当前位置:文档之家› 信号抗干扰课程报告概要

信号抗干扰课程报告概要

信号抗干扰课程报告概要
信号抗干扰课程报告概要

《新一代无线通信关键技术》课程报告无线通信抗干扰技术及发展趋势

摘要

无线通信技术特别是个人移动通信蜂窝小区的快速发展,使用户摆脱有线终端的弊端,实现实际的个人移动性。而完善的抗干扰技术,是保证通信有序和畅通的先决条件。在当今日益恶劣的电磁环境中,无线通信时常面临各种干扰,因此对无线通信的抗干扰技术要进行深入的研究。在现代的无线通信系统中,由于所处的电磁环境相当复杂,这种干扰不仅有自然干扰,还有人为干扰。实际上信息化的发展,不仅要求点对点的通信系统具有抗干扰能力,更重要的是整个通信系统和网络要具有综合抗干扰的能力,衰落和干扰是制约无线通信系统性能的主要因素。为了能在任何复杂的电磁环境下完成信息传输,尤其是面对极端恶劣通信环境中微弱信号检测时,无线通信抗干扰技术研究和应用,以及抗干扰技术的综合优化具有重要的现实意义和工程价值,也已逐渐成为无线通信研究领域中的一个热点。

关键词:无线通信,抗干扰,综合抗干扰,研究进展

第一章引言

1.综合抗干扰通信的研究背景

近年来,无线通信技术发展迅猛,各种无线和移动通信设备被广泛应用在各个领域,如工业、医药、传媒、安全、网络、个人通信等,有效提高了信息传递的效率,促进了社会生产力的发展,丰富了人们的日常生活,成为了人类文明不可分割的一部分。

然而,随着无线通信应用范围不断拓展,一些极端通信条件下的无线通信应用已经融入在人们的日常生活中,如卫星导航、卫星通信和深空通信等。这些无线通信系统的发射功率受到限制,信号传播距离远,信道环境恶劣,接收端信号非常微弱,信噪比极低,容易受到自然和人为的干扰。

无线通信各种自然和人为性的干扰信号,包括机器噪声,码间干扰,单音干扰,宽窄带干扰,多址干扰,天线之间的干扰等。各种形式的干扰信号为通信系统带来了巨大的损害,因此为了使信息能安全可靠地传输,必须在无线通信手段中采用各种抗干扰技术。深入研究抗干扰信号处理技术,通信系统、网络级综合抗干扰的内涵、相关要素和体系结构,研究综合抗干扰的基本理论,开发通信系统和网络的综合抗干扰技术,优化通信系统和网络的抗干扰性能,是通信信号处理和研究中的要点和重点。随着抗干扰通信技术的进步和发展,特别是综合抗干扰通信技术的研究、发展与应用,一些迫切需要解决的问题出现在我们面前各种扩频的、非扩频的,时域的、频域的、功率域的抗干扰技术与措施由于它们的抗干扰机理不同,目前尚无统一的抗干扰理论进行定性和定量分析。

一般面对多系统共存通信对高频谱利用率的要求,多天线技术能够利用阵列增益,有效提高抑制信道干扰的能力,从而提高通信系统的数据传输率,增大了系统容量。而基于多天线技术的多入多出(Multiple Input Multiple Output,MIMO),利用编码技术,除阵列增益以外,还能获得分集增益和复用增益,进一步提高了系统的容量和抗干扰能力。为了更加有效地利用频谱资源,研究人员提出了正交频分复用(OFDM) 技术和基于OFDM 的多址接入技术OFDMA。应用中发现,OFDMA信号的缺点也明显,由于信号具有较高峰均比(PAPR)特性,为了保证发射机输出误差向量幅度(EVM)和杂散满足指标要求,需要发射机功放有较大的线性范围,从而导致发射机效率下降,不适宜在手持终端中使用。针对OFDMA的缺点,第三代移动通信长期演进(LTE)上行链路的多址接入方案选择了单载波频分复用(SC-FDMA)技术。与OFDMA技术相比,SC-FDMA有效降低了PAPR,发射机设计时可以选择较为廉价的功放,降低了设备的成本,同时延长了手持终端的可使用时间。

第二章无线通信抗干扰技术研究现状

1.无线传播环境

无线传播环境非常复杂:首先,无线信道对所有无线设备都是开放的,各种电子设备和无线通信系统共存于其中。其次,无线信号传播路径异常复杂,不仅有视距传播中的路径损耗,还会面临各种复杂的地理环境,如丘陵、山地或城市建筑群等。因此,无线信号到达接收端时,经过了信道畸变,并叠加了各种干扰。作为无线通信中的典型应用,卫星导航、卫星通信和深空通信是远距离。远距离通信过程中,无线信号经过路径损耗和多径衰落等影响,达到接收端时已经非常微弱。

伴随着个人移动通信服务的广泛应用,通用移动通信系统获得了迅猛发展。从20 世纪80 年代,“第一代”移动通信系统实现大规模商业应用,到LTE标准的制定,仅仅用了20多年的时间。如此短时间的更新换代,以及投资成本、用户群等因素,“第四代”将和“第三代”、“第二代”长期共存。为了各系统能够有效利用无线频谱资源,ITU-R为这些技术分配了相应的频段。但是,实际的多系统通信环境中,无线通信设备发射机输出信号存在带外泄

