当前位置:文档之家› 跳频通信系统抗干扰方法

跳频通信系统抗干扰方法

跳频通信系统抗干扰方法
跳频通信系统抗干扰方法

跳频通信系统抗干扰的方法有:

1.提高跳频速率

提高跳频速率是对付跟踪干扰的有效方法。提高跳频速率后,使频率的驻留时间足够短,在驻留时间小于干扰机转发时间加上时间差引起的传播时延条件下,当引导的干扰信号到达接收机时,跳频接收机已在接收下一个跳频频率了。近年来,出现了跳频在几千跳/秒的高速跳频短波数据系统,如美国HF200O。跳速2560跳/秒高速短波跳频系统有非常强的抗干扰能力,同时,由于跳频频率驻留时间短,在零点几个毫秒,这样可以克服短波严重的多径和衰落的影响,使数据传输速率得到较大的提高。

2.展宽工作频段

抗干扰能力与频带有关,频带越宽,处理增益越高,抗干扰性能也就越好。随着技术水平的提高,多频段电台不断涌现,在一部电台内的跳频带宽也越来越宽。

3.双工跳频

随着战术通信向无线电话方式发展,许多系统要求具有双工跳频功能,双工系统一般分两种方式工作,一种是时分双工,即将每一跳时隙再分成上下两个时隙,用时分的方式完成双工工作。另一种方式为频分双工,此方法简单,无同步问题,但由于频分双工需上下两个跳频段和频率间隔,在频段较窄的系统中将严重影响抗干扰的处理增益,同时系统中需要收发两个频率合成器和双跳频单元,电磁兼容问题也较严重。

4.自适应跳频

自适应跳频的基本思想是将跳频的频率点与干扰的频率点相联系起来,当整

个频段上出现较大面积干扰时,系统能自动识别干扰,自适应的改变跳频序列,重新跳到无干扰或干扰较轻的频段上,从而克服部分频段干扰带来的影响。

针对上述特点可采用自适应跳频通信系统,自适应跳频系统是在常规跳频系统的基础上,实时的剔出干扰频段,从而自适应的选择优良的信道集进行跳频通信,使通信系统保持良好的通信状态。也就是说,它除了要实现常规跳频通信系统的功能外,还要实现自适应频率控制功能,通过可靠的信道质量评估信道,发现了干扰频点后,应当在收发双方的频率表中将其删除,并用好的频点对它们进行替换,以维持频率表的固定大小。为了使收发频率表同步更新,需要通过一个信道将对方频率更新信息通知对方。这种信息的相交换是种闭环控制过程,需要制定相应的信息交换协议来保证频率表可靠的更新。

