当前位置:文档之家› 电子显微镜的发展历程

电子显微镜的发展历程

电子显微镜的发展历程
电子显微镜的发展历程

“科学之眼“越来越亮

——电子显微镜的发展历程

摘要:Ruska和Knowll在1932年(有说是1931年和1933年的)研制成功第一台电

子显微镜。经过半个多世纪的发展,已广泛应用到自然科学的许多学科中,并且极大推动了这些学科的发展。在七十年代电子显微镜终于实现了人们直接观察原子的长期愿望,电子显微镜成了“科学之眼”。一门新兴的电子显微学因此而诞生。而Ruska也因此而获得1986年诺贝尔物理奖。在生命科学,由于电子显微镜技术的迅速发展和应用,改

变了细胞学、组织学、病毒学、分类学和分子生物学等的面貌,促使生物学从细胞水平进入到分子水平;它也成为生物学、医学、农林等学科研究工作中极为重要的手段。近年来,我国拥有越来越多的电子显微镜,应用也越广泛,不少高等院校都相继开设相关的课程。“科学之眼”不仅在外国,在我国也会越来越亮,开花结果,前途光明。

关键词:电子显微镜扫描电子显微镜透射电子显微镜扫描透射显微镜

正文:电子显微镜问世已有半个多世纪了,但其应用于医学、生物学,尤其是细胞

学的研究方面才只有二十余年的历史。我国学者在六十年代初期开始这方面的工作。下

面我们来看一下电子显微镜的总体发展历程。

一.电子显微镜的总体发展历程

人类对于生物微观世界的认识过程,有着一段漫长的历史。荷兰人列文虎克(Leeuwenhoek)在300年前创制成功世界上第一架显微镜,发现了当时人们还不知道的微生物世界。这是显微镜第一次显示其巨大作用。

早在一百年以前,朴率克(Plucker)就曾在盖斯雷管的阴极近管壁上发现过一种黄

绿色的光辉,但他当时对这一现象并无认识,未予重视。自从1924年德布罗意提出了

电子与光一样,具有波动性的假说和1926年Busch发现了旋转对称、不均匀的磁场可

作为一个用于聚焦电子束的透镜,就为后来的电子显微镜的问世奠定了理论基础,这就打开了电子光学的大门。经六年后,到1932年克诺露(Knoll)及鲁斯卡(Ruska)等人首

次发表了关于电子显微镜的实验和理论研究,并试制成功第一台电磁式电子显微镜。为了获得较大的放大能力,人们又研究制造了短焦距的电磁透镜,它除了会聚透镜外,再利用两个透镜作连续两次的造像。到1934年鲁斯卡和马顿(Marton)分别制成了新型复式电子显微镜。近代的电磁式电子显微镜在具体结构上已经有了很大改进。

Ruska和Knowll在1932年(有说是1931年和1933年的)研制成功第一台电子显微镜。经过半个多世纪的发展,已广泛应用到自然科学的许多学科中,并且极大推动了这些学科的发展。在七十年代电子显微镜终于实现了人们直接观察原子的长期愿望,电子显微镜成了“科学之眼”。一门新兴

的电子显微学因此而诞生。而Ruska也因此而获得1986年诺贝尔物理奖。在生命科学,由于电子显微镜技术的迅速发展和应用,改变了细胞学、组织学、病毒学、分类学和分子生物学等的面貌,促使生物学从细胞水平进入到分子水平;它也成为生物学、医学、农林等学科研究工作中极为重要的手段。近年来,我国拥有越来越多的电子显微镜,应用也越广泛,不少高等院校都相继开设相关的课程。“科学之眼”不仅在外国,在我国也会越来越亮,开花结果,前途光明。

如果说,光学显微镜是人类对微观世界的认识有了第一次飞跃,那么可以说,电子显微镜是人类对微观世界的认识有了第二次飞跃。的确,光学显微镜使人类看到了肉眼看不到的细菌和细胞,揭开了许多生物界的“谜”,但是因为光学显微镜的分辨率受光波波长的限制,使更多的“谜”仍无法解开。而电子显微镜是以电子束作为光源的,电子束的波长比可见光的波长短得多,使电子显微镜的分辨率大幅度提高。从此,人类用电子显微镜揭示了细菌、噬菌体、类病毒、DNA和蛋白质大分子等,甚至获取了“原子

