当前位置:文档之家› 水质 石油类的测定 红外分光光度法

水质 石油类的测定 红外分光光度法

水质 石油类的测定 红外分光光度法
水质 石油类的测定 红外分光光度法

水质石油类的测定红外分光光度法

油类:pH≤2的条件下,能够被四氯乙烯萃取且在波数为2930cm-1、2960cm-1和3030cm-1处有特征吸收的物质,主要包括石油类和动植物油类。

石油类:在pH≤2的条件下,能够被四氯乙烯萃取且不被硅酸镁吸附的物质。动植物油类:在pH≤2的条件下,能够被四氯乙烯萃取且被硅酸镁吸附的物质。

水质石油类质控样:正十六烷、异辛烷和苯混合物。

油类的化学组成:

动植物油类化学组成:饱和脂肪酸和不饱和脂肪酸的甘油酯

石油类化学组成:

表1

一、原理:

水样在pH≤2的条件下用四氯乙烯萃取后,测定油类;将萃取液用硅酸镁吸附去除动植物油类等极性物质后,测定石油类。油类和石油类的含量均由波数分别为2930cm-1(CH2基团中C—H键的伸缩振动)、2960cm-1(CH3基团中C—H键的伸缩振动)和3030cm-1(芳香环中C—H键的伸缩振动)处的吸光度A2930、A2960和A3030,根据校正系数进行计算;动植物油类的含量为油类与石油类含量之差。

二、测试流程

三、注意事项:

1.水样采集和保存:采集约500mL水样于玻璃瓶,加入盐酸溶液酸化至pH≤2;样品不能在24h内测定,应在0°C~4°C冷藏保存,3d内测定。

2.水样前处理:

动植物油浓度>130ppm时,需先稀释水样,再萃取。

3.试验条件:

①萃取和脱水:萃取静置后的有机层(下层),经铺有棉花和无水硫酸钠的玻璃漏斗过滤,收集于50mL比色管中,合并润洗液,定容。

②净化:

吸附柱法(简单):取适量的萃取液过硅酸镁吸附柱,弃去前5mL滤液(前面几毫升馏出液高于萃取液浓度),剩余收集在25mL比色管中。

③空白水样测试:纯水代替水样进行萃取、净化和测试,计算得到空白值。

④校正系数计算:

a.三种标准溶液浓度分别为正十六烷20ppm、异辛烷20ppm、苯100ppm,

分别测试每种标液三个波数的吸光度:A

2930、A

2960

和A

3030

b.油类浓度计算公式:

c.标液测试吸光度带入方程,联立求解校正系数X、Y、Z、F。

⑤水样体积测量:以萃取后水样体积为准(减少样品转移造成的误差)。

⑥空白控制:试剂纯度(四氟乙烯、无水硫酸钠);实验器皿清洗。

参考标准:HJ 637-2018水质石油类和动植物油类的测定红外分光光度法

水和废水 石油类的测定紫外分光光度法(试行) HJ 970-2018

编号: XXX环境科技有限公司 方法验证报告 水质石油类的测定 紫外分光光度法(试行) HJ 970-2018 方法验证人员: 方法验证日期:

一、实验室基本情况 1.1人员情况 公司安排分析人员XXX和XXX进行了《水质石油类的测定紫外分光光度法(试行》(HJ970-2018)分析方法的验证。验证人员通过培训学习熟悉了该标准方法原理及分析流程,能够熟练操作仪器,独立完成整个分析过程,并通过了公司自认定考核。分析人员见表1。 表1 分析人员一览表 1.2仪器设备及试剂、标准物质 该标准主要使用的仪器设备由成都市计量检定测试院进行检定,具体内容见表2。 表2仪器设备(包括仪器、前处理装置) 标准方法要求萃取剂正己烷应于波长225nm处,以水做参比液用1cm 石英比色皿测得的透光率大于90%(2cm石英比色皿测得的透光率大于81%),其余试剂均为符合国家标准的分析纯试剂,实验用水为蒸馏水或去离子水。本次方法验证使用标准物质和试剂见表3。 表3试剂、标准物质

1.3实验室环境条件 标准方法对测试环境无特殊要求,符合实验室日常环境控制即可。目前实验室环境监控设备配置有温湿度表。由于实验所用正己烷具有一定毒性,实验室配有通风橱,实验人员配备防毒面具。 二、方法简介 2.1样品 2.1.1 样品采集 参照GB 17378.3和H/T 91、HJ/T 164的相关规定进行样品的采集。用采样瓶采集500ml样品。样品采集后,加入盐酸酸化至pH≤2。 2.1.2 样品保存 参照GB17378.3和HJ493的相关规定进行样品保存,如样品不能在24h