露、交调等干扰信号,接收机滤波器也不可能将带外信号完全滤除掉,产生了系统间的各种干扰。

2.典型的抗干扰技术

超窄带技术:近年来,高速通信和信息技术的发展,人们提出了新的概念和高度创新的技术,UWB(超宽带)和UNB ( 超窄带)无线通信系统特别引起了关注。前者从系统到实际已取得初步成功,广泛的应用于军事,后者的研究则是刚刚开始。

多输入多输出(MIMO) 技术:MIMO 无线传输技术是通信领域的一项重要技术突破,近年来引起了人们的广泛关注与研究兴趣。MIMO 技术是指在发射端通过多个发射天线传送信号,在接收端使用多个接收天线接收信号的无线通信技术,目前理论已经证明应用MIMO 技术能极大地提高无线通信系统的性能和容量。将MIMO 技术与OFDM、时空编码相结合,就能同时实现空间分集、频率分集和时间分集。这样就能在空域、频域和时域上实现抗干扰。

虚拟智能天线技术:最近的年份较先进的通信技术是智能天线技术。智能天线可以压制敌人的多方干扰,信号干扰比增加几十分贝。无线电抗干扰的有效性并不比一般的抗干扰电台差。虚拟智能天线是使用或借用同一地理区域和类似的其他通讯装备天线之间的相互作用,实现了类似智能天线的功能,以提高天线的信号接收端的干扰比和提高抗干扰性能。

基于信号处理综合抗干扰技术:新的通讯设备和系统里,信号处理基础上的多种抗干扰措施有跳频、扩频、混合扩频、伪信号隐蔽、数据猝发、自适应干扰抑制、前向纠错等。所有这些措施都有时变性,能够依据据环境进行变化和组合,如跳频,可以随机变速率跳频、自适应跳频等。在实时选频系统中,通常把干扰水平的大小作为选择频率的一个重要因素。所以由实时选频系统所提供的优质频率,实际上已经躲开了干扰,可使系统工作在传输条件良好的弱干扰或无干扰的频道上。近年来出现的高频自适应通信系统,还具有“自动信道切换”的功能。也就是说,遇到严重干扰时,通信系统将作出切换信道的响应。高频自适应是指高频通信系统具有适应通信条件变化的能力。在高频通信系统中可以有各种类型的自适应,如频率自适应、功率自适应、速率自适应、分集自适应、自适应均衡和自适应调零天线等,一般来说,高频自适应就是指频率自适应。

智能组网技术:智能组网技术是指抗干扰通信网系可以自动感知电磁环境,对受干扰程度作出分析判断,实时调整通信系统的网络结构。例如,在卫星通信系统中,对于空间传输网路,建立多种路由传输方案。当系统受到不可抵御的强干扰时,主动关闭某些传输通道,减少系统承载信息量,根据优先级别,优先将重要信息迂回到其他路径进行传输。当干扰分析与识别设备发现干扰消除时,能自动恢复到正常工作状态。智能组网技术是面向通信过程和网络、系统的,可以最大限度地利用现有的通信资源,提高通信系统的抗干扰能力和生存能力。

软件无线电技术:近年来,随着软件无线电技术的出现和发展,为综合抗干扰技术的实现提供了方向。在软件无线电中采用扩、跳频抗干扰技术,完全可以与时变技术相结合。此时扩、跳频的速率、范围、方式都可参量化,根据不同的使用场合和干扰情况进行变化。一部设备可以做到既可单独跳频工作也可直扩方式工作,还可跳频与直扩混合方式工作,这样将大大增强通信系统的抗干扰能力。

3.发展趋势

随着微电子技术、计算机技术、网络通信技术等信息技术的飞速发展,通信抗干扰技术发生巨大变化。尤其是军用通信,以低截获、数字化处理、网络化为主要特点,通用化、软件化、智能化、综合一体化发展。无线通信抗干扰技术的发展趋势概括如下:

①采用新的抗干扰技术。为了满足未来的通信需要,将采用更多的新型抗干扰技术;

②综合使用多种抗干扰技术。典型应用是跳频、直扩和跳时3 种基本抗干扰体制的组合应用;

③向网络化抗干扰发展。智能组网技术在网络级就可以进行抗干扰。

4.抗干扰性能分析

扩频抗干扰性能分析:扩频信号通过处理增益,能够有效对抗干扰。文献[8-9],考虑快速跳频M-ary频移键控接收机,分析了其抗多音干扰的性能。针对两种不同的接收机结构,得到了误码率闭合表达式,考虑加性白高斯噪声信道,在多音干扰条件下,分析了时频二维扩频的误码率性能,综述了现有DSSS系统对于窄带干扰抑制的所有方法,比较其优缺点。采用各种时域处理技术对NBI抑制的性能上限进行了对比。重点在时域处理技术性能比较上,其他方法的分析较为粗略,考虑部分频带干扰条件下,针对快速跳频BFSK信号,提出一种选择分集合并的接收机模型。并且分析了存在部分频带干扰和加性高斯白噪声的非频率选择性Nakagami-m 衰落信道下,接收机误码率性能。通过分析发现,恶劣通信条件下,扩频信号具有非常好的抗干扰能力。

MIMO系统典型抗干扰技术性能分析进行了总结:文献[10-11],针对MIMO 系统,考虑瑞利和莱斯信道,分析干扰存在或不存在时中断性能。提出一种MIMO 系统同频干扰建模方式,基于本文提出的干扰模型,得到多小区下行容量的精确表达式。然后,在多小区协同的MISO 蜂窝网络中,分析了小区边缘用户的下行链路容量,给出闭式表达。将同频干扰和高斯白噪声建模为相关高斯噪声,采用ML 检测,VBLAST 结构,分析了MIMO 系统的误码率界。使用特定接收方式,干扰模型比较简单。