外军通信抗干扰发展趋势

外军通信抗干扰发展趋势 1、跳频通信装备抗跟踪干扰能力日益提高,抗跟踪干扰已由定频通信抗自动瞄准式干扰发展到跳频抗跟踪干扰 外军提高跳频通信抗跟踪干扰能力的技术动态主要有两个方面,一是适当提高跳速,二是采用变速跳频。外军大部分20世纪80年代的跳频通信装备为中低跳速跳频,较新的跳频通信装备采用了中高跳速跳频,如美国的HF-2000,CHESS,HA VE-QUICKIIA,JTIDS及MILSTAR,瑞典的TRC-350,法国的ALCALTEL111等。值得注意的一点是外军有些跳频通信装备大幅度提高跳速并不是以提高抗跟踪干扰能力为出发点的,其主要目的是利用相应的技术体制,由高跳速提高数据传输速率,如:CHESS系统和JTIDS等。另外,提高跳速后,还将给交织和纠错带来方便。当然,提高跳速也会引起其他问题,需要综合考虑。变速跳频是抵抗跟踪干扰的有效措施之一,外军现役跳频电台中也有所采用,但还多是半自动变速或有限种跳速随机变速,有些是通过信令实现跳速牵引,还没有实现真正意义上的变速跳频,这里将其称为准变速跳频,如法国的ERM-9000,TRC-9600,南非的TRC-1600,TRC-600以及瑞典的SFH-41等。 2、跳频通信装备抗阻塞干扰技术逐步成熟 最初提出跳频抗干扰体制,实际上是基于频率分集原理,并以提高跳速为代价实现抗阻塞干扰为出发点的。后来由于数据传输速率越来越高,常规跳频体制的跳速难以适应,形成了实际上的慢跳频(无论绝对跳速多高)。因此,抗阻塞干扰能力一直是跳频通信的重要问题。长期以来很多国家都致力于跳频通信抗阻塞干扰技术的研究,有些成果已得到成功的应用。外军实用化研究成果主要有短波采用自适应选频与跳频相结合的体制,将经过LQA(链路质量分析)选出的最佳或准最佳频率作为跳频频率表生成的基准,如美国的SCl40、英国PATHER-2000、以色列的HF-2000,TRl78、法国的TRC-350H、南非的HF-6000,TRl78A/B,TR390以及瑞典的TRC-350等;超短波采用具有FCS(free channel searce)功能的跳频体制,在一般窄带干扰情况下,使用常规跳频,在遇到宽带阻塞干扰时,自动转到FCS功能,在当前最佳频点上定频工作,一旦宽带干扰消失,又可回到跳频方式上工作,如法国的PR4G、比利时的BAMS等;UHF波段采用了频率自适应与跳频相结合的体制,即在跳频通信过程中自动检测和删除受干扰频率,使系统在无干扰或干扰较弱的频点上跳频,如瑞典的RL-401系列跳频接力机等,但该跳频机在干扰严重时,无更有效的措施,只是自动回到常规跳频状态。 3、扩展频段成为通信抗干扰新的发展趋势 拓宽现有频段、发展多频段,不仅有利于协同通信和全谱作战,还有利于提高跳频通信抗阻塞干扰能力。在拓宽频段方面,外军少数短波电台的频段范围已拓宽到116~50MHz,如美国的M508,RF-500,AN/PRC-132短波电台等;少数超短波电台的频段范围拓宽到30~108 MHz,如比利时的BAMS、荷兰的PRC/VRC-8600、德国的SEMl73/183/193、以色列的CNR-9000、英国的PANTHER-V、法国的PR4G系列电台等,增加了20MHz的带宽。在开发新频段方面,成效显著,最具代表性的是美国的MILSTAR卫星通信系统,采用宽带亚毫米/毫米波,实现宽带高速跳频,跳频带宽达2 GHz。在研制多频段通信抗干扰装备方面更是如火如荼,电台以HF/VHF/UHF三个频段的综合运用为典型特征。如美国的AM-7177A/ARC-182(V),MBITR,MXF-610,MBMMR,SPEAKEASY,英国的SWORDFISH,BOWMAN,南非的MATADOR,TRC-1600,TR600,加拿大的AN/GRC-512(V)等,多频段接力机主要有美国的AMLD4,AMLA3,AN/GRC-226,法国的TFH-150,TFH-701,瑞典的RL401/422,俄罗斯的捷标坦特系列接力机等。 4、提高短波跳频数据速率取得突破进展 自从短波通信出现以来,由于通信体制、器件、信道带宽及天波传输特性等原因,短波

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

单片机软件抗干扰方法

在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1 软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 1.1 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞” 到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、 RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 1.2 拦截技术 所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。

(1 )软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 (2 )陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP 0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP 0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 1.3软件“看门狗”技术 若失控的程序进入“死循环”,通常采用“看门狗”技术使程序脱离“死循环”。通过不断检测程序循环运行时间,若发现程序循环时间超过最大循环运行时间,则认为系统陷入“死循环”,需进行出错处理。

抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件

数控车床如何抗干扰 数控车床作为cnc机床自然也会像其他的电子仪器仪表一样受到众多的干扰,所以面对有可能发生的干扰我们必须有应对的措施,抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件处理等。 ①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。 ②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。 (1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。 (2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。 (3)继电器隔离,继电器的线圈和触点之间没有电气上的联系。因此,可以利用继电器的线圈接受电气信号,而用触点发送和输出信号,从而避免强电和弱电信号之间的直接联系,实现