内测定,应在0'C~4C冷藏保存,3d内测定。 2.1.3 样品制备 2.1. 3.1萃取 将样品全部转移至1000ml分液漏斗中,量取25.0ml正己烷洗涤采样瓶后,全部转移至分液漏斗中。充分振摇2 min,期间经常开启旋塞排气,静置分层后,将下层水相全部转移至1000ml量筒中,测量样品体积并记录。 注1:乳化程度较重时,可向除去水相后的萃取液中加入1滴~4滴无水乙醇破乳,若效果仍不理想,可将其转移至玻璃离心管中,2 000 /min离心3 min。 注2:可采用自动萃取装置代替手动萃取。 2.1. 3.2脱水 将上层萃取液转移至已加入3g无水硫酸钠的锥形瓶中,盖紧瓶塞,振摇数次,静置。若无水硫酸钠全部结块,需补加无水硫酸钠直至不再结块。注:也可将萃取液通过已放置约10 mm厚度无水硫酸钠的玻璃漏斗脱水。2.1.3.3吸附 继续向萃取液中加入3g硅酸镁,置于振荡器上,以180 r/min~220r/min 的速度振荡20 min,静置沉淀。在玻璃漏斗底部垫上少量玻璃棉,过滤,待测。 注:也可采用硅酸镁吸附柱进行吸附。将萃取液通过硅酸镁吸附柱,弃去前2ml~3 ml滤液,待测。 2.1. 3.4 空白试样的制备 以实验用水代替样品,加入盐酸酸化至pH≤2,按照试样的制备步骤制备空白试样。

红外分光光度法

中文名称:红外分光光度法 英文名称:infrared spectrophotometry 定义:通过测定物质在波长2.5~25 μm(按波数计为4000~400 cm-1)的红 外光区范围内光的吸收度,对物质进行定性和定量分析的方法。所用仪器为 红外分光光度计 仪器:红外分光光度计 流程:光源->吸收池->单色器->检测器->记录装置 分为色散型(已淘汰)和干涉型。 色散型: 光源:一般常见的为硅碳棒,特殊线圈,能斯特灯(已淘汰)。 色散元件:反射光栅 检测器:真空热电偶及Golay池 吸收池:液体池和气体池(具有岩盐窗片) 干涉型: 光源:同色散型 单色器:迈克尔逊干涉仪 检测器:多用热电性硫酸三甘肽(TGS)或光电导性检测器。 图解析 解析原则:四先四后相关法 先特征(区),后指纹(1250/cm)。先最强(峰),后次强(峰)。先粗查,后细找。先否定,后肯定。 红外识谱歌 外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。 三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准, 1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰, 环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别, 开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔, 链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰, 1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。

红外分光光度法课后答案-仪器分析-梁生旺

红外分光光度法课后答案 1.分子吸收红外光能级跃迁,必须满足什么条件? 答:①分子吸收的红外辐射应具有刚好满足分子振动跃迁所需的能量。 ②分子振动只有使偶极矩发生变化的振动形式才能吸收红外辐射。 2.何为红外非活性振动? 答:分子发生能级跃迁需要产生偶极矩的变化,如果只振动而无偶极矩变化,那么红外光谱上无吸收曲线。 3.乙酰乙酸乙酯存在酮式和烯醇式两种互变异构体,二者的红外光谱有何区别?答:烯醇式红外吸收中的羰基和羟基振动频率因为其内部形成氢键而向短波移动。 4.苯甲酸乙酯和苯乙酸甲酯可否用红外光谱区别?为什么? 答:能;①苯乙酸甲酯的乙基因为和苯环的大π键形成p-π共轭,其振动频率向短频方向移动。 ②苯甲酸乙酯的羰基因为和苯环形成π-π共轭,其振动频率向短频方向 移动。 5.试推测分子式为C9H6O2的化合物结构。 答

该红外图谱中有关炔基的振动频率并未标出,但图上可以明显的看见其特征吸收峰。另在920cm处的吸收峰为苯的芳氢面内伸缩振动引起的。 6.一化合物为无色可燃液体,有果子香味,沸点为7 7.1,微溶于水,易溶于有机溶剂。其分子式为C4H8O2,推测其结构式。 答:Ω=2+2x4-8/2=1,故含有双键。 842cm处的吸收属于乙基的面内摇摆振动频率。 9.一白色粉末,有特殊气味,熔点为76.5,稍溶于水,溶于乙醇和乙醚。质谱分析,确定分子式为C8H8O2.试推测其结构式。 答:Ω=2+2x8-8/2=5,故含有苯环或为芳香化合物。 927cm处为芳氢的面内振动引起的。1690处的吸收峰为高强吸收峰,无干扰峰,可确认为羧基的羰基基团。

8.某未知物的分子式为C10H12O.推断其结构式。 答:Ω=2+2x10-12/2=5,故含有苯环或为芳香化合物。 1390、1365cm处的两个峰,分裂峰,吸收强度几乎相同,说明含有偕二甲基(异丙基)。 830cm的吸收峰说明苯环上含有对位取代。 2820、2720cm处的特征吸收峰则表示分子结构中含有醛基。 3030、3060cm处为芳氢的伸缩振动、