核和电子云”的原子像。

总体历程了解后,下面我们来关注一下透射电子显微镜的发展历程:

二.透射电子显微镜的发展历程

1924年,德国科学家德布罗意(De Broglie)指出,任何一种接近光速运动的粒子都具有波动本质。1926---1927年,Davisson和Germer以及Thompson Reid用电子衍射

现象验证了电子的波动性,发现电子波长比X光还要短,从而联想到可用电子射线代替可见光照明样品来制作电子显微镜,以克服光波长在分辨率上的局限性。1926年德国学者Busch指出“具有轴对称的磁场对电子束起着透镜的作用,有可能使电子束聚焦成像”,

为电子显微镜的制作提供了理论依据。

1931年,德国学者诺尔(Knoll)和鲁斯卡(Ruska)获得了放大12~17倍的电子光学系统中的光阑的像,证明可用电子束和电磁透镜得到电子像,但是这一装置还不是真正的电子显微镜,因为它没有样品台。1931—1933年间,鲁斯卡等对以上装置进行了改进,做出了世界上第一台透射电子显微镜(简称透射电镜)。1934年,电子显微镜的分辨率已达到500?,鲁斯卡也因此获得了1986年的诺贝尔物理学奖。

1939年德国西门子公司造出了世界第一台商品透射电子显微镜,分辨率优于

100?.1954年又产生了著名的西门子ElmiskopⅠ型电子显微镜,分辨率优于10?.在英国,透射电子显微镜的研究始于1935年,1946年设计了第一批商业透射电子显微镜,导致了EM型电镜的系列生产。在荷兰,1944年研制成第一台电镜,后来生产了著名的Philips EM和CM型透射电子显微镜。我国的透射电子显微镜研制始于20世纪50年代,1977年

已作出了分辨率为3?的80万倍的透射电镜。

目前世界上生产透射电镜的主要是这三家电镜制造商:日本的日本电子(JEOL)和日立(Hitachi)以及美国的FEI(这家公司把荷兰的菲利浦电镜公司收购了)。他们生产的

透射电镜大致可分为三类。

扫描、透射电镜的基本原理及其应用

扫描、透射电镜在材料科学中的应用 摘要:在科学技术快速发展的今天,人们不断需要从更高的微观层次观察、认识 周围的物质世界,电子显微镜的发明解决了这个问题。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描、透射电镜工作原理、结构特点及其发展,阐述了其在材料科 学领域中的应用。 1扫描电镜的工作原理 扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 电子束和固体样品表面作用时的物理现象:当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪可以获得且具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,则 可以得到反映试样表面形貌的二次电子像[1]。 2扫描电镜的构成 主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为一定强度的电子束。由两级聚光镜组合而成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。 调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、 电流及完成控制功能。