5.LTE无线通信抗干扰发展现状

随着LTE 标准化进程的加快,LTE 技术的大规模商用指日可待,与此同时,Wi Fi 网络的覆盖范围也越来越广,这两种技术即将面临长期共存的局面。考虑LTE基站与用户终端之间的距离有时会很远,且基站附近存在着Wi Fi 无线接入点,则LTE 上行通信链路必将受到Wi Fi 信号干扰。此时,由于Wi Fi 和LTE工作在相邻频段,大功率Wi Fi 信号的旁瓣与LTE 上行信号的频带重叠,形成了同频干扰。

在多接收天线的通信场景中,等增益合并(Equal Gain Combining,EGC)、最大比合并(Maximum Ratio Combining,MRC)虽然能够利用天线分集对抗多径信道的衰落,但两者都没有考虑多天线接收信号中干扰的相关性。多接收天线的干扰抑制合并(Interference Rejection Combing,IRC)方法利用各接收天线之间干扰的相关性,进行干扰抑制与合并。针对实际应用,文献[12]将IRC、MRC方法应用在蜂窝移动通信网络中,考虑窄波束宽度的接收天线,与MRC 方法相比,IRC 方法的输出信干噪比SINR 更高。文献[13]将IRC 方法应用在多用户的多输入多输出空分多址(MIMO-SDMA)下行链路中,应用IRC 后,MIMO-SDMA 下行链路的和速率容量得到提高。文献[14]将IRC 方法应用在人体局域网(Body Area Network,BAN)中,并给出了存在网间干扰时,两接收天线场景下干扰抑制增益的仿真结果。

在多址接入分布式网络的多天线场景中,考虑网络节点位置服从泊松点过程分布,文献[15]分析了瑞利信道中应用IRC 合并后分布式网络的中断概率,与最大比合并方式的中断概率相比,IRC 的中断概率更低。比较了干扰受限的多天线场景中,IRC、MRC、EGC 三种合并方式的输出信干噪比,其中IRC 方法输出信干噪比最高。同时,IRC 方法中干扰的协方差矩阵不容易获取。

针对干扰协方差矩阵的估计问题,文献[16]以接收信号的协方差矩阵作为干扰信号协方差矩阵的估计值,但由于接收信号还包含了期望信号分量,该种方式估计出的干扰信号协方差矩阵并不可靠。

参考文献:

[1] 李文清.超短波无线电通信抗干扰技术发展趋势研究[ J] .中国科技信息, 2007(22):310-311.

[2] Firouzbakht K, Noubir G, Salehi M. On the capacity of rate -adaptive packetized wireless communication links under jamming[C] //Proceedings of the Fifth ACM Conference on Security and Privacy in Wireless and Mobile Networks. Tucson, AZ, USA: IEEE, 2012:3-14.

[3] 吴德书. MIMO 无线通信技术[ J] .甘肃科技纵横, 2007, 36(1):11 -12.

[4] P opper C,Strasser M,Capkun S. Jamming – resistant broadcast communication without shared keys[C]/ /Proceedings of the 18th USENIX Security Symposium. Berkeley,CA,USA: IEEE, 2009: 231-248. [5] Strasser M,P pper C,Capkun S, et al. Jamming-resistant Key Establishment using Uncoordinated Frequency Hopping[C]/ /Proceedings of 2008 IEEE Symposium on Security and Privacy.Oakland,CA: IEEE, 2008: 64-78.

[6] 征惠玲. 国外无线通信抗干扰技术研究进展[J]. 电讯技术,2014,54( 4) : 524-528

[7] 殷云志. 无线通信抗干扰技术及发展趋势[J].专题技术与工程应用.

[8] K.C.Teh, K.H.Li, et al. Performance analysis of an FFH/BFSK linear-combining receiver against multitone jamming. IEEE Communication letters, 1998, 2(8): 205–207.

[9] Y. Han, K. C. Teh. Error probabilities and performance comparisons of

various FFH/MFSK receivers with multitone jamming, IEEE Transactions on Communications, 2005, 53(5): 769–772.

[10] 周键, 唐友喜等. 多音干扰环境中时频二维扩频系统的性能. 电子与信息学报, 2006, 28(11): 2107–2110.

[11] J. C. Fan, Q. Y. Yin. Robust linear receivers for STBC systems with unknown co-channel interference. Science in China Series F: Information Sciences, 2009, 52(6): 1067–1074.

[12] 和欣, 张晓林. 音频及部分频带干扰下多音调制直接序列扩频的抗干扰性能. 通信学报, 2010, 31(8): 75–83.

[13] Baird, C. A. Zahm, et al. Performance criteria for narrowband array processing. IEEE Conference on Decision and Control (CDC’1971), Miami, Florida, USA, 1971, 10: 564–565.

[14] C. H. Yu. Tirkkonen O. Characterization of SINR uncertainty due to spatial interference variation. IEEE Eleventh International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Marrakech, Morocco, 2010: 1–5.

[15] M. Pun, Koivunen, et al. Performance analysis of joint opportunistic scheduling and receiver design for MIMO-SDMA downlink systems. IEEE Transactions on Communications, 2011, 59(1): 268–280.