水质 石油类和动植物油类的测定

水质石油类和动植物油类的测定红外分光光度法 HJ 637-2012 代替GB/T 16488-1996 警告:四氯化碳毒性较大,所有操作应在通风橱内进行。 1 适用范围 本标准规定了测定水中石油类和动植物油类的红外分光光度法。 本标准适用于地表水、地下水、工业废水和生活污水中石油类和动植物油类的测定。 当样品体积为1000 ml,萃取液体积为25 ml,使用4cm比色皿时,检出限为0.01mg/L,测定下限为0.04mg/L;当样品体积为500 ml,萃取液体积为50 ml,使用4cm比色皿时,检出限为0.04mg/L,测定下限为0.16mg/L。 2 规范性引用文件 本标准内容引用了下列文件中的条款,凡是不注明日期的引用文件,其有效版本适用于本标准。 HJ/T 91 地表水和污水监测技术规范 HJ/T 164 地下水环境监测技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 总油 total oil 指在本标准规定的条件下,能够被四氯化碳萃取且在波数为2930 cm-1、2960 cm-1、3030 cm-1 全部或部分谱带处有特征吸收的物质,主要包括石油类和动植物油类。 3.2 石油类 petroleum 指在本标准规定的条件下,能够被四氯化碳萃取且不被硅酸镁吸附的物质。 3.3 动植物油类 animal and vegetable oils 指在本标准规定的条件下,能够被四氯化碳萃取且被硅酸镁吸附的物质。当萃取物中含有非动植物油类的极性物质时,应在测试报告中加以说明。 4 方法原理 用四氯化碳萃取样品中的油类物质,测定总油,然后将萃取液用硅酸镁吸附,除去动植物油类等极性物质后,测定石油类。总油和石油类的含量均由波数分别为2930 cm-1(CH2基团中C—H键的伸缩振动)、2960 cm-1(CH3 基团中的C—H键的伸缩振动)和3030 cm-1(芳香环中C—H键的伸缩振动)谱带处的吸光度A2930、A2960、A3030进行计算,其差值为动植物油类浓度。 5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯化学试剂,实验用水为蒸馏水或同2 等纯度的水。 5.1 盐酸(HCl):ρ=1.19g/ml,优级纯。 5.2 正十六烷:光谱纯。 5.3 异辛烷:光谱纯。 5.4 苯:光谱纯。 5.5 四氯化碳:在2800 cm-1~3100 cm-1之间扫描,不应出现锐峰,其吸光度值应不超过0.12(4cm比色皿、空气池做参比)。

水中石油类测定荧光分析标准方法

国家环境保护总局标准 PNDF 14.1:2:4.128-98 天然水、饮用水、污水中矿物油(石油类)总浓度的测定荧光分析法 I 俄罗斯 1998

目录 1 引言___________________________________________________________ 2 2 本标准测量误差范围_____________________________________________ 2 3 计量器具、辅助器物、试剂和材料。 _______________________________ 2 3.1 计量器具 ____________________________________________________ 2 3.2 试剂 ________________________________________________________ 3 3.3 辅助器物____________________________________________________ 3 3. 4 试剂配制方法 ________________________________________________ 3 3.4.1 氢氧化钠溶液:5%质量百分比_______________________________ 3 3.4.2 盐酸溶液:3%容量百分比__________________________________ 3 3.4.3 矿物油正己烷标准储备液:100mg/L __________________________ 3 4 测量方法 _______________________________________________________ 4 5 安全要求 _______________________________________________________ 4 6 对分析人员资格要求 _____________________________________________ 4 7 进行测量必备条件 _______________________________________________ 4 8 测量前准备 _____________________________________________________ 5 8.1 样品采集 ____________________________________________________ 5 8.2 正己烷纯度检查方法__________________________________________ 5 8.3 分析仪的校准 ________________________________________________ 6 8.4 分析仪校准特性的稳定性控制__________________________________ 6 9 试样分析 _______________________________________________________ 7 10 数据处理 ______________________________________________________ 8 11 测量结果表示 __________________________________________________ 8 12 测量误差控制 __________________________________________________ 9附录A ________________________________________________________ 10 附录B ________________________________________________________ 12 附录C ________________________________________________________ 14

分析化学基础知识——第七课 红外分光光度法

第七课红外分光光度法 一、概述 1.红外区波长范围及分区 波长范围:0.76μm-1000μm 分区: 2.红外吸收光谱的表示方法 3.IR的特点 适用于气、液、固态样品、且样品用量少。 大多数化合物均有红外吸收,除了单原子分子和同核分子。 红外光谱中的吸收峰较多,特征性强,适合用于定性和结构解析。红外光谱仪的价格相对低廉。 定量分析灵敏度差,准确度低,主要用于定性分析。 不适合作含水样品的分析。 二、基本原理 分子振动和红外吸收 吸收峰的位置 吸收峰的强度 1.分子振动和红外吸收 双原子分子的振动与红外吸收 分子振动简单的双原子A-B间的振动可近似地用谐振子模型来描述振动频率可由虎克定律和牛顿定律推导出来 A、B视为两个刚性小球 化学键视为质量忽略不计的弹簧

A、B间的振动视为简谐振动 红外吸收 入射光频率与分子振动频率相等时,分子将吸收入射光,振动振幅加大,产生吸收光谱,因此,所吸收光的频率为: 多原子分子振动形式 伸缩振动γ弯曲振动δ (1)伸缩振动 键长变化但键角不变的振动 它包括两种类型 对称伸缩振动γs 反称伸缩振动γas 亚甲基的伸缩振动