电子显微镜技术在生物医学领域的应用

2012年1月内蒙古科技与经济Januar y2012 第2期总第252期Inner M o ngo lia Science T echnolo gy&Economy N o.2T o tal N o.252电子显微镜技术在生物医学领域的应用X 孙计桃 (内蒙古医学院基础医学院电镜中心,内蒙古呼和浩特 010059) 摘 要:电子显微镜在临床研究和疾病诊断中作出了巨大的贡献,并不断开辟着生物医学研究的新领域,主要从细胞、亚细胞的形态结构上阐明疾病的发生、发展及转归规律,丰富了传统病理学的知识。 通过对亚细胞结构和病原体的观察,可以诊断一些肿瘤疾病、心血管疾病、肝病、肾病、血液疾病、细菌、病毒、寄生虫疾病等。随着电镜技术的不断改进以及与多种研究手段相结合,电子显微镜将在生物医学领域应用会更加广泛。 关键词:电子显微镜;临床研究;疾病诊断;应用 中图分类号:T N16∶R318 文献标识码:A 文章编号:1007—6921(2012)02—0127—02 电子显微镜包括扫描电子显微镜和透射电子显微镜两种类型,利用透射电子显微镜可以观察样品内部超微结构,利用扫描电子显微镜可以观察样品表面形貌,立体感强,在生物医学领域应用较多的是透射电子显微镜。透射电子显微镜的发明为人类在医学科学研究领域做出了巨大的贡献,早在20世纪40年代电子显微镜就在医学上开始发挥其作用,在病毒学、细胞生物学、组织学、病理学、分子生物学及分子病理学都有应用[1-2]。笔者参考相关文献对电子显微镜技术在肿瘤诊断、病毒和病毒性疾病、系统性疾病等研究领域的应用做一概述,说明其是现代临床研究和疾病诊断中不可缺少的重要工具之一。1 电子显微镜技术在医学领域应用特点 随着科学技术的发展,电子显微镜放大倍数已从第一台电镜的十几倍提高到现在的百万倍,因此在生物医学领域利用高性能的电子显微镜观察细胞中各种细胞器正常的和病理的超微结构,诸如内质网、线粒体、高尔基体、溶酶体、细胞骨架系统等,对探明病因和治疗疾病有很大帮助。通过研究细胞结构和功能的关系,也可以研究细胞的通讯与运输、分裂与分化、增殖与调控等生命活动的规律,电子显微镜也可结合各种制样技术观察病毒、细菌、支原体、生物大分子等的超微结构,是现代生物医学研究不可替代的工具。 2 电子显微镜技术在肿瘤诊断中的应用 电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2L m,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。因此,透射电子显微镜突破了光学显微镜分辨率低的限制,成为了诊断疑难肿瘤的一种新的工具。有研究报道,无色素性肿瘤、嗜酸细胞瘤、肌原性肿瘤、软组织腺泡状肉瘤及神经内分泌肿瘤这些在光镜很难明确诊断的肿瘤,利用电镜可以明确诊断[3-5]。 电镜主要是通过对超微结构的精细观察,寻找组织细胞的分化标记,确诊和鉴别相应的肿瘤类型。细胞凋亡与肿瘤有着密切的关系,电镜对细胞凋亡的研究起着重要的作用,因此利用电镜观察细胞的超微结构病理变化和细胞凋亡情况,将为肿瘤的诊断和治疗提供科学依据。 3 电子显微镜技术在肿瘤鉴别诊断中的应用透射电子显微镜观察的是组织细胞、生物大分子、病毒、细菌等结构,能够观察到不同病的病理结构,也可以鉴别一些肿瘤疾病,有研究报道电子显微镜技术通过超微结构观察可以区分癌、黑色素瘤和肉瘤以及腺癌和间皮瘤;可区别胸腺瘤、胸腺类癌、恶性淋巴瘤和生殖细胞瘤;可区别神经母细胞瘤、胚胎性横纹肌瘤、Ew ing氏肉瘤、恶性淋巴瘤和小细胞癌;可区别纤维肉瘤、恶性纤维组织细胞瘤、平滑肌肉瘤和恶性神经鞘瘤以及区别梭形细胞癌和癌肉瘤(杨光华,1992)[6-10] 。 4 电镜在肾活检病理诊断中应用 肾穿活检对了解疾病发生、发展及选择治疗方法是十分重要的,可以提高诊断的准确性。目前采用的方法有免疫组化和电子显微镜检查,电子显微镜检查可以弥补光学显微镜分辨率不高的缺陷,可观察到光镜所看不到的成分的超微结构病理变化,特别是上皮细胞、系膜、肌膜细胞和间质的改变,确定有无电子致密物沉着及其沉着部位。Sieg el等曾报道,经对213例肾病活检资料分析,发现有11%的病例需要用电镜作出正确诊断,有36%病例肾的超微结构改变对光镜诊断提供确诊或亚分类,如遗传性肾炎,此病肾小球的组织学特征无特殊改变,唯电镜检查才能作出准确诊断[11]。 5 电镜在代谢性疾病诊断中的应用 随着科学技术的进步,电镜的应用越来越广泛,已有研究报道,电镜在肝脏代谢性疾病、软组织系统疾病诊断中的作用值得肯定。Mierau等(1997)认为 ? 127 ? X收稿日期:2011-12-25

扫描电子显微镜的发展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS 分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS 发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型

冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X 射线波谱仪WDS。Microspec公司的全聚焦WDX-400,WDX-600型分别配有4块和6块不同的衍射晶体,能检测到5B(4Be)以上的各种元素。该谱仪可以倾斜方式装在扫描电镜试样室上,以便对水平放置的试样进行分析,而不必如垂直谱仪那样需用

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

扫描电子显微镜文献综述

扫描电子显微镜的应用及其发展 1前言 扫描电子显微镜SEM(Scanning Electron Microscopy)是应用最为广泛的微观 形貌观察工具。其观察结果真实可靠、变形性小、样品处理时的方便易行。其发展进步对材料的准确分析有着决定性作用。配备上X射线能量分辨装置EDS (Energy Dispersive Spectroscopy)后,就能在观察微观形貌的同时检测不同形貌特征处的元素成分差异,而背散射扫描电镜EBSD(Electron Backscattered Diffraction)也被广泛应用于物相鉴定等。 2扫描电镜的特点 形貌分析的各种技术中,扫描电镜的主要优势在于高的分辨率。现代先进的扫描电镜的分辨率已经达到1纳米左右;有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构试样制备简单;配有X射线能谱仪装置,这样可以同时进行 显微组织性貌的观察和微区成分分析[1]。低加速电压、低真空、环境扫描电镜和电子背散射花样分析仪的使用,大大提高了扫描电子显微镜的综合、在线分析能力;试样制备简单。直接粘附在铜座上即可,必要时需蒸Au或是C。 扫描电镜也有其局限性,首先就是它的分辨率还不够高,也不能观察发光或高温样品。样品必须干净、干燥,有导电性。也不能用来显示样品的内部细节,最后它不能显示样品的颜色。 需要对扫描电镜进行技术改进,在提高分辨率方面主要采取降低透镜球像差系数, 以获得小束斑;增强照明源即提高电子枪亮度( 如采用LaB6 或场发射电子枪) ;提高真空度和检测系统的接收效率;尽可能减小外界振动干扰。 在扫描电镜成像过程中,影响图像质量的因素比较多,故需选择最佳条件。例如样品室内气氛控制、图像参数的选择、检测器的选择以及控制温度的选择,尽可能将样品原来的面貌保存下来得到高质量电镜照片[2]。

电子显微镜的发展及现状

电子显微镜的发展及现状 20130125001 李智鹏 2014/10/8

电子显微镜的发展及现状 摘要:本文综述了电子显微镜的发展,电子显微镜的主要分类,它们在生活当中的应用以及国内显微镜的现状。 关键词:电子显微镜发展应用现状 1、引言 显微镜技术的发展,是其他科学技术发展的先导,在17世纪60年代出现的光学显微镜,引发了一场广泛的科技进步, 促进了细胞学和细菌学的发展。使人类的观测范围进入微观世界,导致了一大批新的领域进入人类的研究范围,促进了许多学科的创立和发展。 三百年来,光学显微镜巳经发展到了十分完善的地步。而我们知道,分辨率极限的量级为入/a带,对于光学显微镜,最短可见光波长约为400。人,最大数值孔径约1。4,故只能获得亚微米量极的分辨率。于是,人们开始寻找较短波长的光源,X射线波长为几个埃,Y射线波长更短,但它们都很难直接聚焦,所以不能直接用于显微镜。[1] 20世纪30年代出现的电子显微镜技术,更进一步拓宽了人类的观测领域,同样导致了大批新学科、新技术的出现.可以说,现代科学技术的研究工作,已很大程度依赖于电子显微镜技术的使用,尤其是在纳米技术、材料技术、生命科学技术等研究方面,没有电子显微镜技术的帮助,它们几乎是无法进行的.随着科学技术的不断进步,电子显微镜技术的应用越来越广泛,同时电子显微镜技术本身也在不断快速发展.从最初的电子显微镜开始,已经逐步发展出扫描电子显微镜、扫描隧道电子显微镜、原子力电子显微镜、扫描离子电导显微镜、扫描探针电子显微镜等.这些先进的仪器现已广泛地应用于物理学、化学、材料科学和生命科学领域的研究和检测工作中.在纺织科技研究工作和纺织材料及纺织品检测过程中也得到了广泛的应用[2]。本文仅对电子显微镜技术在出土古代纺织品检测方面的应用作一初步探讨。电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[3]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[4]。 2、电子显微镜的发展过程 20世纪30年代,德国科学家诺尔(M. knoll)和卢斯卡(E. Ruska)在电子光学的基础上,研制出了世界上第一台透射式电子显微镜(Transmission ElectronMicroscope,TEM,简称透射电镜),成功地得到了用电子束拍摄的铜网像,尽管放大倍数只有12倍,但它为以后电镜的发展和应用奠定了基础.此后经过科学家们半个多世纪的努力和改进,透射电镜的分辨本领现已达到了0. 1nm~0. 2nm,几乎能分辨所有的原子.此后又相继出现了能直接观察样品表面立体结构的扫描电子显微镜(Scanning ElectronMicroscope, SEM,简称扫描电镜),其分辨率为3nm~6nm和能进行活体观察的超高压电镜,实现了人们直接观察生物大分子结构和重金属原子图像的愿望[5]。 2.1扫描式电子显微镜扫描式电子显微镜中的电子束,在样品表面上动态地扫描,以 一定速度,逐点逐行地扫描样品的表面.样品逐点地发出带有形态、结构和化学组分信息的二次电子,这些电子由检测器接收处理,最后在屏幕上显示形态画面.图像为间接成像,其加速电压为1kV~30kV. 2.2扫描隧道显微镜(ScanningTunnelingMicroscope,STM)G.Binnig和H.Rohrer在 1981年研制成功扫描隧道显微镜,并因此获得1986年诺贝尔物理奖.扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,

