当前位置:文档之家› 动量定理及动量守恒定律

动量定理及动量守恒定律

动量定理及动量守恒定律
动量定理及动量守恒定律

第三章 动量定理及动量守恒定律

3.5.1质量为2kg 的质点的运动学方程为 j ?)1t 3t 3(i ?)1t 6(r 22+++-=ρ

(t 为时间,单位为s ;长度单位为m).

求证质点受恒力而运动,并求力的方向大小。

解,j ?)3t 6(i ?t 12v ++=ρ j ?6i ?12a +=ρ

j

?12i ?24a m F +==ρ

ρ(恒量)

12

2

57

.262412tg )

N (83.261224F ==θ=+=-

3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为

ωω+ω=b,a, ,j ?t sin b i ?t cos a r ρ

为正常数,证明作用于

质点的合力总指向原点。

解, ,j ?t cos b i ?t sin a v ωω+ωω-=ρ r

,j ?t sin b i ?t cos a a 22ρρω-=ωω-ωω-= r m a m F ρρρω-==

3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了

从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。 解答,

以谷筛为参照系,发生相对运动的条件是

,g a ,mg f a m 000μ≥'μ=≥'

a ' 最小值为)s /m (92.38.94.0g a 2

0=?=μ='

以地面为参照系:

解答,静摩擦力使谷粒产生最大加速度为

,mg ma 0max μ= ,g a 0max μ=

发生相对运动的条件是筛的加速度g a a

0max μ=≥',

a ' 最小值为)s /m (92.38.94.0g a 2

0=?=μ='

3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。问沿水平方向用多大的力才能把下面的木板抽出来。

解,对于1m :

)1,......(a m g m 1

1

1

1

=μ 对于2m :

)2,......(a m g )m m (g m F 2

2

2

1

2

1

1

=+μ-μ- 1

m 和2

m 发生相对运动的条件是:1

2

a a ≥

,

m g

m m g )m m (g m F 1

1

1

2

2

1

2

1

1

μ≥+μ-μ-

g )m m )((F 2

121+μ+μ≥

3.5.5质量为2

m 的斜面可在光滑的水平面上滑动,斜面倾角为α,

质量为1m 的运动员与斜面之间亦无摩擦,求运动员相对斜面的加速度及其对斜面的压力。

解,隔离体:,m ,m 21 对于2m :0cos N g m R 2=α--

1

2

a m sin N =α

对于1

m :α-=-αsin a m g m cos N 2

1

1

α-=-α-cos a m a m sin N 2

1

1

1

联立求解:

α

+α+=

2

1

2

2

1

2

sin m m sin g )m m (a ,

α+α=

2

1

2

2

1

sin m m cos g m m N 3.5.6在图示的装置中两物体的质量各为,m ,m 21。物体之间及物体与桌面间的摩擦系数都为μ。求在力F ρ

的作用下两物体的加速度及绳

内张力。不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解,对于1m :,a m T g m 11-=-μ )1,......(a m g m T 11=μ-

对于2m :

)2......(a m T g )m m (g m F 2211=-+μ-μ-

解方程得:

g

m

m

g

m

2

F

a

2

1

-

+

μ

-

=

2

1

1

1

m

m

)g

m

2

F(

m

T

+

μ

-

=

3.5.7在图示的装置中,物体A、B、C的质量各为

3

2

1

m

,

m

,

m且两两不等。若物体A、B与桌面间的摩擦系数均为μ。求三个物体的加速度及绳内张力。不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解,

)1

......(

a

m

g

m

T

1

1

1

=

μ

-

)2

......(

a

m

g

m

T

2

2

2

=

μ

-

)3

......(

a

m

T

2

g

m

3

3

3

=

-

)4

)......(

a

a(

2

1

a

2

1

3

+

=

)

x2

x

x(

C

B

A

λ

=

+

+

由(1)、(2)得:

)5

......(

a

m

g

m

g

m

a

m

1

1

2

1

2

2

+

μ

-

μ

=

由(3)得:

)6

......(

)

a

a(

2

m

)

a

m

a

m

g

m

g

m

(

g

m

2

1

3

2

2

1

1

2

1

3

+

=

+

+

μ

+

μ

-

(5)代入(6):

g

]m m 4

m )m m ()1(m m 2[a 2

1321321μ-++μ+=

g

]m m 4m )m m ()