(2)弯曲振动 键角发生周期性变化,但键长不变的振动。它包括以下几种类型 面内弯曲振动 AX2 面外弯曲振动 变形振动AX3 面内弯曲振动(β) 剪式振动(δ) 面内摇摆振动(ρ) 面外弯曲振动(γ) 面外摇摆振动(ω)

扭曲振动(τ) 变形振动 对称变形振动(δs) 不对称变形振动(δas) (3)振动自由度 双原子分子:一种振动形式 多原子分子:振动形式复杂,可以分解为许多简单的基本振动。基本振动的数目称为振动自由度,可以用作估计基频峰的可能数目。 振动自由度的计算 分子的运动形式分为:平动、振动和转动,则:振动自由度=总自由度-平动自由度-转动自由度 设:分子含有N个原子 则:总自由度为3N,平动自由度为3 转动自由度为3(对于非线形分子) 或2(对于线形分子) 振动自由度 非线形分子线形分子 3N-6 3N-5 H2O分子的振动自由度 3×3-6=3 CO2的振动自由度

红外分光光度法检验标准操作规程

红外分光光度法检验标准操作规程 目的:建立红外分光光度法标准操作规程,以确保检验结果的正确性与准确性。 范围:本规程适用于红外分光光度法。 职责:检测中心、质量管理部对本规程实施负责。 内容: 1.简述 化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能级跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。 红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的相互作用。 习惯上,往往把红外区分为3个区域,即近红外区(12800~4000cm,0.78~2.5m)。其中中红外区是药物分析中最常用的区域。红外吸收与物质浓度的关系在一定范围内服从于朗伯-比尔定律,因而它也是红外分光光度法定量的基础。 红外分光光度计分为色散型和傅里叶变换型两种。前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制和数据处理系统组成。以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。波数与波长的换算关系如下: 波数(cm-1 )= 104 /波长μm 傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。该型仪器现已成为最常用的仪器。 2 红外分光光度计的检定 所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计检定规程”、“傅里叶变换红外光谱仪检定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。

HJ-637-2018水质石油类和动植物油的测定红外分光光度法确认报告

. 方法验证报告 水质石油类和动植物油的测定 红外分光光度法 HJ 637-2018 编制日期__________________ 审核日期__________________

《水质石油类和动植物油的测定红外分光光度法》 (HJ 637-2018) 方法验证报告 1.本方法授权检测部门及人员 检测部门:检测室 检测人员:XXX 2.本方法所用仪器设备 2.1 红外分光光度计,能在3400cm-1~2400cm-l之间进行扫描,40mm带盖石英比色皿。 2.2旋转振荡器:振荡频数可达300次/min。 2.3分液漏斗:1000ml、2000ml,聚四氟乙烯旋塞。 2.4 玻璃砂芯漏斗:40mL,G-1型。 2.5 提取套筒:滤纸制。 2.6 锥形瓶:100ml,具塞磨口。 2.7 样品瓶:500ml、1000ml,棕色磨口玻璃瓶。 2.8 量筒:1000ml、2000ml。 2.9 一般实验室常用器皿和设备。 3.本方法实验场所的环境条件 实验室名称:XXXXXXXXXXXXX 环境控制要求:其他有干扰本实验的隔离。 环境条件监控情况:与实验室控制条件相符。 4.方法原理 水样在pH≤2的条件下用四氯乙烯萃取后,测定油类;将萃取液用硅酸镁吸附去除动植物油类等极性物质后,测定石油类。油类和石油类的含量均由波数分别为2930cm-1(CH2基团中C-H键的伸缩振动)、2960cm-1(CH3基团中C-H键的伸缩振动)和3030cm-1(芳香环中C-H 键的伸缩振动)处的吸光度A2930、A2960和A3030,根据校正系数进行计算;动植物油类的含量为油类与石油类含量之差。

红外分光光度法

红外分光光度法 一、填空题 1. 红外光谱是介于与之间的电磁波,其波长范围是。 2. 化合物的红外吸收曲线可由来描述。 3. 不同分子在红外谱图中出现的吸收峰位,是由所决定的。 4.乙醛CH3CHO的v c=0为1731cm-1,若醛上氢被一氯原子所取代形成CH3—C—Cl后,则v c=0向移动。 5. 丙酮的v c=0为l715cm-1,若其中一个甲基被一苯基所取代形成苯乙酮后,则v c=0向移动。 6. 化合物的v c=0为l663cm-1,若8位上氢被甲基取代后则v c=0由于因而频率。 7. 红外光谱中所说的特征频率区是指的区间,其特点是。 8. 苯甲醛的红外光谱中出现了2780cm-1和 2700cm-1两个吸 收峰,是由而产生的。 9. 分子内形成氢键与分子间形成氢键一样会使基团的振动频率向低波数移动。但是分子间氢键而分子内氢键。 10. 压片法所用的KBr必须进行干燥处理,一般要在左右。 11. 含羟基的样品,因溴化钾分散剂易吸水,干扰羟基的测定,因此采用特别合适。 12. 调糊法常用的悬浮剂有 , 但此法不能用于样品中的鉴定。 13. 液体池窗板很容易吸潮变乌,致使透光性变坏,因此使用时禁止,拆装时应 , 在的房间操作。 14. 液体池法需选择溶剂,一般常用的溶剂有 。 15. 顺-2-丁烯与反-2-丁烯的红外光谱在区域有显著不同的特征。顺式r C-H在处有数强吸收而反