跳频扩频系统

跳频扩频系统 一、定义及原理 跳频扩频系统: 采用码序列控制信号的载波,使之在多个频率上跳变而产生扩频信号。接收端产生一个与信号载波频率变化相同移频信号,用它作变频参考,再把信号恢复到原来的频带。调频系统可随机选取的频率数通常是几百个或更多。 跳频系统的载频受一个伪随机码控制,不断地、随机地跳变,因此跳频系统可视作载频按照一定规律变化的多频频移键控(MFSK)。与直扩系统不同,跳频系统中的伪随机序列并不直接传输,而是用来选择信道。跳频系统主要由PN码产生器和频率合成器两部分组成,快速响应的频率合成器是频率跳变系统的关键部件。频率跳变系统的发射机在一个预定的频率集中,由PN码序列控制频率合成器,使发射频率能随机地由一个跳到另一个。接收机中的频率合成器也按相同的顺序跳变,产生一个与发射频率只差一个中频的本振频率,经混频后得到固定的中频信号,该中频信号经放大后送到解调器,恢复传送的信息。此处,混频器实际上担当了解调器角色,只要收发双方同步,就可将频率跳变信号转换为一个固定频率的信号。 二、跳频系统的结构

三、跳频系统的波形 发送端的波形

接收端的波形 四、跳频系统的优点 跳频扩频技术的优点如下: (1)抗单频干扰,部分带宽干扰能力强 跳频系统的抗干扰原理和直扩系统不同,直扩是靠频谱的扩展和解扩处理来提高信噪比的;跳频是靠躲避干扰,来达到提高信噪比的。虽然不能像直扩系统那样,但由于载波频率是跳变的,减少了单频干扰和窄带干扰进入接收机的概率。故调频系统具有抗单频及部分带宽干扰的能力。当跳频的概率数目足够多、跳频的带宽足够宽时,其抗干扰能力是很强的。 (2)抗多径衰落的能力强 利用载波频率的快速跳变,具有频率分集的作用,从而增强了系统抗多径衰落的能力。 (3)便于实现多址通信 应用跳频通信可以很容易地组建一个多址网络,网络内的各

直接序列扩频通信系统抗干扰性能分析教学提纲

直接序列扩频通信系统抗干扰性能分析

直接序列扩频通信系统抗干扰性能分析 在现代战争中,通信对抗扮演着越来越重要的角色。随 着计算机技术、微电子技术等大量高新技术的应用,军事通信获得了长足的发展,尤其是跳频、扩频等一些新的通信手段应用之后,使得通信频谱越来越宽,通信的反侦察、抗干扰能力越来越强,迫使各国加紧对通信对抗技术以及装备的研制。直接序列扩频通信由于其优良的多址接入、低截获概率、抗干扰和强保密等特性,使得它在军事通信、卫星通信和民用领域得到了广泛应用。在电子对抗中,对扩频通信的有效干扰成为制胜关键。 第一章研究背景介绍 1.1直扩通信研究背景 现代战争首先是电子战,在电子战中失去优势的一方,将导致通信中断,指挥失灵等,从而丧失战争主导权。两次海湾战争,前南斯拉夫战争以及阿富汗战争都是很好的佐证。因此,通信对抗作为C4ISR系统的核心,越来越受到各国的重视。通信对抗属于电子对抗,它包括通信侦察、通信干扰等主要对抗措施。通信对抗的目的在于:侦收和截获敌方信息,测量有关技战术参数;采用各种干扰方式阻止敌方正常通信并抑制敌方对我方的干扰,保证我方通信系统有效工作。

扩频通信作为新型的通信方式,具有优良的抗干扰、抗衰落和抗多径性能及频谱利用率高、多址通信等诸多优点,并被广泛地应用于军事通信领域,极大地提高了通信系统的抗截获和抗干扰能力。因此,扩频通信系统成为干扰方的首要作战目标,同时,扩频通信的抗干扰、抗截获、抗侦破特性给干扰方带来了巨大的困难。为取得现代电子战的胜利,针对扩频通信系统研究高效的干扰方式,如何有效的干扰成为取得现代电子战胜利的重要一环,对战时通信对抗具有重要意义。 1.2直扩通信的军事应用情况 1)直扩通信技术在舰艇卫星通信系统上应用广泛。国外舰艇卫星通信系统和国内舰艇卫星通信系统均采用码分多址通信方式,使用C波段。这样网络组织与撤收灵活,通信质量高,频道使用少。从目前使用看,这种方式充分发挥了直接序列扩频通信的特点,是扩频通信应用成功的范例。另外,美军使用的联合战术信息分发系统也使用直接扩频技术,主要用于在战术作战环境中进行抗干扰、发布保密数字信息,具有容纳用户数多和交互数据量大的特点,能快速保密地交换指挥控制信息和敌方战术设备的状态参数。 2)直扩通信技术在军用战术移动通信电台、数据分发系统中发挥重要作用。1996年美军演示了SICOM公司研制