[16] 3GPP R1-062135, Huawei. Comparison of downlink transmit diversity schemes with inter-cell interference. 3GPP TSGRAN WG1 Meeting#46. Tallinn, Estonia, August, 2006.

PLC系统信号的干扰及抗干扰措施

PLC系统信号的干扰及抗干扰措施 可编程控制器PLC具有编程简单、通用性好、功能强、易于扩展等优点。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。PLC中采用了高集成度的微电子器件,可靠性高,但由于使用时工业生产现场的工作环境恶劣,如大功率用电设备的起动或停止引起电网电压的波动形成低频干扰和电磁辐射等恶劣电磁环境,大大降低了PLC控制系统的可靠性。为了确保控制系统稳定工作,提高可靠性,必须对系统采取一定的抗干扰方法和措施。 1 影响PLC控制系统稳定的干扰类型 1.1 空间的辐射干扰 空间的辐射电磁场(EMI)主要由电力网络、电气设备、雷电、高频感应加热设备、大型整流设备等产生,通常称为辐射干扰,其分布极为复杂。其影响主要通过两条途径:一是对PLC 通讯网络的辐射,由通讯线路的感应引入干扰;二是直接对PLC内部的辐射,由电路感应产生干扰。若此时PLC置于其辐射场内,其信号、数据线和电源线即可充当天线接受辐射干扰。此种干扰与现场设备布置及设备所产生的电磁场的大小,特别是与频率有关。 1.2 传导干扰 (1)来自电源的干扰 在工业现场中,开关操作浪涌、大型电力设备的起停、交直流传动装置引起的谐波、电网短路暂态冲击等均能在电网中形成脉冲干扰。PLC的正常供电电源均由电网供电,因而会直接影响到PLC的正常工作。由于电网覆盖范围广,它将受到所有空间的电磁干扰而产生持续的高频谐波干扰。特别在断开电网中的感性负载时产生的瞬时电压峰值是额定值的几十倍,其脉冲功率足以损坏PLC半导体器件,并且含有大量的谐波可以通过半导体线路中的分布电容、绝缘电阻等侵入逻辑电路,引起误动作。 (2)来自信号传输线上的干扰 除了传输有效的信息外,PLC系统连接的各类信号传输线总会有外部干扰信号的侵入。此干扰主要有2种途径:①通过变送器供电电源或共用信号仪表的供电电源串人的电网干扰;②信号线上的外部感应干扰,其中静电放电、脉冲电场及切换电压为主要干扰来源。由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。若系统隔离性能较差,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动作甚至死机。 1.3 地电位的分布干扰 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。地电位的分布干扰主要是各个接地点的电位分布不均,不同接地点间存在地电位差,从而引起了地环路电流,该电流可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。由于PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 1.4 PLC系统内部产生的干扰 产生这种干扰的主要原因是系统内部元器件及电路间的相互电磁辐射。如逻辑电路相互辐射及其对模拟电路的影响;模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。 2 提高抗干扰能力的硬件措施 硬件抗干扰技术是系统设计时应首选的措施,它能有效抑制干扰源,阻断干扰传输通道。 2.1 供电电源

信号与系统课程设计报告

信号与系统课程设计报告 实验题目:信号的运算与处理 内容简介: 设计一个信号,对其进行信号运算和处理,利用Matlab仿真。 课设方式: 利用电子技术、电路理论和信号与系统的知识学习验证信号的运算和处理,如延时、相加、微分、抽样等。自已设计信号及运算方式,并利用Matlab仿真。 分析计算结果。 课程设计要求: 独立完成; 完成信号设计(任意信号均可)及其某种运算(任意运算均可,也可多做几种,或做组合运算)的验证; 学会利用Matlab仿真;提交课程设计报告。 例如: 设计一个信号为f(t)=3sin2t 对其做微分运算得到f/(t) , 用MATLAB 编程实现计算过程,画出f(t)和f/(t)

本次课程设计本人选的信号运算是: 设计一个信号为y1=y(x)=sin2x,对其作微分运算得到dy1,用MATLAB对其实现运算过程,后画出y1,dy1,y1+dy1的图像 实验步骤(操作过程) 1、 首先打开MATLAB软件,在其命令窗口直接输入以下程序,对y(x)进 行微分运算。得到dy1 clear >> syms x y1; >> y1=sin(2*x); >> dy1=diff(y1,'x') dy1 =2*cos(2*x) 运算过程如下图所示: 2、 接着便是对其进行验证,点击fire,新建一个文件,输入以下程序(绘制出y1=sin2x, dy1=2cos2x, 以及y1+ dy1=sin2x+2cos2x。的波形)

3、保存文件,后缀名为.m,随后按F5执行输出输出图形。实验结果如下图所示 、

结果分析 如图所示绿色波形为y1=sin2x,蓝色为dy1=2cos2x,红色波形为y1+dy1。仿真结果与运算结果一致。 实验心得体会(调试过程) 总的来说,这次课程设计难度并不是太高,而我选取的正玄信号也是较为简单常用的一种函数,对其进行微分运算之后,得到了余弦函数,其仿真结果波形也如上所示,与预期一致。在设计过程中,还是出现了几个小问题的,一个是变量的定义,之前没有定义x,直接取范围结果出错了,还有一个是注意各种函数的调用以及运算格式,还是希望能在之后再接再厉,掌握好matlab软件!(附上调试过程图片) 左边为文件、历史窗口,底下是命令窗口,最右下角为实验仿真波形,中间为运算程序,绘图画图程序。