式r C-H在有很强吸收峰。 16.氢键使v OH向且。 17. 一纯品的分子式为 C5H3NO,其红外光谱中有1725、2210、2280 cm-1,此化合物最可能结构是。 18. 一种苯的氯化物在 900~69Ocm-1区域波没有吸收峰,它的可能结构为。 19. 有一种溴甲苯C7H7Br,有一单峰在801cm-1,它的结构式为。 20. 化合物SO2的平动自由度为,转动自由度为 , 振动自由度为。 二、单项选择题 1、某化合物受电磁辐射作用后,振动能级发生变化,所产生的光谱波长范围是( ) A. 紫外光 B. X射线 C. 微波 D. 红外线 2、由红外光谱测得S—H的伸缩振动为 2000cm-1,S—D的伸缩振动频率为( ) A.1440cm-1 B.2000cm-1 C.4000cm-1 D.1000cm-1 3、乙烯分子的振动自由度为( ) A.20 B.13 C.12 D.6 4、乙炔分子的振动自由度为( ) A.12 B.7 C.6 D.5 5、苯分子的振动自由度为( ) A.32 B.36 C.30 D.31 6、下列化学键伸缩振动产生的基频峰出现在最低频的是() A. C-H B. C-N C. C-C D. C-F 7、分子式为C8H7ClO s的化合物其不饱和度为( ) A.5 B.4 C.6 D.2 8、CO2分子没有偶极矩这一事实表明该分子是( ) A. 以共价键结合的 B. 角形的 C. 线性的并且对称 D. 非线性的 9、下列羰基化合物中,v c=0出现最高波数者为( ) O O O A. R—C—R′ B. R—C—Cl C. R—C—H

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

红外分光光度法鉴别

演示性试验 实验二十六 红外分光光度法鉴别 氢化可的松与醋酸氢化可的松 一、实验目的 1.了解红外分光光度计的基本原理及操作方法。 2.熟悉利用红外光谱鉴别药物的方法。 二、仪器与试药 1.仪器 FI 型光栅红外分光光度计 玛瑙乳钵 2.试药 溴化钾 三、实验原理 1.氢化可的松: 分子中三个羟基的存在,形成分子内及分子间的氢键缔合,使羟基的谱带变宽向低波数移动,V OH 约为3400cm ﹣1,C 20酮的Vc=o 为1715cm ﹣1,△4-3-酮的Vc=o 为1645cm –1,原因是与羟基形成氢 键、与双键共轭,故向低波数移动;Vc=o 为1620cm –1,由于C 3酮基形成氢键向低波数移动时,1620cm –1峰表现为肩峰:Vc=o1140~1000cm –1。 2.醋酸氢化可的松: 酯链羟基,因诱导效应,降低了羟基的极性,增强了双键成分因而增强了键力,使Vc=o 为1750cm –1;C 20酮基的位置在1710cm –1,△4-3-酮的Vc=o 为1635cm ﹣1;Vc-o-c1240cm ﹣1和1060cm ﹣1 是酯类的红外光谱特征。 四、实验内容: 取干燥供试品 1~2mg 与200mg 溴化钾(干燥并过 200目筛)粉末,在玛瑙乳钵中研磨均匀,将样粉适量置压片模具中,均匀覆盖模底,装置模具,联接真空系统,抽气5分钟(除去混于粉末中的湿气及空气,)然后,边抽气边加压至8吨维持5分钟,去除真空,取下模具,去除透明的供试品溴化钾片,置于样品框中,将样品框置于红外分光光度仪的光路中,空白置于参比光路,选择适当的增益、狭缝、程序及扫描时间,扫描区间为4000cm ﹣1~400cm ﹣1,得红外光谱曲线。 五、注意事项 1.供试品的纯度必须符合要求。 2.研磨样品时,应在红外灯下小心操作。 3.实验用溴化钾必须干燥、纯度符合要求并且颗粒均匀。 4.某些供试品在固体状态测定时,可能因为同质多晶型,测得图谱与标准图谱不符,此时应 CH 3O

环境监测人员上岗考核试题(水质 石油类的测定 紫外分光光度法)

