膜孔隙率怎么计算.请阿里巴巴故意网答:孔隙率和通孔率孔隙率是材料中孔隙体积占总体积的比例。(材料中固体体积占总体积的比例,称为密实度)。... 表达式 P=[(M-m)... ?请问新买的锂离子电池应该如何使用才算正确啊?答:锂电池前3-5次充电应充14小时以上!nbsp;如果我们希望能够延长电池的有效使用时间,除了充电器的质量要... 那么前3-5次充电... ?请问新买的锂离子电池应该如何使用才算正确啊?答:锂电池前3-5次充电应充14小时以上! 如果我们希望能够延长电池的有效使用时间,除了充电器的质量要有保证... 那么前3-5次充电一...

锂离子电池燃烧或爆炸的三种原因

锂离子二次电池以其高比能量、较高的工作电压、体积小、重量轻等优点已成为移动通讯、笔记本电脑等便携式电子产品的主要电源之一。然而,锂离子电池在充放电过程中由于使用不当,会出现爆炸的危险;特别是在滥用条件下(如受热、过充、短路、振动、挤压等),电池会出现燃烧、爆炸乃至人员受伤等情况。因此,研究锂离子电池的爆炸机理对提高锂离子电池的安全性有重要的意义。 看到上图的电池爆炸图片,找电池网行业人士分析了一下锂离子电池燃烧或爆炸的3种可能性,主要如下三种。 一、当锂离子电池受热时,电池内部的反应如一个反应链,各个反应相互促进,依次进行。首先是SEI膜分解放出热量加热了电池,促使负极与溶剂的反应放出更多的热量,导致负极与粘结剂的反应、溶剂分解,接接着正极开始进行热分解反应,放出大量的热与气体,最后导致电池燃烧或爆炸。 二、在锂离子电池充电初期,电流通过电池时一部分电能转化为热能,欧姆极化也产生一部分热量,但电池表面温度上升的很慢;当电池达到全充满状态时,由锂离子继续的嵌入反应变成锂金属在负极表面的沉积,溶剂被氧化(由过充引起的溶剂的氧化反应放出的热量远远高于可逆状态下锂离子与溶剂反应放出的热量)放出的热量加热了电池;随着电池温度升高,金属锂与溶剂反应、嵌锂碳与溶剂反应相继发生,热量失控,同时伴随发生溶剂的分解、粘结剂与锂金属的反应。 三、短路、针刺和撞击对锂离子电池造成的危害大致相同。短路时,电流通过电池的瞬间产生大量的热,加热电池,使电池温度升高到正极分解的温度,正极热分解又导致电池热量失控;针刺速度很快时,在针刺的部位造成局部短路并产生大量的热,使电池内部温度升高到正极热分解的温度;当锂离子电池受到撞击时,电极上过电压损失产生热量,促使溶剂与负极的反应,放出的热量又进一步加热电池,促使正极热分解反应发生,导致热量的失控。

相关主题
文本预览
相关文档 最新文档