信号与系统课程设计报告材料

课程设计报告 课程名称信号与系统课程设计指导教师 设计起止日期 学院信息与通信工程 专业电子信息工程 学生 班级/学号 成绩 指导老师签字

目录 1、课程设计目的 (1) 2、课程设计要求 (1) 3、课程设计任务 (1) 4、课程设计容 (1) 5、总结 (11) 参考文献 (12) 附录 (12)

1、课程设计目的 “信号与系统”是一门重要的专业基础课,MATLAB作为信号处理强有力的计算和分析工具是电子信息工程技术人员常用的重要工具之一。本课程设计基于MATLAB完成信号与系统综合设计实验,以提高学生的综合应用知识能力为目标,是“信号与系统”课程在实践教学环节上的必要补充。通过课设综合设计实验,激发学生理论课程学习兴趣,提高分析问题和解决问题的能力。 2、课程设计要求 (1)运用MATLAB编程得到简单信号、简单信号运算、复杂信号的频域响应图; (2)通过对线性时不变系统的输入、输出信号的时域和频域的分析,了解线性时不变系统的特性,同时加深对信号频谱的理解。 3、课程设计任务 (1)根据设计题目的要求,熟悉相关容的理论基础,理清程序设计的措施和步骤; (2)根据设计题目的要求,提出各目标的实施思路、方法和步骤; (3)根据相关步骤完成MATLAB程序设计,所编程序应能完整实现设计题目的要求; (4)调试程序,分析相关理论; (5)编写设计报告。 4、课程设计容 (一)基本部分 (1)信号的时频分析 任意给定单频周期信号的振幅、频率和初相,要求准确计算出其幅度谱,并准确画出时域和频域波形,正确显示时间和频率。 设计思路: 首先给出横坐标,即时间,根据设定的信号的振幅、频率和初相,写出时域波形的表达式;然后对时域波形信号进行傅里叶变化,得到频域波形;最后使用plot函数绘制各个响应图。 源程序: clc; clear; close all; Fs =128; % 采样频率 T = 1/Fs; % 采样周期 N = 600; % 采样点数 t = (0:N-1)*T; % 时间,单位:S x=2*cos(5*2*pi*t);

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会 2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。下面我将从实验总结、心得体会、意见与建议等三方面作以总结。 一.实验总结 本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。 1.信号的分类与观察 主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。 2.非正弦信号的频谱分析 主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内

容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。 3.信号的抽样与恢复 主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。 4.模拟滤波器实验 主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。 通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS 信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。 DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、

485信号抗干扰问题

485信号抗干扰问题 在各种现场中,485总线应用的非常的广泛,但是485总线比较容易出现故障,现在将485总线容易出现故障的情况并且可以排除这些故障的方法罗列如下: 1.由于485信号使用的是一对非平衡差分信号,意味485网络中的每一个设备都必须通过一个信号回路连接到地,以减少数据线上的噪音,所以数据线最好由双绞线组成,并且在外面加上屏蔽层作为地线,将485网络中485设备连接起来,并且在一个点可靠接地。 2.在工业现场当中,现场情况非常复杂,各个节点之间存在很高的共模电压,485接口使用的是差分传输方式,有抗共模干扰能力,但是当共模电压大于+12V或者小于-9V时,超过485接收器的极限接收电压。接收器就无法工作,甚至可能会烧毁芯片和一起设备。可以在485总线中使用485光隔离中继器,将485信号及电源完全隔离,从而消除共模电压的影响。 3.485总线随着传输距离的延长,会产生回波反射信号,如果485总线的传输距离如果超过100米,建议施工时在485通讯的开始端和结束端120欧姆的终端电阻。 4.485总线中485节点要尽量减少与主干之间的距离,一般建议485总线采用手牵手的总线拓扑结构。星型结构会产生反射信号,影响485通信质量。如果在施工过程中必须要求485节点离485总线主干的距离超过一定距离,使用485中继器可以作出一个485总线的分叉。如果施工过程中要求使用星型拓扑结构,可以使用485集线器可以解决这个问题。 5.影响485总线的负载能力的因素:通讯距离,线材的品质,波特率,转换器供电能力,485设备的防雷保护,485芯片的选择。如果485总线上的485设备比较多的话,建议使用带有电源的485转换器,无源型的485转换器由于时从串口窃电,供电能力不是很足,负载能力不够。选用好的线材,如有可能使用尽可能低的波特率,选择高负载能力的485芯片,都可以提高485总线的负载能力。485设备的防雷保护中的防雷管会吸收电压,导致485总线负载能力降低,去掉防雷保护可以提高485总线负载能力。如果在现场施工中,相关的因素不能改变,建议使用深圳市富永通科技有限公司的485中继器或者485集线器来提供485总线的负载能力。 提高RS-485总线可靠性的几种方法及常见故障处理 在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。 一、RS-485接口电路的硬件设计 1、总线匹配 总线匹配有两种方法,一种是加匹配电阻,如图1a所示。位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