干扰处理方法

技术支持 干扰的来源及影响方式 闭路电视监控系统中传输信号的类型主要有两类:一类是模拟视频信号,传输路径由摄象机到矩阵,从矩阵再到显示器或录象机;一类是数字信号包括矩阵与摄象机之间的控制信息传输,矩阵中计算机部分的数字信号。一般设备成为干扰源的可能性很小,因此干扰主要通过信号传输路径进入系统。闭路电视监控系统的信号传输路径是能通过视频电缆和传输控制信号的双绞线耦合进系统的干扰有:各种高频噪声比如大电感负载启停,地电位不等引入的工频干扰,平衡传输线路失衡使抑噪能力下降将共频干扰转成了差模干扰,传输线上阻抗不匹配造成信号的反射使信号传输质量下降,静电放电沿传输线进入设备造成接口芯片损伤或损坏。具体表现如下:由于阻抗不匹配造成的影响在视频图象上表现为重影。在信号传输线上会将在脉冲序列的前后沿形成震荡。震荡的存在使高低电平间的阈值差变小,当震荡的幅值再大或有其他干扰引入时就无法正确分辨出脉冲电平值,导致通信时间变长或通信中断。接地和屏蔽不好会导致传输线抑制外部电磁干扰能力的下降,体现在视频图象就是雪花噪点、网纹干扰以及横纹滚动等;在信号传输线上形成尖峰干扰,造成通信错误。平衡传输线路失衡也会在信号传输线上形成尖峰干扰。静电放电除了会造成设备损坏外,还会影响存储器内的数据,使设备出现些莫名其妙的错误。 抗干扰的方法 从干扰源的分析了解到并没有特别的干扰源,消除或者减少上述干扰的理论探讨也有许多,如何针对闭路电视监控工程解决干扰问题,很少有文献涉及,下面就闭路电视监控工种中常见的干扰及解决方法进行些探讨。 视频信号的干扰 视频信号的干扰在图象上表现为地花点和50HZ横纹滚动,对于雪花点干扰是由于传输线上信号衰减以及耦合了高频干扰所致,这种干扰比较容易消除,在摄象机与控制矩阵之间合理位置增加一个视频放大器,将信号的受噪比提高,或者改变视频电缆的路径避开高频干扰源,高频干扰的问题可基本上得到解决。较难解决的是50HZ横纹滚动及进一步加高频干扰的情况,比如电梯轿厢内摄象机的输出图象。为了抑制上述干扰,首先分析一 下造成上述问题的原因。 摄象机要求的供电电源一般有三种:直流12V、交流24V或220V,大多数工程应用中不从电梯轿厢的供电电源上取,而是另外布设供电电源给摄象机供电,摄象机输出图象经过一条软性的视频电缆从井道的上方

