当前位置:文档之家› 光器件激光焊接基础资料

光器件激光焊接基础资料

光器件激光焊接基础资料
光器件激光焊接基础资料

激光焊接技术简介

2017-8-1

激光—全称为受激辐射光放大,它是一种新光源,其所具有的相干性、单色性、方向性与高输出功率等特点,是其它光源所无法比拟的。激光焊接是通过光学系统将激光光束聚集在很小的区域,焦平面上的功率密度可达到10×10w/cm2,在极短的时间内,使被焊处形成一个能量高度集中的局部热源区,从而使被焊物熔化并形成牢固的焊点或焊缝。

激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/ cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/ cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。

热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。

激光深熔焊接的原理。

激光深熔焊接原理:一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达25000C左右,热量从这个高

温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。激光的空间控制性和时间控制性很好,对加工对象的材料、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。近年来,几乎所有的电子产品,如电脑、电视机、手机、数码相机以及许多电子元器件等,在生产制造中都不同程度地应用了激光焊接技术。

激光焊接设备

用于光器件封装的激光焊接设备主要有单光束焊接、三光束焊接和四光束焊接三种焊接设备,也有个别公司有用到双光束焊接设备,下面就谈谈这四种焊接的设备。

单光束激光焊机:顾名思义,单光束焊机每次焊接只有一束激光,在没有焊接时激光焊机会有一束红色的指示光束,此指示光束就是焊接时激光的前进路线。基本每台单光束焊机都配有一个显微镜,通过显微镜,可以清晰地观察到红色指示光束光斑聚焦在需要焊接的点上,

以得到很好的焊接精度。

双光束激光焊机:双光束焊机每次焊接时会产生两束激光,这两束激光前进的路线会在同一个平面内,焊接时就会形成对称的两个焊点。由于在激光焊接过程中,激光会对焊接点产生一个冲击力,从而会导致焊接的两个材料产生相对的位移,因此与单光束焊机相比,双光束焊机是同时对称地焊接两点,在两个激光的功率相等的前提下,可以减小焊接对相对位移的影响程度。

四光束激光焊机:四光束焊机每次焊接会产生四束激光,要求四束激光都要在同一平面内,焊接时要产生分布均匀的四个焊点。由于一次性焊接四个焊点,要保证每个焊点的质量,就要保证每束激光的光强度,也要保证四束光强度要一致,这对设备是一大考验。但是在对光器件进行焊接时,焊点数量是有要求的,而每次可以焊接四个焊点,可以成倍地增加操作人员的工作效率,因此现在四光束焊机在光器件封装中运用比较广泛。

三光束激光焊机:三光束焊机每次焊接会产生三束激光,要求三束激光都要在同一平面内,焊接时要产生分布120度的三个焊点。由于三点成面,更有利于产品稳定性,因此现在很多光器件厂家都转用三光束焊机。

激光焊接机基本构成及作用

最简单的激光焊接机如同一台典型的激光器,具有良好的单色性、相干性、方向性和高能量密度。利用这些特性,激光束聚焦产生巨大

的功率密度,从而使激光加工成为可能。激光器用于产生激光束,激光器由激光谐振腔、激光电源和冷却系统组成。

激光谐振腔由YAG晶体、氙灯、聚光腔及谐振膜片组成。其中,YAG晶体是激光器的核心器件。YAG激光器是以钇铝石榴石晶体为基质的一种固体激光器,钇铝石榴石的化学式是Y3Al5O15,简称为YAG。YAG 的波长是1.064um,谐振腔决定激光束的光学质量。

冷却系统:电能转换成激光,其光电转换效率只有3%左右,大量的电能都转换成热能。这部分热能对激光器件有巨大的破坏力,使YAG 激光晶体及氙灯破裂,聚光腔变形失效等,所以必须有冷却系统提供冷却保障。考虑到系统的光学效率,冷却介质一般为去离子水或蒸馏水。以保证内循环系统不受污染。水冷系统中安装有水压继电器,以保证当水压达到一定值时,主电路方可运作,确保氙灯发光时处于冷却状态,避免事故的发生。冷却系统配置有温度传感及报警装置,可对冷却系统的水温进行显示和范围设制,当水温达到设定值时,即呜叫报警,以担醒用户立即关机(不关水泵)。待水温下降至适宜温度后再开机。为保证安全,冷却系统不工作时,激光焊接机应立即停止运行。

激光焊接的工艺参数

功率密度:功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。

对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊接过程,导致熔深波动很大。激光深熔焊时,激光功率同时控制熔透深度和焊接速度。焊接的熔深直接与光束功率密度有关,且是入射光束功率和光束焦斑的函数。一般来说,对一定直径的激光束,熔深随着光束功率提高而增加。

光束焦斑:光束斑点大小是激光焊接的最重要变量之一,因为它决定功率密度。但对高功率激光来说,对它的测量是一个难题,尽管已经有很多间接测量技术。光束焦点衍射极限光斑尺寸可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑要比计算值偏大。最简单的实测方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿孔直径。这种方法要通过测量实践,掌握好激光功率大小和光束作用的时间。

材料吸收值:材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数,经过对材料抛光表面的吸收率测量发现,材料吸收

率与电阻系数的平方根成正比,而电阻系数又随温度而变化;其次,材料的表面状态(或者光洁度)对光束吸收率有较重要影响,从而对焊接效果产生明显作用。采用表面涂层或表面生成氧化膜的方法,提高材料对光束的吸收很有效。

焊接速度:焊接速度对熔深影响较大,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。所以,对一定激光功率和一定厚度的某特定材料有一个合适的焊接速度范围,并在其中相应速度值时可获得最大熔深。

保护气体:激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件表面。这是激光焊接时使用最有效的保护气体,但价格比较贵。氩气比较便宜,密度较大,所以保护效果较好。但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。使用氩气保护的焊件表面要比使用氦气保护时来得光滑。氮气作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。使用保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射。特别在高功率激光焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。保护气体的第三个作用是对驱散高功率激光焊接产生的等离子屏蔽很有效。金属蒸

气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。如果等离子体存在过多,激光束在某种程度上被等离子体消耗。等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。等离子体云尺寸与采用的保护气体不同而变化,氦气最小,氮气次之,使用氩气时最大。等离子体尺寸越大,熔深则越浅。造成这种差别的原因首先由于气体分子的电离程度不同,另外也由于保护气体不同密度引起金属蒸气扩散差别。氦气电离最小,密度最小,它能很快地驱除从金属熔池产生的上升的金属蒸气。所以用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;由于质轻而能逸出,不易造成气孔。当然,从实际焊接的效果看,用氩气保护的效果还不错。等离子云对熔深的影响在低焊接速度区最为明显。当焊接速度提高时,它的影响就会减弱。保护气体是通过喷嘴口以一定的压力射出到达工件表面的,喷嘴的流体力学形状和出口的直径大小十分重要。它必须以足够大以驱使喷出的保护气体覆盖焊接表面,但为了有效保护透镜,阻止金属蒸气污染或金属飞溅损伤透镜,喷口大小也要加以限制。流量也要加以控制,否则保护气的层流变成紊流,大气卷入熔池,最终形成气孔。为了提高保护效果,还可用附加的侧向吹气的方式,即通过一较小直径的喷管将保护气体以一定的角度直接射入深熔焊接的小孔。保护气体