抗干扰的方法

一、抗干扰方法: 为了使高频电路板的设计更合理,抗干扰性能更好,在进行PCB 设计时应从以下几个方面考虑: 1、合理选择层数:利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、降低信号间的交叉干扰,一般情况下,四层板比两层板的噪声低20dB。 2、走线方式:走线必须按照45°角拐弯,这样可以减小高频信号的发射和相互之间的耦合。 3、走线长度:走线长度越短越好,两根线并行距离越短越好。 4、过孔数量:过孔数量越少越好。 5、层间布线方向:层间布线方向应该取垂直方向,就是顶层为水平方向,底层为垂直方向,这样可以减小信号间的干扰。 6、敷铜:增加接地的敷铜可以减小信号间的干扰。 7、包地:对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 8、信号线:信号走线不能环路,需要按照菊花链方式布线。 9、去耦电容:在集成电路的电源端跨接去耦电容。 10、高频扼流。数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。 二、包地法 抗干扰包地: 电路板设计中抗干扰的措施还可以采取包地的办法,即用接地的导线将某一网络包住,采用接地屏蔽的办法来抵抗外界干扰。 网络包地的使用步骤如下: 1.1、选择需要包地的网络或者导线。从主菜单中执行命令Edit/Select/Net (E+S+N),光标将变成十字形状,移动光标一要进行包 地的网络处单击,选中该网络。如果是组件没有定义网络,可以执行主菜单命令Select/Connected Copper 选中要包地的导 线。 1.2、放置包地导线。从主菜单中执行命令Tools/Outline Selected Objects(T+J)。系统自动对已经选中的网络或导线进行包地操 作。 1.3、对包地导线的删除。如果不再需要包地的导线,可以在主菜单中执行命令Edit/Select/Connected Copper 。此时光标将变成 十字形状,移动光标选中要删除的包地导线,按Delect键即可删除不需要的包地导线。

信号与系统课程设计

南通大学电子信息学院信号与系统课程设计报告 班级: 姓名: 学号: 指导老师: 设计时间: 2014—2015学年第一学期

一、连续信号的时域分析 二、 1. 信号的产生 (1)阶跃函数 function [t,y1]=jieyue(t1,t2,t0) dt=0.01; ttt=t1:dt:t0-dt; tt=t0:dt:t2; t=t1:dt:t2; n=length(ttt); nn=length(tt); u=zeros(1,n); uu=ones(1,nn); y1=[u,uu]; return 冲激函数 function [t,y2]=chongji(t1,t2,t0) dt=0.01; t=t1:dt:t2; n=length(t); y2(1:n)=0; y2(1,(t0-t1)/dt+1)=1/dt; (2)调用上述函数产生信号)2-t ε(,)(4-t δ,-t e )(t ε,-6s ≤t ≤6s,并画出波形。 Command Window subplot(3,1,1); [t1,y1]=jieyue(-6,6,2);

stairs(t1,y1); axis([-6 6 0 1.5]); subplot(3,1,2); [t2,y2]=chongji(-6,6,4);plot(t2,y2); subplot(3,1,3); [t3,y3]=jieyue(-6,6,0); y3=exp(-(t3)).*y3;plot(t3,y3); 波形如下图所示: (3)根据f(t)画出f(2t)和f(1-0.5t)的波形 t=-3:0.01:3; y=tripuls(t,4,0.6); subplot(3,1,1); plot(t,y);

信号抗干扰解决办法

信号抗干扰解决办法 The Standardization Office was revised on the afternoon of December 13, 2020

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例. 图一 PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换

信号与系统学习指导

信号与系统学习指导 第一章信号与系统 本章主要讨论了信号的定义与分类,系统的定义与分类。对信号以及系统的特性 都作了详细的阐述。此外,对信号与系统之间的相互关系也作了简要的叙述。 重点与难点 一、信号的描述与运算 1.信号的分类 2.信号的运算(难点是对信号进行平移、反转和尺度变换的综合运算) 3.冲激函数和阶跃函数 4.单位样值序列和阶跃序列 二、系统的描述与性质 1.系统的分类 2.线性、时不变、因果系统的定义及判别方法 3.用仿真框图表示系统或由框图写出该系统方程 本章习题:1-1,1-2(双),1-3,1-4,1-5,1-8,1-10,1-18,1-21,1-22,1-29,1-30。 第二章连续系统的时域分析 本章重点研究线性时不变(LTI) 连续系统的时域分析方法.在用经典法求解微分方程的基础上,讨论零输入响应与零状态响应求解,引入系统的冲激响应后, 零状态响应等于冲激响应与激励响应的卷积积分.信号的卷积是得到系统零状态响应的核心运算,也充分表现了信号通过系统是如何产生输出响应的过程.信号的卷积包括了信号翻转、平移、乘积、再积分四个过程,信号的卷积有许多重要的特性,且每个特性都有其物理意义.信号卷积的计算根据卷积信号的特点可以有多种方法,各种方法各有特色.系统的完全响应根据不同的角度可以分解为零输入响应与零状态响应,强制响应与固有响应,暂态响应与稳态响应。各响应都有明确的物理意义,它们之间既有联系又有区别。 重点与难点 一LTI连续系统的响应 1.微分方程的建立与经典解法 2.初始值的定义和求法(难点) 3.零输入响应与零状态响应以及完全响应 二、冲激响应与阶跃响应 1.冲激响应的定义和求法 2.阶跃响应定义和求法及与冲激响应的关系 三、卷积积分 1.零状态响应等于冲激响应与激励响应的卷积积分 2.卷积积分的各种运算与性质

信号与系统课程总结

信号与系统课程总结 The final edition was revised on December 14th, 2020.