浅谈单片机应用系统的软件抗干扰措施

浅谈单片机应用系统的软件抗干扰措施 摘要分析单片机应用系統的软件干扰因素以及实现抗干扰必要条件,并针对单片机应用系统易出现的软件失控、软件数据出错、数字量输入错误等问题提出可行的软件抗干扰措施。 关键词单片机;软件;抗干扰 引言 单片机应用系统产生故障的最主要的原因在于干扰问题。干扰对于单片机应用系统产生的影响一方面会造成测量与控制精度失衡,另一方面也会造成应用系统完全失效。所以对于单片机应用系统软件的干扰问题必须进行解决。 1 单片机应用系统的软件抗干扰措施的必要条件[1] 1.1 干扰因素及影响分析 随着科学技术的不断发展,单片机系统应用的领域越来越广泛,因而对单片机系统的稳定性要求也变得越来越高。但是受到单片机应用系统结构复杂性以及工作环境的多变性的影响,决定单片机系统性能的因素相对来说也比较复杂,尤其是软件的抗干扰措施就是其中比较重要的组成部分。从专业角度分析,单片机系统稳定性影响因素主要分为四种,即浪涌干扰、放电干扰、电磁干扰和高频振荡干扰。在这些干扰因素的影响下单片机系统会发生采集的数据出现失真、程序的运行受到干扰、硬件控制发生失效等现象,而更加直观的表现就是视频图像发生串色、网纹,音频信号失真或者是声音发生串扰现象等。 1.2 软件抗干扰的必要条件分析 在对单片机软件抗干扰稳定性进行设计时,从安全角度考虑,将软件的程序数据放在了ROM中。而一般情况下,单片机抗干扰软件应当具有以下几个方面的条件:①当单片机系统受到外界干扰后,在抗干扰软件的作用下系统的硬件组成不应受到损坏,另外为了方便对系统运行状态的监控,应当在关键核心的位置设置相应的检测状态;②当程序区因外界因素受到干扰后不会产生一定的损坏。一般情况下,在RAM中与系统有关的表格、常数等即使在受到干扰后也不会发生损坏,但是RAM程序中的系统可能因外界等的干扰发生一定的故障。而一旦RAM区的有关程序受到外界干扰,为了从根本上消除干扰带来的不利影响,应当向RAM区重新输入有关的程序。 2 单片机应用系统的软件抗干扰措施[2] 2.1 失控软件的抗干扰措施

移动通信的基本技术之抗干扰措施

移动通信的基本技术之抗干扰措施 在第三代移动通信系统中除了大量的环境噪声和干扰以外,还有大量的电台产生的干扰,如邻道干扰、公道干扰和互调干扰,更重要的是第三代移动通信系统的主流标准(WCDMA、CDMA2000等)都采用了码分多址方式,CDMA码分多址系统是一个干扰受限制系统,在信息的传输中,存在着多址干扰,多径干扰和远近效应。那么为了保证网络的畅通运行,我们也采用了第三代移动通信系统采用的相关抗干扰技术进行处理。这些技术包括:空分多址(SDMA)智能天线技术,用于抗多径干扰的RAKE接收技术,抗多址干扰的联合检测技术,并对这些技术在特定系统中的性能进行了仿真。 首先介绍一下智能天线技术,智能天线利用多个天线阵元的组合进行信号处理,自动调整发射和接收方向图,以针对不同的信号环境达到最优性能。智能天线是一种空分多址技术,主要包括两个方面:空域滤波和波达方向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图,使它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了小区间干扰。 比起只能智能天线技术抗多径干扰的RAKE接受技术又有哪些技术有点呢?智能天线抑制干扰的能力在多数情况下受天线阵元个数的限制,且当感兴趣信号存在多个非相关多径时,阵列只保留其中的一路信号,而把零陷对准其它信号,这样,阵列能够减小由非相关多径带来的干扰,但未能发挥路径分集的优势,因而是次最优的。为此,联合时域和空域处理的接收技术成为研究的热点。 当信道存在多径时延扩展,且时延大于一个码片周期时,这些多径信号既是多径干扰,又是一些有价值的分集源,由此产生了2D-RAKE接收机。目前2D-RAKE接收机讨论最多的是应用在WCDMA上行链路。 空时RAKE接收机首先对存在角度扩展的多个路径分量进行波束成型,以降低DOA可分辨的其它用户信号产生的多址干扰或期望信号的非相关多径分量,然后将经过空间滤波后的信号送入RAKE合并器,以充分利用延迟可分辨的期望信号的多个路径的能量。空间波束形成旨在衰减干扰信号,而时间多径合并旨在利用有用信号。 与时域和空域一维干扰抑制不同的是,空时二维干扰抑制不再使用强迫置零条件,而是考虑噪声的存在,使用优化准则。空时处理有名的优化准则有两个,一个是空时最小均方误差准则,另外一个是空时最大似然准则 我们介绍的第三种抗干扰技术是联合检测技术 传统的接收技术是针对某一用户进行信号检测而把其他用户作为噪声加以处理,在用户数增多时,导致了信噪比恶化,系统性能和容量都不如人意。联合检测技术是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号及其多径的先验信息(信号之间的相关性时已知的:如确知的用户信道码,各用户的信道估计),把用户信号的分离当作一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量,并削弱了“远近效应”的影响。 每一样技术都有其优缺点,那么我们是否能将其结合,使技术更优化,让其在抗干扰方面体现的效果更为明显呢? 那就是智能天线与联合检测的结合(SA+JD), 其主要用于TD-SCDMA系统中,TD-SCDMA系统结合使用了智能天线和联合检测技术:1)智能天线消除小区间干扰,联合检测消除小区内干扰,两者配合使用;2)智能天线缓解了联合检测过程中信道估计的不准确对系统性能恶化的影响;3)当用户增多时,联合检测的计算量非常大,智能天线的使用减少了潜在的多用户; 4)智能天线的阵元数有限,对于M个阵元的智能天线只能抑制M-1个干扰源,而且所形成的副瓣对其它用户而言仍然是干扰,只能结合联合检测来减少这些干扰;5)在用户高速移动下,TDD模式上下行采用同样空间参数使得波束成型有偏差;用户在同一方向时,智能天线不能起到作用;还