1(m m 2[a 2

1321312μ-++μ+=

g

]m m 4m )m m ()1(m )m m ([a 2

13213213μ-++μ++=

g

]m m 4m )m m ()

1(m m m 2[T 21321321++μ+=

3.5.8天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为21m ,m 的物体)m m (21≠,天平右端的托盘内放有砝码,问天平托盘和砝码共重若干,才能保持天平平衡?不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解,a m T g m 22=

- (1)

a m g m T 11=-, (2)

解方程得:

g

m m m m a 211

2+-=

g

m m m m

2T 212

1+=

g

m m m m 4T 2T 212

1+=='

3.5.9跳伞运动员初张伞时的速度为0v ,阻力大小与速度平方成正

比:2av ,人伞总质量为m 。求)t (v v =

的函数。

提示:积分时可利用式)v 1(21

)v 1(21v

112

-++=-

解,

,m dt

av mg dv ,dt dv m av mg 2

2

=-=- ,m dt

)mg /av 1(mg dv 2

=- ,gdt mg /av 1dv 2=-

设常量

==β=βmg a ,mg a 2

,上式写成 ,gdt v 1dv

2

2=β-

,gdt v 12dv

v 12dv =β-+β+)

()(

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少(g取10m/s2) 练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少 例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小. 练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。 例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.

练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求: (1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=.求: (1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略). 2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则 (1)小滑块b 经过圆形轨道的B 点时对轨道的压力. (2)通过计算说明小滑块b 能否到达圆形轨道的最高点C . 附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为 的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置 于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向 右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求: (1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . O C B a b A B v A v B C

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

高考物理练习题库28(动量守恒定律的应用)

高考物理练习题库28(动量守恒定律的应用) 1.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,这是由于( ).【0.5】 (A)A 车的质量一定大于B 车的质量 (B)A 车的速度一定大于B 车的速度 (C)A 车的动量一定大于B 车的动量 (D)A 车的动能一定大于B 车的动能量 答案:C 2.一个静止的质量为m 的不稳定原子核,当它完成一次α衰变.以速度v 发射出一个质量为m α的α粒子后,其剩余部分的速度等于( ).【0.5】 (A)v m m α- (B)-v (C)v m -m m αα (D)v m -m m α α- 答案:D 3.在两个物体碰撞前后,下列说法中可以成立的是( ).【1】 (A)作用后的总机械能比作用前小,但总动量守恒 (B)作用前后总动量均为零,但总动能守恒 (C)作用前后总动能为零,而总动量不为零 (D)作用前后总动景守恒,而系统内各物体的动量增量的总和不为零 答案:AB 4.在光滑的水平面上有两个质量均为m 的小球A 和B,B 球静止,A 球以速度v 和B 球发生碰撞,碰后两球交换速度.则A 、B 球动量的改变量Δp A 、Δp B 和A 、B 系统的总动量的改变Δp 为( ).【1】 (A)△p A =mv,△p B =-mv,△p=2mv (B)△p A ,△p B =-mv,Δp=0 (C)Δp A =0,Δp B =mv,Δp=mv (D)△p A =-mv,Δp B =mv,Δp=0 答案:D 5.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则( ).【1】 (A)b 的速度方向一定与原来速度方向相同 (B)在炸裂过程中,a 、b 受到的爆炸力的冲量一定相同 (C)从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大 (D)a 、b 一定同时到达水平地面 答案:D 6.大小相同质量不等的A 、B 两球,在光滑水平面上作直线运动,发生正碰撞后分开.已知碰撞前A 的动量p A =20㎏·m/s,B 的动量p B =-30㎏·m/s,碰撞后A 的动量p A =-4㎏·m/s,则:【2】 (1)碰撞后B 的动量p B =_____㎏·m/s. (2)碰撞过程中A 受到的冲量=______N·s. (3)若碰撞时间为0.01s,则B 受到的平均冲力大小为_____N. 答案:(1)-6(2)-24(3)2400 7在光滑的水平面上有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A =5㎏·m/s,p B =7㎏·m/s,如图所示.若两球发生正碰,则碰后两球的动量增量Δp A 、Δp B 可能是( ).【2】 (A)Δp A =3㎏·m/s,Δp B =3㎏·m/s (B)Δp A =-3㎏·m/s,Δp B =3㎏·m/s