环境监测人员上岗考核试题 (水质石油类的测定紫外分光光度法HJ970) 姓名:________ 评分:________ 一、不定项选择题(每题4分,共80分) 1、《水质石油类的测定紫外分光光度法》(HJ 970-2018)适用于()中石油类的 测定。 A、地表水 B、地下水 C、海水 D、工业废水 2、《水质石油类的测定紫外分光光度法》(HJ 970-2018),当取样体积为 500 ml,萃取液体积为 25 ml,使用 2 cm 石英比色皿时,方法检出限为() mg/L,测定下限为()mg/L。 A、0.01 0.04 B、0.02 0.08 C、0.04 0.01 D、0.08 0.02 3、方法原理:在 pH≤2 的条件下,样品中的油类物质被正己烷萃取,萃取液经无水硫酸 钠脱水,再经硅酸镁吸附除去动植物油类等极性物质后,于()nm 波长处测定吸光度,石油类含量与吸光度值符合朗伯-比尔定律。 A、200 B、225 C、250 D、325 4、方法中使用的正己烷,透光率需要达到()%以上,方可使用。 A、70 B、80 C、85 D、90 5、方法中消除干扰的方式是()。 A、萃取液经硅酸镁吸附处理后,可消除极性物质的干扰 B、高温加热回流冷凝 C、吹扫捕集 D、循环冷却 6、无水硫酸钠(Na2SO4)的处理方式:于 550℃下灼烧()h,冷却后装入磨口玻璃 瓶中,置于干燥器内贮存。 A、1 B、2 C、3 D、4 7、硅酸镁(MgSiO3)选用的规格为()μm。 A、100~200 B、150~250 C、200~300 D、250~350

8、硅酸镁(MgSiO3)的处理方式:于 550℃下灼烧() h,冷却后称取适量硅酸镁于磨口玻璃瓶中,根据硅酸镁的重量,按()%(m/m)的比例加入适量蒸馏水,密塞并充分振摇数分钟,放置() h,备用。 A、4 B、8 C、6 D、12 9、硅酸镁吸附柱的填充高度是()mm。 A、10 B、100 C、500 D、1000 10、石油类标准使用液:ρ=()mg/L。 A、60 B、70 C、80 D、100 11、石油类标准使用液是使用石油类标准贮备液配制,使用的溶剂是()。 A、甲醇 B、辛醇 C、正己烷 D、正葵烷 12、紫外分光光度计使用的比色皿规格是()cm。 A、1 B、2 C、3 D、4 13、以下关于样品的采集保存条件的描述,正确是()。 A、样品采集后,加入盐酸,酸化至 pH≤2。 B、如样品不能在 24 h 内测定,应在0℃~4℃冷藏保存,3 d 内测定。 C、样品最小采样量为1000ml。 D、采样瓶用棕色硬质玻璃瓶。 14、以下关于试样的制备,正确的是()。 A、试样在分液漏斗萃取过程中,要充分振摇 2 min,期间经常开启旋塞排气。 B、试样脱水过程中若无水硫酸钠全部结块,需补加无水硫酸钠直至不再结块。 C、试样吸附过程中,置于振荡器上,以 180 r/min~220r/min 的速度振荡 20 min,静置沉淀。 D、以实验用水代替样品,按照试样萃取、脱水、吸附的制备步骤制备空白试样。 15、本方法的参比溶液是()。 A、甲醇 B、辛醇 C、正己烷 D、正葵烷 16、本方法的标准系列浓度是()。 A、0.00mg/L、0.25 mg/L、0.50 mg/L、1.00mg/L、2.00mg/L、4.00 mg/L。 B、0.00mg/L、0.50 mg/L、1.00 mg/L、2.00mg/L、4.00mg/L、8.00 mg/L。 C、0.00mg/L、0.75 mg/L、1.50 mg/L、3.00mg/L、6.00mg/L、12.0 mg/L。 D、0.00mg/L、1.00 mg/L、2.00 mg/L、4.00mg/L、6.00mg/L、16.0 mg/L。

红外分光光度法

红外光谱法 红外光谱法又称“红外分光光度分析法”。简称“IR”,分子吸收光谱的一种。利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。 红外光谱法的一般特点 特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。 红外光谱法的应用 1.定性分析和结构分析 红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。因此,红外光谱法是定性鉴定和结构分析的有力工具 2.定量分析 红外光谱法对试样的要求 红外光谱的试样可以是液体、固体或气体,一般应要求: (1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 (3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数 吸收峰的透射比处于10%~80%范围内。 目前主要有两类红外光谱仪:色散型红外光谱仪和傅立叶变换红外光谱仪。 一、色散型红外光谱仪 1 . 光源 红外光谱仪中所用的光源通常是一种惰性固体,同电加热使之发射高强度的连续红外辐射。常用的是Nernst灯或硅碳棒。Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的中空棒和实心棒。工作温度约为1700℃,在此高温下导电并发射红外线。但在室温下是非导体,因此,在工作之前要预热。它的特点是发射强度高,使用寿命长,稳定性较好。缺点是价格地硅碳棒贵,机械强度差,操