信号与系统总结 一信号与系统的基本概念 1信号的概念 信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。 2信号的分类 ①确定信号与随机信号 取决于该信号是否能够由确定的数学函数表达 ②周期信号与非周期信号 取决于该信号是否按某一固定周期重复出现 ③连续信号与离散信号 取决于该信号是否在所有连续的时间值上都有定义 ④因果信号与非因果信号 取决于该信号是否为有始信号(即当时间t小于0时,信号f(t)为零,大于0时,才有定义) 3系统的概念 即由若干相互联系,相互作用的单元组成的具有一定功能的有机整体 4系统的分类 无记忆系统:即输出只与同时刻的激励有关 记忆系统:输出不仅与同时刻的激励有关,而且与它过去的工作状态有关 5信号与系统的关系 相互依存,缺一不可 二连续系统的时域分析 1零输入响应与零状态响应 零输入响应:仅有该时刻系统本身具有的起始状态引起的响应 零状态响应:在起始状态为0的条件下,系统由外加激励信号引起的响应 注:系统的全响应等于系统的零输入响应加上零状态响应 2冲激响应与阶跃响应 单位冲激响应:LTI系统在零状态条件下,由单位冲激响应信号所引起的响应

单位阶跃响应:LTI系统在零状态条件下,由单位阶跃响应信号所引起的响应 三傅里叶变换的性质与应用 1线性性质 2脉冲展缩与频带变化 时域压缩,则频域扩展 时域扩展,则频域压缩 3信号的延时与相位移动 当信号通过系统后仅有时间延迟而波形保持不变,则系统将使信号的所有频率分量相位滞后 四拉普拉斯变换 1傅里叶变换存在的条件:满足绝对可积条件 注:增长的信号不存在傅里叶变换,例如指数函数 2卷积定理 表明:两个时域函数卷积对应的拉氏变换为相应两象函数的乘积 五系统函数与零、极点分析 1系统稳定性相关结论 ①稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的; ②临界稳定:若H(s)在虚轴上有s=0的单极点或有一对共轭单极点,其余极点全在s的左半平面,则系统是临界稳定的; ③不稳定:H(s)只要有一个极点位于s的右半平面,或者虚轴上有二阶或者二阶以上的重极点,则系统是不稳定的。 六离散系统的时域分析 1常用的离散信号 ①单位序列②单位阶跃序列③矩阵序列④正弦序列⑤指数序列 七离散系统的Z域分析 1典型Z变换 ①单位序列②阶跃序列③指数序列④单边正弦和余弦序列 2Z变化的主要性质 ①线性性质②移位性质③尺度变换④卷和定理 八连续和离散系统的状态变量分析 1状态方程

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

信号抗干扰解决办法

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例.

图一PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将0.1V电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换后,由12个光耦实现与主机隔离。它的八个通道输入之间并没有隔离,致使八个通道输入信号每个单独接入采集板均正常,接入两个或多于两个外部信号时,显示数字乱跳,故障无法排除。又如航天某部门测试发动机各点温度,使用K型偶作为传感器,同上述相似,仅测试一点一切正常,但是向主机接入两点或两点以上温度时,显示的温度明显错误。这两种情况在接入隔离器后,均正常。隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着+10V干扰的10V-20V经隔离后均为0-10V,也即隔离后新建立的PLC“地”与外部设备、仪表“地”没关系。正是由于这个原因,也实现输入到PLC主机

信号与系统课程设计报告

武汉轻工大学信号与系统课程设计报告 院系:电气与电子工程学院 班级:电信产业1201班 学号:1204100104 姓名:王涛 日期:2014.12.28

一、Matlab 概述 1. 入门与操作 MATLAB 由一系列工具组成。这些工具方便用户使用MATLAB 的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB 桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。随着MATLAB 的商业化以及软件本身的不断升级,MATLAB 的用户界面也越来越精致,更加接近Windows 的标准界面,人机交互性更强,操作更简单。 2.数值运算与符号运算 MATLAB 是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C 和C++ 。在计算要求相同的情况下,使用MATLAB 的编程工作量会大大减少。MATLAB 的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。 3.程序设计语言 MATLAB 一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M 文件)后再一起运行。新版本的MATLAB 语言是基于最为流行的C ++语言基础上的,因此语法特征与C ++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强。 4.数据图形的可视化 MATLAB 以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。MATLAB 对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB 同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB 也有相应的功能函数,保证了用户不同层次的要求。另外新版本的MATLAB 还着重在图形用户界面(GUI )的制作上作了很大的改善。 二、Matlab 在电子信息类课程中的应用 1.对于Matlab 应用与信号与线性系统分析的理解 Matlab 是目前比较流行的一种软件,特别在数值计算、信号处理方面尤为突出。将matlab 软件融入信号与系统课程的教学,可以把我们从繁锁的数学运算中解脱出来,将大量的精力和时间投入到对信号与系统课程应用的理解与思考。利用先进的计算机软件环境,将信号与系统中的很多定理直观化、可视化,对于这些理论的学习和掌握非常有利。这样不仅提高了学生的学习兴趣,加深了学生对生硬知识难点的理解,同时也提高学生的实践动手能力和计算机的应用能力。故此,在学习信号与系统的同时,对matlab 有所掌握是必不可少的。 2.对于Matlab 应用与信号与线性系统分析的基本过程(举例分析) 已知描述某连续系统的微分方程位:),(2)'()()'(2')'(t f t f t y t y t y +=++试用Matlab 对该系统当输入 信号为 )()(2t u e t f π=时的系统响应y(t)进行仿真,并绘出系统响应及输入信号的时域波形。