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高考物理动量守恒定律的应用技巧(很有用)及练习题

高考物理动量守恒定律的应用技巧(很有用)及练习题 一、高考物理精讲专题动量守恒定律的应用 1.足够长的水平传送带右侧有一段与传送带上表面相切的 1 4 光滑圆弧轨道,质量为M =2kg 的小木盒从离圆弧底端h =0.8m 处由静止释放,滑上传送带后作减速运动,1s 后恰好与传送带保持共速。传送带始终以速度大小v 逆时针运行,木盒与传送带之间的动摩擦因数为μ=0.2,木盒与传送带保持相对静止后,先后相隔T =5s ,以v 0=10m/s 的速度在传送带左端向右推出两个完全相同的光滑小球,小球的质量m =1kg .第1个球与木盒相遇后,球立即进入盒中并与盒保持相对静止,第2个球出发后历时△t =0.5s 与木盒相遇。取g =10m/s 2,求: (1)传送带运动的速度大小v ,以及木盒与第一个小球相碰后瞬间两者共同运动速度大小v 1; (2)第1个球出发后经过多长时间与木盒相遇; (3)从木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量。 【答案】(1)v =2m/s ;v 1=2m/s (2)t 0=1s (3)24J Q = 【解析】 【详解】 (1)设木盒下滑到弧面底端速度为v ',对木盒从弧面下滑的过程由动能定理得 21 2 Mgh Mv = ' 依题意,木箱滑上传送带后做减速运动,由运动学公式有:v v at ='-' 对箱在带上由牛顿第二定律有:Mg Ma μ= 代入数据联立解得传送带的速度v =2m/s 设第1个球与木盒相遇,根据动量守恒定律得 ()01mv Mv m M v -=+ 代入数据,解得v 1=2m/s (2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过t 0与木盒相遇,则00 s t v = 设第1个球进入木盒后两者共同运动的加速度为a ,根据牛顿第二定律有 ()()m M g m M a μ+=+ 得:2 2m/s a g μ==

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

动量守恒定律及应用练习题

动量守恒定律习题课 教学目标:掌握应用动量守恒定律解题的方法和步骤 能综合运用动量定理和动量守恒定律求解有关问题教学重点:熟练掌握应用动量守恒定律解决有关力学问题的正确步骤教学难点:守恒条件的判断,系统和过程的选择,力和运动的分析教学方法:讨论,总结;讲练结合 【讲授新课】 1、“合二为一”问题:两个速度不同的物体,经过相互作 用,最后达到共同速度。 例1、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时: (1)两车的速度各为多少?(2)甲总共抛出了多少个小球? 分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。 (1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。设共同速度为V,则: M1V1-M2V1=(M1+M2)V (2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(- 1.5)=225(kg·m/s) 每一个小球被乙接收后,到最终的动量弯化为△P1=16.5×1- 1.5×1=15(kg·m/s) 故小球个数为 2、“一分为二”问题:两个物体以共同的初速度运动,由于 相互作用而分开后以不同的速度运动。 例2、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹 回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

动量守恒定律的综合应用练习及答案

1.如图所示,以质量m=1kg的小物块(可视为质点),放置在质量为M=4kg的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v?=2m/s向左匀速运动。在长木板的左侧上方固定着一个障碍物A,当物块运动到障碍物A处时与A发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s2。 (1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s (2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2 (3)要使物块不会从长木板上滑落,长木板至少为多长?2m 2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B放在斜面上,开始时A,B之间的距离为1米,B与C的距离为0.6米,现将A B同时由静止释放.已知A 、B与轨道的动摩擦因数分别为√3/5和√3/2 ,A、B质量均为m,g取10m/s2,设最大静摩擦力等于滑动摩擦力,A、B发生碰撞时为弹性碰撞。物体A,B可以看作是质点,不计在斜面与平面转弯处的机械能损失,则 (1)经过多长时间滑块A,B第1次发生碰撞. 1s (2)滑块B停在水平轨道上的位置与C点儿的距离是多少?m 10 3 3.如图所示,光滑的轨道固定在竖直平面内,其O点左边为水平轨道,O点右边的曲面轨道高度h等于0.45米,左右两段轨道在O点平滑连接.质量m=0.10kg的小滑块a由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg的小滑块b发生碰撞,碰撞后现小滑块a恰好停止运动,取重力加速度g=10m/s2,求 (1)小滑块a通过O点时的速度大小3m/s (2)碰撞后小滑块b的速度大小1m/s (3)碰撞后碰撞过程中小滑块a、b组成的系统损失的机械能。0.3J A B C b c h o