不仅抑制了工件表面的等离子体云,而且对孔内的等离子体及小孔的形成施加影响,熔深进一步增大,获得深宽比较为理想的焊缝。但是,此种方法要求精确控制气流量大小、方向,否则容易产生紊流而破坏熔池,导致焊接过程难以稳定。

透镜焦距。焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。聚焦光斑大小与焦距成正比,焦距越短,光斑越小。但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距可提高功率密度,但因焦深小,必须精确保持透镜与工件的间距,且熔深也不大。由于受焊接过程中产生的飞溅物和激光模式的影响,实际焊接使用的最短焦多为焦距126mm(5”)。当接缝较大或需要通过加大光斑尺寸来增加焊缝时,可选择254mm(10”)焦距的透镜,在此情况下,为了达到深熔小孔效应,需要更高的激光输出功率(功率密度)。当激光功率超过2kW时,由于采用特殊光学材料构成光学系统,为了避免聚焦透镜遭光学破坏的危险,经常选用反射聚焦方法,一般采用抛光铜镜作反射镜。由于能有效冷却,它常被推荐用于高功率激光束聚焦。

激光脉冲波形:激光脉冲波形即每一次出光的激光能量变化过程,在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

焊接波形的过程定义:

纵坐标能量的定义:根据设置的最大电流计算出的在此电流下的最大输出能量,波形中按照此能量的百分比进行定义每段波形。横坐标脉宽的定义:每一次出光时,激光持续光亮的时间。激光的波形:每一次出光时,激光能量变化的过程。每一段的具体含义如下:上升部分为缓慢融化部分,增加下一步焊接的熔深;平行部分为焊接过程部分,完成焊接的过程,达到要求的深度;下降部分为缓慢降温部分,处理表面效果,减少因急速降温引起的金属结构变化。具体的波形定义根据实际情况选择,可能是一段:如不锈钢等,可能上两段:如模具补焊等,也可能是三段以上,如铜铝以及一些合金材料。焊接波形的选择需要根据焊接材料的相似程度选择,对于合金材料以低熔点的材料为参考设置波形。具体的能量选择需要根据材料的纯度、厚度来决定,对于精密焊接需要考虑室内温度、湿度、以及杂质的成分。 激光脉冲宽度:脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。加大脉宽可以加大单点激光能量输出,一般来讲,宽脉

宽导致的焊接变形较窄脉宽严重。在应力敏感的焊接中,一般宜采用窄脉宽焊接。在选择激光功率波形时,一般来讲,在输出相同的激光脉宽(ms ) 能量 (KW

能量的前提下,脉宽越宽,焊斑越大;激光功率波形峰值功率越高,焊斑越深。目前来没有一套完整的激光功率波形的设置方法,需要在使用过程中逐步摸索,探寻适合自己产品的激光功率波形。

离焦量:因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。焊接时,为了保持足够功率密度,焦点位置至关重要。焦点与工件表面相对位置的变化直接影响焊缝宽度与深度。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现高温汽化,形成高压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。在大多数激光焊接应用场合,通常将焦点的位置设置在工件表面之下大约所需熔深的1/4处。

激光焦点位置选择:

焦点位置:光斑最小点、能量最大点, 等离子体是最高的,而且声音也是最高调的,点焊时可以使用,或者小能量且要求点最小的时候。负离焦位置:光斑略大,越远离焦点光斑越大,适合深熔焊的连续焊接及深熔点焊。

正离焦位置:光斑略大,越远离焦点光斑越大,适合表面封焊的连续焊接或者熔深要求不高的场合

穿透焊的一般工艺控制:单点如果背面可以看到轻微变色的痕迹,那么在焊接的时候可以做到比较好的穿透焊结;如果背面看到明显的痕迹,甚至可以感觉到已经穿透,那么,在焊接的时候会飞溅,甚至出现深坑。具体的要根据实际样品调整焦距和能量大小以及波形。

激光焊接工艺方法

片与片间的焊接:

包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

丝与丝的焊接:

包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。金属丝与块状元件的焊接:

采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。在焊接中应注意丝状元件的几何尺寸。

不同金属的焊接:

焊接不同类型的金属要解决可焊性与可焊参数范围。不同材料之间的激光焊接只有某些特定的材料组合才有可能。对不同的材料进行激光焊接时,激光束位置控制着焊缝的最终质量,特别是对接接头的情况比搭接结头的情况对此更为敏感。例如,当淬火钢齿轮焊接到低碳钢鼓轮,正确控制激光束位置将有利于产生主要有低碳组分组成的焊缝,这种焊缝具有较好的抗裂性。有些应用场合,被焊接工件的几何形状需要激光束偏转一个角度,当光束轴线与接头平面间偏转角度在100度以内时,工件对激光能量的吸收不会受到影响。

激光焊接的材料

激光焊接效果与被加工材料的光学特性、物理特性和机械特性有关。光学特性:包括材料的反射率、吸收率、透过率等;物理特性:包括热传导率、热扩散率、密度、比热、热容量、熔融液粘滞性、汽化温度等;机械特性:机械加工精度、应力强度、材料可焊性、工件清洁度等。

首先在确定加工材料、尤其是两种以上不同的材料进行焊接加工时,要参考相关文献,确定材料能否被可靠的焊接,另外,不同材料对不同激光波长的反射率也不相同,反射率越高,激光焊接越困难。另外,不同材料的物理特性和机械特性也会对焊接效果产生至关重要的影响。一般来说,在点焊时,热传导率越大,焊接效果越好;相反,在缝焊时,热传导率越小,焊接效果越好。需要用户根据不同的应用要求进行合理的选择。

有时,即便是同一种材料如铝,由于铝的纯度及所掺杂元素的不同,因此有时其材料型号不同,所造成的焊接效果也不同,甚至相同型号的材料,来料批次不同,焊接效果也不尽相同;这时,需要用户根据不同的情况,适当调节激光焊接机的功率波形来改善。

材料是激光焊接所涉及的一个重要方面,因为好的焊接材料,对焊接后器件的外观、稳定性和各项参数都非常重要。

适合激光焊的材质有如下几种:

1、模具钢。S136,SKD-11,NAK80,8407,718,738,H13,P20,W302,2344等焊接效果较好。

2、碳钢及普通合金钢的激光焊接。总的说,碳钢激光焊接效果良好,其焊接质量取决于杂质含量。就象其它焊接工艺一样,硫和磷是产生焊接裂纹的敏感因素。为了获得满意的焊接质量,碳含量超过0.25%时需要预热。当不同含碳量的钢相互焊接时,焊炬可稍偏向低碳材料一边,以确保接头质量。低碳沸腾钢由于硫、磷的含量高,并不适合激光焊接。低碳镇静钢由于低的杂质含量,焊接效果就很好。中、高碳钢和普通合金钢都可以进行良好的激光焊接,但需要预热和焊后处理,以消除应力,避免裂纹形成。

3、不锈钢的激光焊接。一般的情况下,不锈钢激光焊接比常规焊接更易于获得优质接头。由于高的焊接速度热影响区很小,敏化不成为重要问题。与碳钢相比,不锈钢低的热导系数更易于获得深熔窄焊缝。