课题信号与系统课程设计报告书

信号与系统课程设计 课程名称:信号与系统 题目名称:滤波器的设计与实现 学院:电气与电子工程学院 专业班级:电气工程及其自动化 学号:3 学生:宗喜 指导教师:黄劲 2015年12 月20 日

目录 一、设计要求 (2) 二、设计原理 (2) 三、设计思路 (3) 四、设计容 (3) A、一阶有源滤波电路 (3) B、二阶有源滤波电路 (5) 1、二阶低通滤波电路 (5) 2、二阶高通滤波电路 (6) 3、二阶带通滤波电路 (8) C、用仿真软件设计滤波器 (10) 1、给定性能参数设计滤波器 (10) a、二阶低通滤波器 (10) b、二阶高通滤波器 (11) c、二阶带通滤波器 (12) 2、不同阶数滤波器性能比较 (12) D、滤波器的Matlab设计仿真 (13) 1、二阶低通滤波器 (13) 2、二阶高通滤波器 (14) 五、参考文献 (16)

一、设计要求 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或其他仿真软件进行仿真。 有源滤波器由是有源元件和无源元件(一般是R和C)共同组成的电滤波器。和无源滤波器相比,它的设计和调整过程较简便,此外还能提供增益。因此,本课程设计中选择了二阶有源滤波器作为主要研究对象。 1、自行设计电路图,确定前置放大电路,有源滤波电路,功率放大电路的方案, 并使用绘图软件(Electronics Worrkbench)画出设计电路,包括低通、高通和带通。 2、所设计的滤波器不仅有滤波功能,而且能起放大作用,负载能力要强。 3、根据给定要求和电路原理图计算和选取单元电路的元件参数。 4、用Matlab或其他仿真软件(FilterLab)对滤波器进行仿真,记录仿真结果。 二、设计原理 1、电容器C具有通高频阻低频的性能。 2、由源滤波器由放大电路部分和滤波电路部分组成。 3、仿真软件可以将滤波器的性能直观的表现出来。 4、各种滤波器的幅频特性:

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

信号与系统实验报告—连续时间信号

实验一 连续时间信号 §1.1 表示信号的基本MATLAB 函数 目的 学习连续时间信号和离散时间信号在MATLAB 中的表示。 相关知识 1.离散时间信号的表示 通常,信号用一个行向量或一个列向量表示。在MATLAB 中全部向量都从1开始编号,如y(1)是向量y 的第1个元素。如果这些编号与你的应用不能对应,可以创建另外一标号向量与信号编号保持一致。 例如,为了表示离散时间信号?? ?≤≤-=n n n n x 其余 033 2][ 首先利用冒号运算符对][n x 的非零样本定义标号向量,然后再定义向量x ,表示在这些时间编号每一点的信号值 >> n=[-3:3]; >> x=2*n;

如果要在一个更宽的范围内检查信号,就需拓宽n和x。例如如要在5 -n画 ≤ 5≤ 出这个信号,可以拓宽标号向量n,然后将这些附加的元素加到向量x上,如>> n=[-5:5]; >> x=[0 0 x 0 0]; >> stem(n,x);

如果要大大扩展信号的范围,可利用zeros函数。 例如如果想要包括100 ≤ -n,这时可键 5≤ -n的范围,而向量x已扩展到5 ≤ 100≤ 入 >> n=[-100:100]; >> x=[zeros(1,95) x zeros(1,95)];

假设要定义][ ][ 1n n xδ =,]2 [ ] [2+ =n n xδ,可编程如下>> nx1=[0:10]; >> x1=[1 zeros(1,10)]; >> nx2=[-5:5]; >> x2=[zeros(1,3) 1 zeros(1,7)]; >> stem(nx1,x1); >> stem(nx2,x2);

信号与系统_——需记忆资料2014.5.11总结(内部资料)

第一章信号与系统 教学目的: 熟悉信号的概念和分类,掌握信号的基本运算。 掌握阶跃函数和冲激函数的特点和性质,掌握LTI系统的描述和特性。 教学重点与难点: 掌握信号的加法、乘法,反转、平移,尺度变换等基本运算。 冲激函数的特点和性质,LTI系统的特性。 §1.2 信号的描述和分类 一、信号的描述 ●信号是信息的一种物理体现。它一般是随时间或位置变化的物理量。 ●信号按物理属性分:电信号和非电信号。它们可以相互转换。 电信号容易产生,便于控制,易于处理。本课程讨论电信号---简称“信号”。 ●电信号的基本形式:随时间变化的电压或电流。 ●描述信号的常用方法 (1)表示为时间的函数 (2)信号的图形表示--波形“信号”与“函数”两 词常相互通用。 二、信号的分类 信号的分类方法很多,可以从不同的角度对信号进行分类。 ●按实际用途划分: 电视信号,雷达信号,控制信号,通信信号,广播信号,…… ●按所具有的时间特性划分: 确定信号和随机信号;连续信号和离散信号; 周期信号和非周期信号;能量信号与功率信号; 一维信号与多维信号;因果信号与反因果信号; 实信号与复信号;左边信号与右边信号;等等。 3. 周期信号和非周期信号 如何判断? 判断下列信号是否为周期信号,若是,确定其周期。 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt 分析 两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin(3πk/4) + cos(0.5πk) (2)f2(k) = sin(2k) 三.几种典型确定性信号

相关主题
文本预览
相关文档 最新文档