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

高考物理动量守恒定律的应用解题技巧及练习题

高考物理动量守恒定律的应用解题技巧及练习题 一、高考物理精讲专题动量守恒定律的应用 1.如图所示,质量为M 的木块A 静置于水平面上,距A 右侧d 处有固定挡板B,一质量为m 的小物体C,以水平速度v 0与A 相碰,碰后C 、A 粘连在一起运动,CA 整体与B 碰撞没有能量损失,且恰好能回到C 、A 碰撞时的位置所有碰撞时间均不计,重力加速度为g 。求: (1)C 与A 碰撞前后,C 损失的机械能; (2)木块A 与水平面间动摩擦因数μ。 【答案】(1)202(2)2()k M m Mmv E M m +?=+ (2)22 2 4()m v gd M m μ=+ 【解析】 【详解】 解:(1)设C 、A 碰后瞬时速度大小为v ,根据动量守恒则有:0()mv m M v =+ 由于C 与A 碰撞,C 损失的机械能:22011 22 E mv mv ?= - 解得:2 2 (2)2() M m Mmv E M m +?=+ (2)由动能定理得:21 ()20()2 M m g d M m v μ-+?=- + 解得:22 4() m v gd M m μ=+ 2.如图所示,质量为M=2kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R=0.4m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。质量为m=1kg 的滑块B(可视为质点)以初速度08/v m s =从圆弧的顶端沿圆弧下滑,B 从A 右端的上表面水平滑入时撤走圆弧。A 与台阶碰撞无机械能损失,不计空气阻力,A 、B 之间动摩擦因数0.1μ=,A 足够长,B 不会从A 表面滑出,取g=10m/s 2。 (1)求滑块B 到圆弧底端时的速度大小v 1; (2)若A 与台阶碰前,已和B 达到共速,求A 向左运动的过程中与B 摩擦产生的热量Q(结

物理动量守恒定律练习题20篇.docx

物理动量守恒定律练习题20 篇 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板恢复原长时,甲的速度大小为 2m/s ,此时乙尚未与 P.现将两滑块由静止释放,当弹簧 P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】 v 乙=6m/s.I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 左的方向为正方向,由动量守恒定律可得: 和,对两滑块及弹簧组成的系统,设向 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、 C,三球的质量分别为m A=1kg、 m B=2kg、 m C=6kg,初状态BC球之间连着一根轻质弹簧并处于 静止, B、C 连线与杆垂直并且弹簧刚好处于原长状态, A 球以 v0=9m/s 的速度向左运动,与同 一杆上的 B 球发生完全非弹性碰撞(碰撞时间极短),求: (1) A 球与 B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中 B 球的最小速度. 【答案】( 1);(2);(3)零. 【解析】 试题分析:( 1) A、 B 发生完全非弹性碰撞,根据动量守恒定律有:

碰后 A、 B 的共同速度 损失的机械能 (2) A、 B、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,速,A、 B 的加速度沿杆向右,直到弹簧恢复原长,故A、 B 在前, C 在后.此后C 向左加A、 B 继续向左减速,若能减速到零 则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时 A、 B 的速度,C的速度 可知碰后A、B 已由向左的共同速度减小到零后反向加速到向右的,故 的最小速度为零. 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】 A、 B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定 律和机械能守恒定律求出 A 球与 B 球碰撞中损耗的机械能.当B、C 速度相等时,弹簧伸 长量最大,弹性势能最大,结合B、 C 在水平方向上动量守恒、能量守恒求出最大的弹性 势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 B 3.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和m B=3.0kg .用轻弹簧拴接,放在光 滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:

动量守恒定律的典型例题

动量守恒定律的典型例题 【例1】 把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些? [] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】 一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s 2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】 一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】 质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二

个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何? 【例5】 甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】 两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少? 【分析】 由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系

相关主题
文本预览
相关文档 最新文档