4、不同钢材之间的激光焊接。激光焊接极高的冷却速度和很小的

热影响区,为许多不同金属焊接融化后有不同结构的材料相容创造了有利条件。现已证明以下金属可以顺利进行激光深熔焊接:不锈钢~低碳钢,416不锈钢~310不锈钢,347不锈钢~HASTALLY镍合金,镍电极~冷锻钢,不同镍含量的双金属带。

5、镀层对激光焊的影响。高平镜面镀层很难焊接:镜面镀铬、镀银、镀银等;一般镀层较易焊接:镀镍、镀锌、镀铜,对焊接强度无影响;高度抛光金属较难焊:铜、银、金焊接强度较小;其他处理易焊接:只要不是镜面焊接强度较大

6、间隙对激光焊的影响。缝越小,外观越好,强度越大,缝大时,出现较严重的槽状焊缝,强度也小。

7、材料厚度对激光焊的影响。0.2mm以下的材质,焊接难度大,焊接缝会有变形等现象,焊接牢固度变小。较厚材质,焊接外观较好,强度也大。

光通讯器件焊接应用

一般激光焊接要求:

1.错位小于0.2mm,错位较大会导致局部焊点熔深不足

2.缝隙小于0.05mm, 如果有缝隙,应力会随着焊接而增大

3.焊点必须对称,焊点数量大于6个

4.工件壁厚相对熔深应留有一定余量,避免击穿。各焊点间应留有2~

3个焊点的间隔,避免焊接连片造成应力过大。

5.最佳焊点位置应正好居于焊缝中间

6.焊接时夹具不能遮挡住激光聚焦光束,否则会导致能量不对称造成

焊后偏移

7.最好有压配合

8.在某些镀镍镀金场合,一定要确保使用电镀处理工艺,避免因镀液

中的杂质造成焊接裂纹。

衡量激光焊接好坏的标准

1.焊点的外观:颜色,位置,大小。合格的焊点上下分布均匀,大小符合光器件的焊接要求,焊斑光亮、圆形、完整、中间略有下陷。焊点直径一般大约为0.6~1mm,熔深0.3~0.5mm,具体要视实际焊接条件调整。焊斑颜色是否发蓝,一般发蓝为杂质较多或欠焦导致。通过调整焊接机的能量、焊枪的入射角及精细变焦等工艺参数,观察火花的明亮程度和听激光打在器件上的声音,可以用来初步判断焊接的效果。最终,通过测试器件焊斑大小、熔深的的大小来判断器件是否满足要求。

合格焊点示意图

不合格焊点示意图

焊点检测:一般有目视检验和破环性检验两种方法。目视检验是根据自己的经验来判定焊接产品是否合格,但仅凭借此检验就下定论是不完善的。此时就需要进行破坏性检验,即破坏焊接母体进行熔深及剖面确认,此外也要利用推力计进行剪切力的检验。

2.焊点的剪切力:一般要求>30N,在壁厚及直径不足以满足焊接要求

的条件下,可适当降低至>20N。较低的剪切力会导致焊接结构不稳定,易造成焊后偏移。

3.焊后跑值<20%。一个良好的装夹及焊接系统,一般焊后应有65~

80%的比例跑值应<20%。

激光锤打

在光器件的封装过程中,先进行对准再进行激光焊接封装。在焊接时工件焊点的微小区域会在几毫秒的瞬间吸收大量的热能融化后又迅速冷凝恢复至室温,在这段急速升降温的过长中,巨大的温度梯度会导致热应力的产生,同时,工件由高温冷凝回固态而产生形态变化也会产生不小的残余应力,这就是产生焊后偏移(原先对准的光纤位置产生偏移)的主要因素。焊后偏移后再做一个补焊的动作称之为激光锤打,可以使光耦合效率回升,激光捶打是一种校正焊后偏移的较好方法

另外,由于封装组件表面不同区域对激光束能量的吸收不完全相同,激光分光单元以及光纤传输系统造成的误差等原因,各激光束到达工件表面时的能量可能存在差异,也会造成焊后偏移。在多光束对称点焊过程中,激光光束到达焊点处的能量差别也会造成一定的焊后偏移。多个焊点处激光的能量差别越大,焊后偏移越大。多个焊点处激光的能量不平衡时,焊后偏移的方向总是朝向焊点能量合成后的方向,也就是多个焊点焊接后应力合成的结果。

批量生产时质量控制

一般来说,若出现焊接加工不良,就有可能是被焊材料有问题,需要在检查焊接材料质量后更换材料,或者改变激光焊接机波形设定的工艺条件进行解决;若所焊接产品的同一部分连续出现焊接不良,那就很有可能是工作台和夹具出现了问题,若偶尔存在有焊穿或者虚焊现象,就需要检查焊接机的能量稳定性或工作台及夹具是否存在问

题。

焊接品质的管理:在焊接过程中要经常用推力计对焊接剪切力测试,以使剪切力保持不变,同时要经常对焊枪的位置状况进行检查;要加强对电流的检测,避免出现电源的波动,焊接机超载运行,工件接触不良会导致电流减少等问题;要考虑加工件厚度,镀层厚度,金属成分等的变化,避免出现不良品。

激光焊接应用讲解

激光焊接应用 一、激光焊接的主要特性。 激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。 激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。 三、激光焊接的工艺参数。 1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。 2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池

光器件基础知识

光器件基础知识 目录 一、光纤通信基础 (2) 1、光纤通信的概念 (2) 2、光纤通信的优点 (2) 二、光纤基础知识 (2) 1、光纤的结构 (2) 2、光纤的工作波长 (3) 3、光纤的分类 (3) 3.1按照光纤的模式分类 (3) 3.2按照光纤的材料分类 (3) 3.3按照光纤的折射率分类 (4) 4、光纤的尺寸 (4) 5、光纤接头类型 (5) 6、光功率的换算 (6) 7、光纤损耗 (6) 三、常用光器件介绍 (6) 3.1法兰盘 (6) 3.2光衰减器 (7) 3.3光模块 (8) 2、光模块的主要参数 (8) 3、光模块的种类 (9) 四、光器件的工程应用 (11) 1、单收光模块的使用 (11) 2、双纤双向模块的使用 (11) 3、长距离高灵敏度模块的使用 (11) 4、QSFP+ MPO模块的使用 (12) 5、万兆高速电缆的使用 (12) 六、光模块和光纤使用注意事项 (13) 七、光模块和光纤的故障排查方法 (14) 八、光功率计的使用 (14)

一、光纤通信基础 1、光纤通信的概念 所谓光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。一般由数据源、光发射端、光纤、光接收端组成。 2、光纤通信的优点 1)通信容量大,比传统的电缆、微波等高出几千乃至几十万倍的通信容量。 2)传输距离远,光纤具有极低的衰耗系数,传输距离可达一千公里以上。 3)保密性能好,光信号不具备向外辐射的特点,不易被侦听。 4)适应能力强,具有不怕外界强电磁场的干扰、耐腐蚀等优点。 5)体积小、重量轻。原材料丰富、价格低廉。 二、光纤基础知识 1、光纤的结构 如上图所示,光纤呈圆柱形,主要由纤芯和包层和保护套三部分组成。 1、纤芯:位于光纤的中心部位,成分为高纯度的二氧化硅,掺有极少量杂 质,折射率较高,用来传送光。 2、包层:位于纤芯的周围,其成分也是含有极少量掺杂质的高纯度二氧化 硅,折射率较低,与纤芯一起形成全反射条件。 3、涂覆层:光纤的最外层,由丙烯酸酯、硅橡胶和尼龙组成,强度大,能