硬件抗干扰的一些方法

一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到×××s之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 3、减小信号线间的交叉干扰: A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是

软件抗干扰的几种办法

软件抗干扰的几种办法 在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 (1) 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 (2) 拦截技术

所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。 软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断 1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 (3)软件“看门狗”技术

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

跳频系统概述

6.1 跳频系统概述 6.1.1 为什么要跳频 通常我们所接触到的无线通信系统都是载波频率固定的通信系统,如无线 对讲机,汽车移动电话等,都是在指定的频率上进行通信,所以也称作定频通信。这种定频通信系统,一旦受到干扰就将使通信质量下降,严重时甚至使通信中断。 例如:电台的广播节目,一般是一个发射频率发送一套节目,不同的节目占用不同的发射频率。有时为了让听众能很好地收听一套节目,电台同时用几个发射频率发送同一套节目。这样,如果在某个频率上受到了严重干扰,听众还可以选择最清晰的频道来收听节目,从而起到了抗干扰的效果。但是这样做的代价是需要很多额谱资源才能传送一套节目。如果在不断变换的几个载波频率上传送一套广播节目,而听众的收音机也跟随着不断地在这几个频率上调谐接收,这样,即使某个频率上受到了干扰,也能很好地收听到这套节目。这就变成了一个跳频系统。 另外在敌我双方的通信对抗中,敌方企图发现我方的通信频率,以便于截获所传送的信息内容,或者发现我方通信机所在的方位,以便于引导炮火摧毁。定频通信系统容易暴露目标且易于被截获,这时,采用跳频通信就比较隐蔽也难以被截获。因为跳频通信是“打一枪换一个地方”的游击通信策略、使敌方不易发现通信使用的频率,一旦被敌方发现,通信的频率也已经“转移”到另外一个频率上了。当敌方摸不清“转移规律”时,就很难截获我方的通信内容。 因此,跳频通信具有抗干扰、抗截获的能力,并能作到频谱资源共享。所以在当前现代化的电子战中跳频通信已显示出巨大的优越性。另外,跳频通信也应用到民用通信中以抗衰落、抗多径、抗网间干扰和提高频谱利用率。 6.1.2 什么是跳频图案? 为了不让敌方知道我们通信使用的频率,需要经常改变载波频率,即“打一枪换一个地方”似地对载波频率进行跳变,跳频通信中载波频率改变的规律,叫作跳频图案。