紫外分光光度法在药物分析中的应用

紫外分光光度法在药物分析中的应用 蒋贤森临床52 2152001037 摘要 药物分析是分析化学的一个重要应用领域,在药物分析工作中经常出现含复杂成分的药物或复方药物,对此经典的容量分析,重量分析等化学分析方法往往难于处理,一般都要借助于仪器分析方法,我国在药物分析方法上的研究经过几十年的发展已经有了很大的进步,用于药品质量控制的分析方法日益增多,使用的仪器类型日趋先进,并且仪器分析所占的比率越来越大,常用的仪器分析方法有紫外红外分光光度法气相色谱法液相色谱法毛细管电泳质谱法热分析法等,这些方法都有各自的特点和应用范围,紫外分光光度法由于具有方法简便灵敏度和精确度高重现性好可测范围广等明显优点,加之其仪器价格相对低廉易于维护因而越来越为分析工作者所重视,发展成为仪器分析方法中应用最广泛的方法以我国历版药典为例,紫外分光光度法的应用在其中占据很大的比例,高居各种仪器分析方法之首。虽然不断有新的分析方法出现,但紫外分光光度法因为具有灵敏度高快速准确等特点一直是制剂含量测定的首选方法,紫外分光光度法可广泛应用于分析合成药物,生物药品以及中药制剂等各种药物。 对紫外分光光度法,在飞速发展的现代药物分析领域中的可靠性

和作用作了总结,以大量的文献和数据说明紫外分光光度法仍然是有效可行的一种药物分析方法,紫外分光光度法发展到今天已经成为一种非常成熟的方法,衍生出许多种具体的应用方法如:双波长和三波长分光光度法差示分光光度法导数分光光度法薄层扫描紫外光谱法光声光谱法热透镜光谱分析法催化动力学分光光度法速差动力学分光光度法流动注射分光光度法以及化学计量学辅助的紫外分光光度法等等。 这些方法大都可用于药物分析的含量测定之中。 在此仅介绍其中的几种方法。 关键词:紫外分光光度法双波长三波长分光光度法差示分光光度法导数分光光度法 双波长三波长分光光度法 普通的单波长分光光度法要求试样透明无浑浊,对于吸收峰相互重叠的组分,或背景很深的试样分析往往难以得到准确的结果,双波长分光光度法简称双波长法,是在传统的单波长分光光度法的基础上发展起来的。使用二个单色器得到二个不同波长的单色光,它取消了参比池,通过波长组合在一定程度上能消除浑浊背景和重叠谱图的干扰,双波长法一般要求有二个等吸光度点,而三波长法,则只需在吸收曲线上任意选择三个波长 1 2 3 处测量吸光度,由这三个波长处的吸光度 A1 A2 A3计算 A A 与待测物浓度成正,因而可通过 A-C

石油类和动植物油复习试题

石油类和动植物油复习试题 (红外光度法) 一、填空题 1.国家颁布水质石油类和动植物油的测定方法是,方法的国标号码为。 答:红外光度法;GB/T16488-1996。 2.四氯化碳试剂应在之间扫描。其吸光度应不超过(1cm比色皿,空气池作参比)。 答:2600cm-1-3300cm-1;0.03。 3.硅酸镁60-100目:取硅酸镁于瓷蒸发皿中,置高温炉内℃加热小时,在炉内冷至℃后,移入干燥器中冷至,于玻璃瓶内保存。使用时,称取适量硅酸镁于玻璃瓶内中,根据硅酸镁的重量,按(m/m)的比例加适量蒸馏水,密塞,充分振荡数分钟,放置约小时后使用。 答:500;2;200;室温;磨口;干燥;磨口;6%;12。 4.地表水环境质量标准GB3838—2002中,Ⅰ~Ⅲ类水域石油类环境质量标准为mg/L、Ⅳ类水域石油类为 mg/L、Ⅴ类水域石油类为 mg/L。 答:0.05;0.5;1.0。 5.样品直接萃取后,将萃取液分成两份,一份直接用于测定______,另一份经______吸附后,用于测定_________。 答:总萃取物;硅酸镁;石油类。 6.红外分光光度法测定石油类和动植物油的步骤:直接萃取是将一定体积的水样倾入分液漏斗中,加酸化至,用 ml四氯化碳洗涤采样瓶后移入分液漏斗中,加约 g氯化钠,充分振摇分钟,并经常排气,静置分层后,经 mm厚度的无水硫酸钠层过滤于容量瓶中,重复一次,定容至标线。 答:全部;盐酸;pH≤2;20;20;2;10。 二、选择、判断题 1.红外光度法所用萃取溶剂为四氯化碳,也可采用低毒的来代替。 A、三氯甲烷; B、三氯三氟甲烷; C、三氯乙烷; D、三氯三氟乙烷 答:D 2.判断下列说法是否正确。 ⑴油类物质要单独采样,不允许在实验室内分样。() 1