激光焊接的未来与前景

激光焊接的未来与前景 激光焊接前景 摘要:焊接是一种将材料永久连接,并成为具有给定功能结构的制造技术。近几年中国完成的一些标志性工程来看,焊接技术发挥了重要作用。但传统焊接已不能满足越来越高的技术要求和条件限制,激光焊接便有了很大的发展空间。激光技术涉及材料学、力学、计算机科学等。研发是一个消耗的过程,其投入要求高,资金回收期较长。单靠企业研发,速度很难跟上,于是有一部分压力转移到国家科研机构。所以产业化需要强大的经济实体后盾和政策支持。 关键词:焊接技术关键制造工艺激光焊接产业化 焊接是一种将材料永久连接,并成为具有给定功能结构的制造技术。几乎所有的产品,从几十万吨巨轮到不足1克的微电子元件,在生产制造中都不同程度地应用焊接技术。焊接已经渗透到制造业的各个领域,直接影响到产品的质量、可靠性和寿命以及生产的成本、效率和市场反应速度。中国2005年钢产量达到3.49亿吨,成为世界最大的钢材生产与消费国,而焊接结构的用钢量也突破1.3亿吨,相当于美国一年的钢产量,成为世界上空前最大的焊接钢结构制造国。近几年中国完成的一些标志性工程来看,焊接技术发挥了重要作用。例如三峡水利枢纽的水电装备就是一套庞大的焊接系统,包括导水管、蜗壳、转轮、大轴、发电机机座等,其中马氏体不锈钢转轮直径10.7m 高5.4m 重440t,为世界最大的铸-焊结构转轮。该转轮由上冠、下环和13或15个叶片焊接而成,每个转轮的焊接需要用12t焊丝,耗时4个多月。神舟6号飞船的成功发射与回收,标志着中国航天事业的巨大进步,其中两名航天员活动的返回舱和轨道舱都是铝合金的焊接结构,而焊接接头的气密性和变形控制是焊接制造的关键。由第一重型机械集团为神华公司制造的中国第一个煤直接液化装置的加氢反应器,直径5.5m 长62m 厚337mm 重2060t,为当今世界最大、最重的锻-焊结构加氢反应器,采用国内自主知识产权的全自动双丝窄间隙埋弧焊技术,每条环焊缝需连续焊接5天。西气东输的管线长4000km,是中国第一条高强钢(X70)大直径长输管线,所用的螺旋钢管和直缝钢管全部是板-焊形式的焊接管。2005年我国造船的总吨位达到1212万吨,占世界造船总量的17%,居于日、韩之后,稳居世界第三位,正向年产2500万吨的世界水平迈进。国内制造的30万吨超级油轮、新型5668标箱集装箱船、15万吨散装货船,以及为世界瞩目的,被称为“中华第一盾”的170舰,都是中国造船界的骄傲,船体是典型的板-焊结构。另外,上海中泸浦大桥是世界最长的全焊钢拱桥;国家大剧院的椭球型穹顶是世界最重的钢结构穹顶;奥林匹克主体育场的鸟巢式钢结构重4万多吨,也是世界之最。这些大型结构都是中国焊接制造的最大、最重、最长、最高、最厚、最新的具有代表性的重要产品。由此可见,焊接在国民经济发展和国防建设中具有非常重要的地位和作用。从“十一五”规划的二十项国家重大技术装备的研制项目可以看出,在百万千瓦级核电机组、超超临界火力发电机组成套设备、高水头超大容量水电机组、大型抽水蓄能机组、30~60万瓦级循环硫化床(CFB)锅炉的成套技术装备、百万吨级大型乙烯成套设备、百万吨级大型对苯二甲酸成套设备、大型煤制气成套设备以及大型煤矿综合采掘成套技术与装备中,焊接制造都是关键制造工艺之一。 但传统焊接已不能满足越来越高的技术要求和条件限制,激光焊接便有了很大的发展空间。

激光焊接技术

激光焊接技术 激光焊接技术属于熔融焊接,以激光束为能源,冲击在焊件接头上。 目录 1基本信息 2激光焊接的优势 3工艺参数 ?激光功率 ?光束焦斑 ?功率控制 4优缺点 5应用 6混合焊接优势 1基本信息 激发电子或分子使其在转换成能量的过程中产生集中且相位相同的光束,Laser来自Light Amplification by Stimulated Emission Radiation的第一个字母所组成。 由光学震荡器及放在震荡器空穴两端镜间的介质所组成。介质受到激发至高能量状态时,开始产生同相位光波且在两端镜间来回反射,形成光电的串结效应,将光波放大,并获得足够能量而开始发射出激光。激光亦可解释成将电能、化学能、热能、光能或核能等原始能源转换成某些特定光频(紫外光、可见光或红外光的电磁辐射束的一种设备。转换形态在某些固态、液态或气态介质中很容易进行。当这些介质以原子或分子形态被激发,便产生相位几乎相同且近乎单一波长的光束-----激光。由于具同相位及单一波长,差异角均非常小,在被高度集中以提供焊接、切割及热处理等功能前可传送的距离相当长。 世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达10^6瓦,但仍属于低能量输出。使用钕(ND)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1---8KW的连续单一波长光束。YAG激光,波长为1.06uM,可以通过柔性光纤连接到激光加工头,设备布局灵活,适用焊接厚度0.5-6mm。使用CO2为激发物的CO2激光(波长10.6uM),输出能量可达25KW,可做出2mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。 早期的激光焊接研究实验大多数是利用红宝石脉冲激光器,当时虽然能够获得较高的脉冲能量,但是这些激光器的平均输出功率相当低,这主要是由激光器很低的工作效率和发光物质的受激性所决定的。激光焊接主要使用CO2激光器和YAG激光器,YAG激光器由于具有较高的平均功率,在它出现之后就成为激光点焊和激光缝焊的优选设备。激光焊接与电子束焊接

光器件激光焊接基础

激光焊接技术简介 2017-8-1 激光—全称为受激辐射光放大,它是一种新光源,其所具有的相干性、单色性、方向性与高输出功率等特点,是其它光源所无法比拟的。激光焊接是通过光学系统将激光光束聚集在很小的区域,焦平面上的功率密度可达到10×10w/cm2,在极短的时间内,使被焊处形成一个能量高度集中的局部热源区,从而使被焊物熔化并形成牢固的焊点或焊缝。 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/ cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/ cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 激光深熔焊接的原理。 激光深熔焊接原理:一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达25000C左右,热量从这个高

温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。激光的空间控制性和时间控制性很好,对加工对象的材料、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。近年来,几乎所有的电子产品,如电脑、电视机、手机、数码相机以及许多电子元器件等,在生产制造中都不同程度地应用了激光焊接技术。 激光焊接设备 用于光器件封装的激光焊接设备主要有单光束焊接、三光束焊接和四光束焊接三种焊接设备,也有个别公司有用到双光束焊接设备,下面就谈谈这四种焊接的设备。 单光束激光焊机:顾名思义,单光束焊机每次焊接只有一束激光,在没有焊接时激光焊机会有一束红色的指示光束,此指示光束就是焊接时激光的前进路线。基本每台单光束焊机都配有一个显微镜,通过显微镜,可以清晰地观察到红色指示光束光斑聚焦在需要焊接的点上,