单片机抗干扰方法

如何提高抗干扰性能 搞过产品的朋友都有体会,一个设计看似简单,硬件设计和代码编写很快就搞定,但在调试过程中却或多或少的意外,这些都是抗干扰能力不够的体现。 下面讨论一下如何让你的设计避免走弯路: 抗干扰体现在2个方面,一是硬件设计上,二是软件编写上。 这里重点提醒:在MCU设计中主要抗干扰设计是在硬件上,软件为辅。因为MCU的计算能力有限,所以要在硬件上花大工夫。 看看干扰的途径: 1:干扰信号干扰MCU的主要路径是通过I/O口,一是影响了MCU的数据采集,二是影响内部其它寄存器。 解决方法:后面讨论。 2:电源干扰:MCU虽然适应电压较宽(3-5。5V),但对于电源的波动却很敏感,比如说MCU可以在3V电压下稳定工作,但却不能在电压在3V-5。5V波动的情况下稳定工作。 解决方法:用电源稳压块,做好电源的滤波等工作,提示:一定要在电源旁路并上0。1UF 的瓷片电容来滤除高频干扰,因为电解电容对超过几十KHZ的高频干扰不起作用。 3:上下电干扰:但每个MCU系统在上电时候都要经过这样一个过程,所以要尤其注意。MCU虽然可以在3V电压下稳定工作,但并不是说它不能在3V以下的电压下工作,当然在如此低的电压下MCU是超不稳定状态的。在系统加电时候,系统电源电压是从0V上升到额定电压的,比如当电压到2V时候,MCU开始工作了,但这时是超不稳定的工作,极容易跑飞。 解决方法:1让MCU在电源稳定后才开始工作。PIC在片内集成了POR(内部上电延时复位),这功能一定要在配置位中打开。 外部上电延时复位电路。有多种形式,低成本的就是在复位脚接个阻容电路。高成本的是用专用芯片。这方面的资料特多,到处都可以查找。 最难排除的就是上面第一种干扰,并且干扰信号随时可以发生,干扰信号的强度也不尽相同。但它们也有相同点:干扰信号也遵循欧姆定律,干扰信号偶合路径无非是电磁干扰,一是电火花,二是磁场。 其中干扰最厉害的是电火花干扰,其次是磁场干扰。电火花干扰表现场合主要是附近有大功率开关、继电器、接触器、有刷电机等。磁场干扰表现场合主要是附近有大功率的交流电机、变压器等。 解决方法: 第一点:也是最经典的,就是在PCB步线和元件位置安排上下工夫,这中间学问很多,说几天都说不完^^。 二:综合考虑各I/O口的输入阻抗,采集速率等因素设计I/O口的外围电路。 一般决定一个I/O口的输入阻抗有3种情况: A:I/O口有上拉电阻,上拉电阻值就是I/O口的输入阻抗。 一般大家都用4K-20K电阻做上拉,(PIC的B口内部上拉电阻约20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。 (如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。)

电磁抗干扰来源及电路与软件抗干扰(EMC)措施

电磁抗干扰来源及电路与软件抗干扰(EMC)措施 概述 可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。它包括两方面的含义:故障时不拒动和正常时不误动。之所以会存在这两个方面的隐患是因为电磁干扰的存在。因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。 电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。 造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。 电磁干扰的来源 所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。 电源干扰 电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自