近红外分光光度法的测量模式及应用

药物分析结课论文 近红外分光光度法的测量 模式及应用 学生姓名: 学号: 任课教师: 所在学院: 专业: 中国·大庆 2012年12 月

近红外分光光度法的测量模式及应用 (黑龙江八一农垦大学) 摘要:近红外(near infrared)区域按ASTM定义是指波长在780—2526nm范围内的电磁波,是人们最早发现的非可见光区域,距今已有近200年的历史[1]。分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法[3]。近红外分光光度法(near-infrared spectrophotometry ,NIRS)系通过测定被测物质的近红外谱区(波长范围约在780~2500nm,按波数计约为12800~4000cm-1)的特征光谱并利用适宜的化学计量学方法提取相关信息后,对被测物质进行定性、定量分析的一种分析技术[2]。 关键词:近红外分光光度法;测量模式;应用领域 1近红外分光光度法的原理和特点 近红外分光光度法是通过测定被测物质在近红外区的特征光谱进行定性定量分析的一种分析技术。由于近红外在常规光纤中有良好的传输特性,且具有仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品的分析以及可进行多组分多通道同时测定等特点。近年来,随着化学计量学、光纤和计算机技术的发展,近红外分光光度法在食品、化工、制药等许多领域,尤其是过程分析方面具有非常广泛的应用。近红外分光光度法的缺点是吸收信号弱、谱带宽、重叠较严、,而且吸收信号弱、信息解析复杂、光谱易动等[5]。 1.1化学分析[2] 1、定性分析 可对药品的活性成分、辅料、制剂、中间产物、化学原料以及包装材料进行鉴别。 2、定量分析 可定量测定药品的活性成分和辅料;测定某些脂肪类化合物的化学值,如羟值、

水质石油类动植物油测定作业指导书HJ637-2012

水质石油类和动植物油类测定作业指导书 1、含义及有关质量或排放标准 1.1、含义: 总油 是指用四氯化碳萃取,并且在波数为2930cm-1,2960cm-1和3030cm-1全部或部分谱带处有特征吸收的物质。主要包括石油类和动植物油。 石油类 指在本标准规定下,能被四氯化碳萃取且不被硅酸镁吸附的物质。 动植物油类 是指用四氯化碳萃取,并且被硅酸镁吸附的物质。当萃取物中含有非动植物油的极性物质时,应在测试报告中加以说明。 1.2、原理: 用四氯化碳萃取水中的油类物质,测定总萃取物,然后将萃取液用硅酸镁吸附,经脱除动植物油等极性物质后,测定石油类。两者差值为动植物油类。 总萃取物和石油类的含量均由波数分别为2930cm-1(CH2基团中C-H键的伸缩振动),2960cm-1(CH3基团中C-H键的伸缩振动)和3030cm-1(芳香环中C-H键的伸缩振动)谱带处的吸光度A2930、A2960和A3030进行计算。动植物油的含量按总萃取物与石油类含量之差计算。 1.3、水环境质量标准: 表1-1石油类地表水环境质量标准(GB3838-2002) 单位:mg/L

1.4、废水排放标准 表1-2石油类(1997年12月31日前建设的单位)(GB8978-1996) 单位:mg/L 表1-3石油类(1998年1月1日后建设的单位)(GB8978-1996) 单位:mg/L 2、分析方法: 2.1、方法名称、标准号及适用范围 方法名称:水质石油类和动植物油类的测定红外分光光度法 方法标准号:HJ637-2012 方法适用范围:本方法适用于地面水、地下水、生活污水、和工业废水中石油类和动植物油类的测定。 2.2、仪器和设备: xxxxx型红外分光测油仪(站编号xxxxxxx ) 旋转振荡器 自动萃取器 2.3、试剂 按HJ637-2012标准配制 2.4、分析步骤 执行HJ637-2012标准

hj-637-2018水质石油类和动植物油的测定红外分光光度法确认报告

方法验证报告 水质石油类和动植物油的测定 红外分光光度法 HJ 637-2018 编制日期__________________ 审核日期__________________

《水质石油类和动植物油的测定红外分光光度法》 (HJ 637-2018) 方法验证报告 1.本方法授权检测部门及人员 检测部门:检测室 检测人员:XXX 2.本方法所用仪器设备 红外分光光度计,能在3400cm-1~2400cm-l之间进行扫描,40mm带盖石英比色皿。 旋转振荡器:振荡频数可达300次/min。 分液漏斗:1000ml、2000ml,聚四氟乙烯旋塞。 玻璃砂芯漏斗:40mL,G-1型。 提取套筒:滤纸制。 锥形瓶:100ml,具塞磨口。

样品瓶:500ml、1000ml,棕色磨口玻璃瓶。 量筒:1000ml、2000ml。 一般实验室常用器皿和设备。 3.本方法实验场所的环境条件 实验室名称:XXXXXXXXXXXXX 环境控制要求:其他有干扰本实验的隔离。 环境条件监控情况:与实验室控制条件相符。 4.方法原理 水样在pH≤2的条件下用四氯乙烯萃取后,测定油类;将萃取液用硅酸镁吸附去除动植物 油类等极性物质后,测定石油类。油类和石油类的含量均由波数分别为2930cm-1(CH 2 基团中 C-H键的伸缩振动)、2960cm-1(CH 3 基团中C-H键的伸缩振动)和3030cm-1(芳香环中C-H键 的伸缩振动)处的吸光度A 2930、A 2960 和A 3030 ,根据校正系数进行计算;动植物油类的含量为油 类与石油类含量之差。 5.标准溶液和试剂的配制 除非另有说明,分析时均使用符合国家标准的分析纯化学试剂,实验用水为蒸馏水或同等纯度的水。 盐酸(HCl):ρ=ml,优级纯。 正十六烷:色谱纯。 异辛烷:色谱纯。 苯:色谱纯。 四氯乙烯:以干燥4cm比色皿空石英比色皿为参比,在2800cm-1~3100cm-1之间使用4cm

相关主题
文本预览
相关文档 最新文档