激光焊接基础知识

米亚奇公司 Nd(钕):YAG激光器激光焊接指南 米亚奇公司2003年版 此处包含的材料,未经米亚奇公司书面同意,严禁复 制或用于任何用途 联系方式: 米亚奇公司 Myrtle大道1820号 蒙罗维亚CA, 91017-7133 Tel.: 626 303 5676 Fax: 626 599 9636 https://www.doczj.com/doc/933376705.html,

目录 1.激光基础 1.1 介绍 1.2 激光产生的原理 1.3 Nd:YAG激光的介质 1.4 泵浦源 1.5 谐振器 1.6 激光安全 2.激光焊接基本原理 2.1脉冲激光焊接 2.1.1实时功率反馈 2.1.2输出功率斜波 2.1.3脉冲的成形 2.1.4时间的分配 2.1.5能量分配 2.1.6光束的传输 2.1.7聚焦头 2.2激光是怎么实现焊接的 2.3主要焊接参数 2.3.1接缝设计与配合 2.3.2部分聚焦 2.3.3材料的选择和其表面镀层 2.4激光的参数 2.4.1名词术语 2.4.2光学系统 2.4.3聚焦镜片 2.4.4峰值功率和脉冲宽度 2.4.5接缝的焊接 2.4.6保护气体 2.5焊接举例

1.激光基础 1.1介绍 “激光”一词是Light Amplification by Stimulated Emission of Radiation(受激辐射而放大的光)的缩写,激光器的要素有: Nd:YAG激光器有两种类型,连续波的和脉冲波的,正如它们的名字所指,连续激光的波形要么是开,要么是关,但脉冲激光只用部分脉冲完成焊接。脉冲激光利用峰值功率进行焊接,反之连续激光使用的是平均功率,这使得脉冲激光只用很小的能量就能实现焊接,并形成了更小的热影响区,脉冲激光焊提供了无与伦比的点焊性能和极低的焊接热输入,米亚奇的就是脉冲激光焊机。 1.2激光产生的原理 激光本质上是分三步产生的,发生几乎是瞬间的。 1.泵浦源给介质提供能量,将介质内部原子激活,使得带电原子暂时被激发到 高能级,处在此活跃级的带电原子是不稳定的,于是跃迁到低能级,在这个过程中,从泵浦源吸收能量的电子释放多余的能量并辐射出一个光子,这个过程叫做自发辐射,通过这种方式产生的光子是激光的种子。 2.光子自发传播并最终撞击到别的处于高能级的电子,由于光速极快,处在激 发态的原子的密度很大,所以这个过程是极其短暂的,入射光子将电子从高能级激发到低能级并产生另一个光子,这两个光子是相干的,这意味着它们相位相同,波长相同,传播方向相同,这个过程叫做受激辐射。 3.光子传播方向是不定的,然而一些沿着介质传播的光子撞击共振器的反射镜, 又通过介质反射回来,共振反射镜决定了受激辐射的优先扩大方向,为了使

激光焊接机五大组成模块讲解讲解

激光焊接机五大组成模块讲解 1、设备整体介绍: 激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。TY-LF-260型激光焊接实训机采用恒流脉冲式激光电源、灯泵浦Nd:YAG固体激光器、进口三菱PLC运控系统和高精度二维执行机构等核心模块组成。产品整机一体化机身结构,有功能集成度高、操作人性化设计、传动系统稳定、焊接加工效率高等特点,可完成电子、机械器件焊接加工,广泛应用于航天、通讯、电子、汽车制造等加工制造类行业。 2、激光焊接机五大组成模块的作用及介绍: (1)光学系统是激光焊接设备的核心部分,由灯泵浦Nd:YAG固体激光器、谐振腔模块、激光指示定位系统、扩束系统和聚焦系统组成。激光输出的好坏直接影响到激光焊接加工效果,因此激光器及整机激光光路的调试方法是学习阶段和实际应用当中必须掌握的技能。通过对此模块的仿真实训,可以使学员全方位了解激光焊接设备中光学系统的组成及工作原理,各光学器件的结构与调试方法。 ◆激光器:焊接设备激光器为灯泵浦Nd:YAG固体激光器,由激光金属腔、泵浦氙灯和 Nd:YAG激光晶体组成。其中激光金属腔为上下分体式全腔水冷式结构,全镀金面反射瓦块,光学反射率高,有助于激光反射集中,输出光束能量强;激光器泵浦源为强亮度高压氙灯,脉冲式出光激励激光晶体产生激光,使用寿命长;激光器工作物质为Nd:YAG 激光晶体。 ◆谐振腔:激光设备中光学谐振腔指的是全反膜片镜架和半反膜片镜架之间的组成区 域,当然其中包含激光腔体;谐振腔是产生激光不可或缺的重要部分,通常谐振腔的长度直接影响到激光输出的光束质量及功率能量的大小;对于激光设备而言,谐振腔的最佳长度一般在≥4倍的激光器腔长的距离(例:激光腔体有效腔长为130mm,则谐振腔的长度为≥520mm较为合适;具体效果以实际应用情况为准)。 ◆基准光定位系统:基准光是激光光路调试及加工应用当中的重要部分,激光设备当中 一般会采用波长为635nm-650nm的红光点状激光器作为光学基准定位,此激光器定位精准,且输出功率小,光束集中不易发散,作为激光设备整体光路调整及加工的指示定位光,实际应用效果极佳。 ◆扩束系统:激光焊接设备中的扩束系统采用的是2.5倍的光学扩束镜,扩束镜通过将 主光路输出的激光束进行准直、扩束后,可将原有的输出激光光斑扩大至原来的2.5倍,使之光束模式更好,能量更为集中;准直之后的激光束经过聚焦后可得到能量更为集中的精细光斑。 ◆聚焦系统:激光焊接设备中的聚焦系统是由45°导光反射镜、聚焦镜片、调焦输出筒 和吹气组件所组成;经过准直扩束后的激光光束先经过45°导光反射镜,被折射到加工平台,再由聚焦镜片将激光束聚焦到能量最为集中的状态进行焊接加工;调焦输出筒和吹气组件是在实际焊接应用中起到焦距调整和辅助气体保护的作用。 (2)控制系统是激光焊接设备的重要部分,由控制器模块、控制电路、功能控制面板、等组成。此系统完成激光设备的逻辑功能控制、电气控制及电器电压输出、执行程序编辑、自动加工应用等功能。通过对此模块的仿真实训,可以使学员全方位了解激光焊接设备中电气控制系统的组成及工作原理,各电子元器件的结构与调试方法。 ◆控制器模块:激光焊接设备中的控制器部分是整个电气控制电路中的核心器件,一般 采用三菱Fx2n-20GM型PLC微型电脑控制器、SMC-6480型运动控制器等型号的控制器; 此类控制器功能强大,能够完成整机执行程序的编辑及逻辑控制和整机自动加工,一般