军事短波通信抗干扰措施

【摘要】短波电台是部队通信装备中应用最多的设备,针对日益复杂的电磁应用环境和通信对抗挑战,本文从技术和使用角度阐述了电台通信抗干扰的几点措施。 【关键词】短波电台通信抗干扰 短波通信通常是指利用波长为100―10m (频率为3―30mhz)的电磁波进行的无线电通信。目前也有把中波的高频段(1.5―3mhz)归到短波波段中去,所以现有的许多短波通信设备,其波段范围往往扩展到1.5―30mhz。在许多国家,也把短波通信认为是高频(hf)无线电通信。 多年来,短波通信被广泛地用于政府、军事、气象、商业等部门,用以传送语言、文字、图像、数据等信息。尤其在军事部门,它始终是军事指挥通信的重要手段之一,是军事指挥决策部门与下级所属单位有效沟通和信息传递的重要工具,也是构建我军c4i指挥体系的重要环节,在现代日益复杂的战场环境下,如何提高电台抗干扰能力,保护己方通信畅通尤为迫切。 一、短波通信干扰类型 能够对设备形成干扰的前提是在时间域对齐,频率域对准,空间域相同,能量域足够,这是干扰的总体原则,具体到各个干扰样式和原理,则有不同的表现形式,通信干扰主要有以下几种类型: 以上几种干扰措施是以前常用的干扰方式,随着通信设备的发展,有些干扰方式现在已基本不再使用,比如单频干扰或窄带连续波干扰,随着军事电台大量采用抗干扰措施,现在已少见单频电台干扰,但宽带噪声干扰、多音干扰和脉冲干扰、扫频干扰仍然应用较多。 此外,为了对抗跳频扩频通信、直接伪码序列扩频通信和混合扩频通信抗干扰能力强的新体制通信系统,出现了一些新的通信对抗技术样式,如宽带拦阻式干扰、跟踪引导式干扰、快速转发式干扰、部分频带噪声干扰等。这些新的干扰样式必须引起我们足够的重视,寻扎相应的对抗策略。 二、短波通信抗干扰技术 通信抗干扰技术的体系、方法、措施可分为4类: (1)以扩频技术为主的频域抗干扰技术,如直接序列扩频( ds-ss),其关键参量是时间函数的相位;跳频( fh)的关键参量是时间函数的载频;ds/ fh混合扩频技术;自适应选频技术,当通信信道干扰严重时,通信双方同时改换到最优化频道;自适应频域滤波技术。其中,跳频技术是目前军事通信抗干扰技术中应用最广泛、最有效措施之一,其原理是信息码同伪随机码模相加后,去离散地控制射频载波振荡器输出频率,使发射信号的频率随伪码的变化而跳变。跳频技术抗干扰能力得益于信号载波频率在很宽的频带内跳变,使干扰方难以跟瞄,但其瞬时带宽同定频一样。现阶段,中高速跳频技术仍是对付跟踪(引导)式和宽带阻拦式干扰的有效措施。有效提高跳频抗干扰效率的方法是:提高跳频速率、加大跳频带宽、变速跳频、适当增加跳频组网数目。跳频带宽宽,可跳频道数多,抗干扰能力就愈强。对于宽带阻拦式干扰来说,干扰效率与干扰的带宽成正比。例如对于10mhz中频带宽,信道间隔25 khz,共400信道,当干扰机对该跳频台实施10 mhz拦阻式干扰时,干扰功率平分在400个信道上,干扰强度仅为定频干扰的1/ 400。若带宽再增加,抗干扰力会更强。当前,跳频通信电台朝着跳频速率更快,跳频带宽更宽、智能化跳频的方向发展。 (2)以自适应时变和处理技术为主的时域抗干扰技术,含猝发通信、低速率通信技术、跳时(th)技术、自适应信号功率管理技术。跳时就是一种时分信道,用伪随机码随机选择信道工作时间,可视为一种伪码调制系统,它具有很好的远近效应一致性,模拟和数字体制都可使用。跳时的优点是用时间的合理分配来避开干扰,干扰机必须连续发射才可能收到效果,增大了干扰代价,也就具有一定的抗干扰能力。猝发通信是首先将正常速率的信息存贮

基于matlab的跳频通信系统的仿真

摘要 跳频通信系统是一种典型扩展频谱通信系统,它在军事通信、移动通信、计算机无线数据传输和无线局域网等领域有着十分广泛的应用,已成为当前短波保密通信的一个重要发展方向。本文介绍了跳频通信系统的基本工作过程,从跳频系统的结构组成、工作原理、主要技术指标、跳频通信系统的解跳和解调等方面阐述了跳频通信基本原理,并对跳频通信系统的抗干扰技术及其性能进行了仿真研究和理论分析。本文从理论上分析了跳频通信系统的抗干扰性能,其组成部分包括信号生成部分、发送部分、接收部分、判决部分、跳频子系统模块五个部分,并以2FSK系统为例,给出了上述通信干扰样式下的误码率理论分析结果,并利用Matlab中的Simulink仿真系统实现跳频系统的仿真和分析,达到了预期的效果。 关键词:跳频系统; 扩频通信; Matlab; Simulink仿真

目录 第1章绪论 (1) 1.1 概述 (2) 1.2 跳频通信简介 (1) 1.2.1 跳频通信系统概述 (1) 1.2.2 跳频技术的应用背景和发展趋势 (2) 1.3 MATLAB简介 (3) 1.4 本文研究内容及章节安排 (3) 第2章跳频通信系统的基本原理 (4) 2.1 跳频通信系统的结构组成 (4) 2.1.1 跳频系统的发送部分 (4) 2.1.2 跳频系统的接收部分 (5) 2.2 跳频通信系统的性能指标 (6) 2.3 跳频通信系统的调制方式 (7) 2.4 频率合成器 (8) 2.5 跳频信号的解跳与解调 (8) 2.5.1 跳频信号的解跳 (8) 2.5.2 跳频信号的解调 (9) 第3章跳频通信系统仿真及性能分析 (10)

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

相关主题
文本预览
相关文档 最新文档