浅析激光焊接机之深熔焊接工艺

浅析激光焊接机之深熔焊接工艺 激光焊接是一种非接触式、高精度、高效的焊接方式。 激光焊接工艺可分为热传导焊和深熔焊。今天,佛山富兰激光 主要为大家浅析一下深熔焊接工艺。 深熔焊,也可称作为深度穿透焊接。这种工艺不但能完全熔透 材料,还能使材料汽化,形成大量等离子体,由于热量较大,熔池 前端会出现匙孔现象。深熔焊能够彻底焊透工件,且输入能量大、 焊接速度快,是目前使用最广泛的激光焊接模式。 激光深熔焊接过程中,激光聚焦在一起从而在金属上形成极高 的功率密度。激光束聚焦的部位会使所焊接的金属气化,令工件熔 池中出现一个盲孔(即深熔孔)。金属蒸汽压力会挡住周围熔化的金属,使盲孔在焊接过程中始终处于开口状态。激光功率主要在蒸汽 与熔体边界和深熔孔壁处被熔体吸收。聚焦的激光束和深熔孔沿焊 接轨迹持续移动。焊接材料在深熔孔前方熔化,并在后面重新凝固 形成焊缝。 激光深熔焊的特征 1、深宽比高:因为熔融金属围着圆柱形高温蒸气腔体形成并延 伸向工件,焊缝就变得深而窄。 2、热输入小:因为小孔内的温度非常高,熔化过程发生得极快,输入工件热量很低,所以热变形和热影响区很小。 3、致密性高:因为充满高温蒸气的小孔有利于焊接熔池搅拌 和气体逸出,导致生成无气孔的熔透焊缝。焊后高的冷却速度又易 使焊缝组织细微化。所以致密性非常高。 4、焊缝强固:焊接过程无需电极或填充焊丝,熔化区受污染少,使得焊缝强度、韧性至少相当于甚至超过母体金属。 5、控制精确:因为聚焦光点很小,激光输出无“惯性”,可在 高速下急停和重新起始,用数控光束移动技术则可焊接复杂工件, 且定位精确、焊缝美观。 6、非接触式焊接:因为能量来自光子束,与工件无物理接触, 所以没有外力施加工件。还有,磁和空气对激光都无影响。

激光焊接工艺实践课程学习指南讲解

《激光焊接工艺实践》课程学习指南 一、课程资源导航 二、学前要求 学习本课程需要有一定的预备基础知识,需要配置一台计算机,对计算机具体要求如下: (一) 必备基础 学习本课程的学习者必须具备一定的基础: 1.会熟练使用计算机,如常用操作系统Windows XP或者Linux,还有常用软件如PowerPoint、Word等; 2.一定的激光加工技术和工程材料学知识。 (二) 软硬件环境 1.硬件环境:

三、学习目标与要求 课程设置是基于光机电应用技术专业职业岗位能力的培养需要,要求学生通过视频课件、动画和现场实训操作等多种学习资源,掌握激光焊接原理、工艺特点和应用领域。通过本课程学习,学生不仅应该掌握激光焊接加工的基础理论,更要培养、锻炼实际动手操作能力,从而使其在掌握专业知识的基础上获得所需要的职业技能。具体要求如下: ?了解激光焊接工艺的过程和机理; ?学习根据材料特点和焊接工艺要求来选择合适的激光焊接设备; ?针对不同激光焊接设备,学会选择合适的激光焊接参数并能够对设备进行调试、维护; ?针对不同激光焊接过程,学会分析影响焊接质量的因素和解决的措施; ?学习激光焊接的安全操作常识和正确的操作规范。 四、学习路径 1.学习模式 在校学生学习方式:课堂学习+操作实训+网络辅助+标准化试题库考试 网络学习方式:教材自学+按课件学习+网上导学+实训实验+标准化试题库考试2.课程知识学习路径 按知识点渐进式学习:先导课程为激光加工原理、工程材料学等。 3.推荐书籍和参考 (1)郑启光,邵丹编著,激光加工工艺与设备,北京:机械工业出版社,2009,10;(2)刘其斌编著,激光加工技术及其应用,北京:冶金工业出版社,2007;(3)蒙大桥,张友寿,何建军等译,材料激光工艺过程,北京:机械工业出版社,2012,9; (4)现代激光焊接技术,陈彦宾,科学出版社,2010,,10; (5)激光焊接与切割质量控制,陈武柱,机械工业出版社,2010。 五、考核标准 学生学习考核标准请参见本课程资源“考核方案”

激光焊接机的日常维护及注意事项

激光焊接机的日常维护及注意事项 激光焊接机的日常维护及注意事项 (1) 激光谐振腔的调整步骤如下: (2) 1.检查基准光源 (2) 2.调整输出镜(输出介质膜片)位置 (2) 3.检查YAG棒的安装位置 (2) 4.调整全反镜(全反介质膜片)位置 (2) 5.检查光闸的位置 (3) 冷却系统的维护 (3) 1、冷却系统维护的主要内容 (3) 注意事项 (4) 注意:激光器维护的必须由经过专门培训的人员进行,否则容易产生严重的人为损坏。 1、为了保证激光器一直处于正常的工作状态,连续工作二周后或停止使用一段时间时,在开机前首先应对YAG棒、介质膜片及镜头保护玻璃等光路中的组件进行检查,确定各光学组件没有灰尘污染、霉变等异常现象,如有上述现象应及时进行处理,保证各光学组件不会在强激光照射下损坏。(若设备的使用环境比较清洁,上述检查可以相应延长至一个月甚至更长) 2、冷却水的纯度是保证激光输出效率及激光器聚光腔组件寿命的关键,使用中应每周检查一次内循环水的电导率,保证其电导率30.5MW·cm,每月必须更换一次内循环的去离子水,新注入纯水的电导率必须32MW·cm。随时注意观察冷却系统中离子交换柱的颜色变化,一旦发现交换柱中树脂的颜色变为深褐色甚至黑色,应立即更换树脂。 3、设备操作人员可以经常用黑色像纸检查激光器输出光斑,一旦发现光斑不均匀或能量下降等现象,应及时对激光器的谐振腔进行调整,确保激光输出的光束质量。 警告:直接的强激光照射可以对人体皮肤产生严重伤害,特别是将使眼睛致盲,调试操作人员必须具备激光安全防护的常识,工作中必须佩带针对1.064mm波长的专用激光防护眼镜。 注意1:当强激光直接照射到木材等易燃品时会产生明火,调试过程中应在激光输出的光路上放置一块吸收性能良好的黑色金属材料作为光束终止器,防止引起火灾事故。 注意2:激光器的调整必须由经过专门培训的人员进行,否则会因激光器失调或调偏造

《光纤通信》第3章作业答案

第3章 习题及答案 一.填空 1.对于二能级原子系统,要实现光信号的放大,原子的能级分布必须满足高能级粒子数大于低能级粒子数,即粒子数反转分布条件。 2.一个电路振荡器,必须包括放大部分、振荡回路和反馈系统。而激光振荡器也必须具备完成以上功能的部件,故它也包括三个部分:能够产生激光的 工作物质 ,能够使工作物质处于粒子数反转分布的 ,能够完成频率选择及反馈作用的 。 答案:工作物质,泵浦源,光学谐振腔 3.半导体光放大器的粒子数反转可通过对PN 节加 偏压来实现。PN 结加上这种偏压后,空间电荷区变窄,于是N 区的电子向P 区扩散,P 区的空穴向N 区扩散,使得P 区和N 区的少数载流子增加。当偏压足够大时,增加的少数载流子会引起粒子数反转。 答案:正向。 4.对于半导体激光器,当外加正向电流达到某一值时,输出光功率将急剧增加,表明振荡产生了激光,把这个电流值叫 ,用th I 表示。当th I I <时,激光器发出的是 ,因此光谱很宽,宽 度常达到几百埃;当th I I >时,激光器发出的是 ,光谱突然变得很窄,谱线中心强度急剧增加, 表面发出的是激光。 答案:阈值电流,荧光,激光。 5.影响耦合效率的主要因素是光源的发散角和光纤的数值孔径。发散角越大,耦合效率越 ;数值孔径越大,耦合效率越 。 答案:低,高。 6.激光和光纤的耦合方式有直接耦合和透镜耦合。当发光面积大于纤芯截面积时,用 ;当发光面积小于纤芯截面积时,用 。 答案:透镜耦合,直接耦合。(课本上有误) 7.半导体激光器其光学谐振腔的谐振条件或驻波条件是 。 答案:2g L q λ=(或2nL q λ=)。 8.判断单模激光器的一个重要参数是 ,即最高光谱峰值强度与次高光谱峰值强度之比。 答案:边模抑制比。 二.判断题 1.电子服从费米能级分布,即在热平衡条件下,占据能级低的概率大,占据能级高的概率小。 ( ) 正确 2.自发辐射的光子方向是随机的,发出非相干光,且不需要外来光场的激励。 ( ) 正确 3.LED 与单模光纤的耦合效率低于LD 与单模光纤的耦合效率,边发光比面发光LED 耦合效率低。 ( ) 错误,边LED 比面LED 耦合效率高 4.光检测器要产生光电流,入射光波长必须大于截止波长,所以长波长检测器能用于短波长检测。 ( ) 错误。应该小于。 5.设计工作于1.55 μm 的光检测器同样能用作1.3 μm 的光检测器,且在长波长灵敏些。 ( ) 正确。因为在一定波长工作的光检测器能工作于更短的波长。 三.选择题 1.对于半导体激光器的结构,下列说法错误的是( ) A .F-P 激光器是多模,DF B 和DBR 激光器是单模激光器

光通信模块基础知识

光模块基础知识 一、公司光模块及命名规则介绍 ?1. GBIC部分 GBIC是将千兆位电信号转换为光信号的接口器件。GBIC设计上可以为热插拔使用。GBIC是一种符合国际标准的可互换产品。采用GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场分额。 GBIC是光纤的转接设备。 GBIC是千兆位接口转换器的简称。本公司生产的GBIC产品一头是一个通用的GBIC头,另一头可以是走光信号的SC,也可以是走电信号的RJ45。 1) 1.25G/bps 双纤/ BIDI模块 2) 连接器SC,RJ45 3) VCSEL / FP / DFB / CWDM 发射激光器 4) 符合RoHS 标准 5) +5V电源供电 ?2. SFP部分

? SFP可以简单的理解为GBIC的升级版本。SFP模块(体积比GBIC模块减少一半,可以在相同面板上配置多出一倍以上的端口数量。由于SFP模块在功能上与GBIC基本一致,因此,也被有些交换机厂商称为小型化GBIC(Mini-GBIC)。 ? 1) SFP 双纤模块 ? 2) 连接器LC ? 3) VCSEL / FP / DFB / CWDM 发射激光器 ? 4) 符合RoHS 标准 ? 5) 符合SFF-8472协议 ? 6) +3.3V电源供电 ?SFP/GBIC系列命名规则 ? 说明:此命名规则只适用于公司内部,销售对外使用时,不需区分外壳以及TOSA类型(绿色部份),且应根据客户应用不同,分为Fiber Channel、SDH/SONET等标准,对内模块不需做此划分,详见datasheet。 ?3. BIDI部分

激光焊机的焊接质量浅谈

激光焊机的焊接质量浅谈 发表时间:2018-12-18T10:15:41.067Z 来源:《基层建设》2018年第33期作者:张锁瑶 [导读] 摘要:激光焊接,指将传统的焊接技术和激光技术进行结合,目前激光焊接技术的发展,是由于它能量源是具有高能量密度的激光束,直径小,能量大,焊接材料的热影响区域小,母材热变形小,焊接质量稳定,故焊接技术被广泛应用到车,船舶等各个前沿领域中应用越来越广泛。 哈尔滨电气动力装备有限公司黑龙江哈尔滨 150000 摘要:激光焊接,指将传统的焊接技术和激光技术进行结合,目前激光焊接技术的发展,是由于它能量源是具有高能量密度的激光束,直径小,能量大,焊接材料的热影响区域小,母材热变形小,焊接质量稳定,故焊接技术被广泛应用到车,船舶等各个前沿领域中应用越来越广泛。 关键词:激光焊机;焊接;质量 根据焊机实际情况的需求,激光焊机以其焊接速度快,焊接质量高,具有操作简单,安全性能高,生产效率高等优势。 一、激光焊机焊接工艺特点 在焊接材料范围和焊接条件及焊接效果等方面有显著的区别。除了对焊件装配精度要求高以外,与传统焊接方比较具有显著的优点:加热范围小,焊缝和热影响区窄,接头性能优良;残余应力和焊接变形小,可以实现高精度焊接;可对高熔点、高热导率,热敏感材料及非金属进行焊接,可焊接难熔材料如钛,石英等,并能对异性材料施焊,效果良好;能在室温或特殊条件下进行焊接。焊接速度快,易于实现自动化,生产率高。因而在生产中高能束成为焊接技术发展的主流。激光焊接过程产生的金属蒸气和保护气体,在激光作用下发生电离,从而在小孔内部和上方形成等离子体。等离子体对激光有吸收、折射和散射作用,因此一般来说熔池上方的等离子体会削弱到达工件的激光能量,影响光束的聚焦效果,对焊接不利。 二、激光焊机的焊接焊缝质量系统 焊接质量的好坏,取决于来料带钢的板型,设备精度和焊接参数的设定。来料可能会带头和带尾处有浪,带钢夹杂,镰刀弯,厚度不均等情况,都会大大影响焊接质量;设备需要自动调节焊接缝隙,焊接速度,激光功率,焦点位置等焊接动作,如果设备精度下降后,设定值与实际值的差别焊接会导致明显的焊接缺陷;焊接参数的确定大都是在生产线进行大批量生产之前,进行焊接实验而得出的,但在面对偶发性焊接异常时,需要调节一个或者多个参数进行焊接。在操作界面上,可激活所选择的信号进行查看图像界面实时拍摄间隙照片、焊缝照片及熔深照片,最后每条焊缝以焊缝数目号命名,将数据以文本格式保存于电脑中。操作人员在生产过程中,一般会参照其中一条或几条曲线来进行分析,观察整条曲线的走向和趋势,判断此条焊缝是否满足生产强度,从而进行下一步操作。需要格外注意的几个曲线数据为: 1.欠充满。指焊缝的“下凹”程度,由于激光功率太大或者间隙太大,速度过慢都会导致欠充满,如果欠充满超出允许范围之外,表征此条焊缝“太薄”,在生产过程中,很可能由于承受不住生产线张力而发生撕裂甚至断带。 2.过充满。过充满太大相当于焊趾太高,通俗的指焊缝的“上凸”程度, 图1焊缝欠充满实物 由于激光功率太小或者间隙太小,速度过块都会导致过充满,焊接间隙内,钢水无法完全的稳定的分布在母材剪切间隙中,一大部分只是流到了焊缝的表面上,导致的结果是焊缝内在连接差,如果过充满超出允许范围之外,表征此条焊缝中间未良好的连接,强度不够,易发生撕裂甚至断带。 图2焊缝过充满实物 3.渗透。指在焊接过程中,从下表面向焊缝观察激光强度,来表征激光是否穿透母材,激光焦点表征了激光能量最强的点,生产中为了确保能量足够焊接,会对激光焦点进行标记,如果焦点与母材厚度不匹配,激光很可能会能量不足,材料熔融不良,导致焊接不良。由于激光焦点太高会使得渗透值几乎为零,激光焦点太低会造成激光亮度太强渗透值超出允许的范围。 4.高度偏差。指两根带钢的头尾相对厚度。焊机在接收数据后,会根据参数自动调节出入口侧焊头的距离,来使得两根带钢中部对接中部,焊接有足够的材料融合。高度偏差曲线整体大于或小于允许值,表征两根带钢焊接并不在同一水平面上,出现“错层”现象,强度会下降。如果曲线波动较大,表征带钢的板型不良,需要采取其他手段来进行改进。 三、激光焊接技术的研究与应用 从焊接的工艺过程来看,激光的焊接质量与小孔效应的形成和焊接过程等离子体作用有关,经过进一步研究发现激光焊接质量与焊接原料、激光工艺参数和激光光束特性等诸多因素有关系。下面详细列出在生产应用中总结的各特征参数和工艺参数与焊接质量之间关系的研究结果。 1.激光焊接质量与光束能量特性的关系,光束的能量特性主要包括激光束的波长和光束的功率与功率密度。在激光焊接中,起主要作用的是激光功率密度值。这是由于对于不同的材料都有一个临界功率密度阈值,只有激光束焦点的功率密度值超过这个阈值,才能形成小孔,获得深熔焊接。这对于波长10.6μm的激光束具有重要的意义。因为金属材料对这种波长的激光束是强烈反射的。只是由于形成了小孔效应,材料对激光束的吸收机理由金属表面吸收变为小孔吸收,大大增加了材料对激光束的吸收率。

激光焊接基本原理讲解-共14页

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

激光焊接原理讲解-共12页

激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 一、激光焊接的主要特性。 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。

光器件基础知识

光器件基础知识

————————————————————————————————作者: ————————————————————————————————日期:

光器件基础知识 目录 一、光纤通信基础 (4) 1、光纤通信的概念 (4) 2、光纤通信的优点 (4) 二、光纤基础知识 (4) 1、光纤的结构 (4) 2、光纤的工作波长 (5) 3、光纤的分类 (5) 3.1按照光纤的模式分类 (5) 3.2按照光纤的材料分类 (5) 3.3按照光纤的折射率分类 (6) 4、光纤的尺寸 (6) 5、光纤接头类型 (7) 6、光功率的换算 (8) 7、光纤损耗 (8) 三、常用光器件介绍 (8) 3.1法兰盘 (8) 3.2光衰减器 (9) 3.3光模块 (10) 2、光模块的主要参数 (10) 3、光模块的种类 (11) 四、光器件的工程应用 (13) 1、单收光模块的使用 (13) 2、双纤双向模块的使用 (13) 3、长距离高灵敏度模块的使用 (13) 4、QSFP+ MPO模块的使用 (14) 5、万兆高速电缆的使用 (14) 六、光模块和光纤使用注意事项 (15) 七、光模块和光纤的故障排查方法 (16) 八、光功率计的使用 (16)

一、光纤通信基础 1、光纤通信的概念 所谓光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。一般由数据源、光发射端、光纤、光接收端组成。 2、光纤通信的优点 1)通信容量大,比传统的电缆、微波等高出几千乃至几十万倍的通信容量。 2)传输距离远,光纤具有极低的衰耗系数,传输距离可达一千公里以上。 3)保密性能好,光信号不具备向外辐射的特点,不易被侦听。 4)适应能力强,具有不怕外界强电磁场的干扰、耐腐蚀等优点。 ?5)体积小、重量轻。原材料丰富、价格低廉。 二、光纤基础知识 1、光纤的结构 ?如上图所示,光纤呈圆柱形,主要由纤芯和包层和保护套三部分组成。 1、纤芯:位于光纤的中心部位,成分为高纯度的二氧化硅,掺有极少量杂质, 折射率较高,用来传送光。 2、包层:位于纤芯的周围,其成分也是含有极少量掺杂质的高纯度二氧化硅, 折射率较低,与纤芯一起形成全反射条件。 3、涂覆层:光纤的最外层,由丙烯酸酯、硅橡胶和尼龙组成,强度大,能承受

模具机械设备激光焊接基础指南知识

激光焊接基础指南知识 【最新资料,WORD文档,可编辑修改】

目录 1.激光基础 1.1 介绍 1.2 激光产生的原理 1.3 Nd:YAG激光的介质 1.4 泵浦源 1.5 谐振器 1.6 激光安全 2.激光焊接基本原理 2.1脉冲激光焊接 2.1.1实时功率反馈 2.1.2输出功率斜波 2.1.3脉冲的成形 2.1.4时间的分配 2.1.5能量分配 2.1.6光束的传输 2.1.7聚焦头 2.2激光是怎么实现焊接的 2.3主要焊接参数 2.3.1接缝设计与配合 2.3.2部分聚焦 2.3.3材料的选择和其表面镀层 2.4激光的参数 2.4.1名词术语 2.4.2光学系统 2.4.3聚焦镜片 2.4.4峰值功率和脉冲宽度 2.4.5接缝的焊接 2.4.6保护气体 2.5焊接举例 1.激光基础

1.1介绍 “激光”一词是Light Amplification by Stimulated Emission of Radiation(受激辐射而放大的光)的缩写,激光器的要素有: Nd:YAG激光器有两种类型,连续波的和脉冲波的,正如它们的名字所指,连续激光的波形要么是开,要么是关,但脉冲激光只用部分脉冲完成焊接。脉冲激光利用峰值功率进行焊接,反之连续激光使用的是平均功率,这使得脉冲激光只用很小的能量就能实现焊接,并形成了更小的热影响区,脉冲激光焊提供了无与伦比的点焊性能和极低的焊接热输入,米亚奇的就是脉冲激光焊机。 1.2激光产生的原理 激光本质上是分三步产生的,发生几乎是瞬间的。 1.泵浦源给介质提供能量,将介质内部原子激活,使得带电原子暂时被激发到高能级,处 在此活跃级的带电原子是不稳定的,于是跃迁到低能级,在这个过程中,从泵浦源吸收能量的电子释放多余的能量并辐射出一个光子,这个过程叫做自发辐射,通过这种方式产生的光子是激光的种子。 2.光子自发传播并最终撞击到别的处于高能级的电子,由于光速极快,处在激发态的原子 的密度很大,所以这个过程是极其短暂的,入射光子将电子从高能级激发到低能级并产生另一个光子,这两个光子是相干的,这意味着它们相位相同,波长相同,传播方向相同,这个过程叫做受激辐射。 3.光子传播方向是不定的,然而一些沿着介质传播的光子撞击共振器的反射镜,又通过介 质反射回来,共振反射镜决定了受激辐射的优先扩大方向,为了使这个扩大发生,那处在活跃态能级的原子数量必须远大于处在低能级原子的数量,这种大量处在活跃能级的“粒子数反转“是产生激光的必需条件。

相关主题
文本预览
相关文档 最新文档