扫描电子显微镜 (SEM)介绍

扫描电子显微镜(SEM)介绍 (SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。 目录 扫描电镜的特点 扫描电镜的结构 工作原理 扫描电镜的特点 和光学显微镜及透射电镜相比,扫描电镜SEM(Scanning Electron Microscope)具有以下特点: (一) 能够直接观察样品表面的结构,样品的尺寸可大至 120mm×80mm×50mm。 (二) 样品制备过程简单,不用切成薄片。 (三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。 (四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。 (五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。 (六) 电子束对样品的损伤与污染程度较小。 (七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。 扫描电镜的结构 1.镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 2.电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

扫描电子显微镜的操作步骤和注意事项心得

扫描电子显微镜的操作步骤和注意事项心得扫描电子显微镜的操作步骤与注意事项一、样品制备 将分散好的样品滴于铜片上,干燥后将载有样品的铜片粘在样品座上的导电胶 带上(对于大颗粒样品可直接将样品粘在导电胶带上)。 对于导电性不好的样品必须蒸镀导电层,通常为蒸金:将样品座置于蒸金室 中,合上盖子,打开通气阀门,对蒸金室进行抽真空。选择好适当的蒸金时间,达 到真空度定好时间后加电压并开始计时,保持电流值,时间到后关闭电压,关闭仪器。取出样品。(注意:打开蒸金室前必须先关闭通气阀门,以防液体倒流。) 二、扫描电镜的操作 1.安装样品 “Vent”直至灯闪,对样品交换室放氮气,直至灯亮; 1) 按 2) 松开样品交换室锁扣,打开样品交换室,取下原有的样品台,将已固定好 样品的样品台,放到送样杆末端的卡抓内(注意:样品高度不能超过样品台高度,并 且样品台下面的螺丝不能超过样品台下部凹槽的平面); 3) 关闭样品交换室门,扣好锁扣; 4) 按“EVAC”按钮,开始抽真空,“EVAC”闪烁,待真空达到一定程度,“EVAC”点亮; 5) 将送样杆放下至水平,向前轻推至送样杆完全进入样品室,无法再推动为 止,确认“Hold”灯点亮,将送样杆向后轻轻拉回直至末端台阶露出导板外将送 样杆竖起卡好。(注意:推拉送样杆时用力必须沿送样杆轴线方向,以防损坏送样杆) 2.试样的观察(注意:软件控制面板上的背散射按钮千万不能点,以防损坏仪器) -51) 观察样品室的真空“PVG”值,当真空达到9.0×10Pa时,打开“

Maintenance”,加高压5kv,软件上扫描的发射电流为10μA,工作距离“WD”为8mm,扫描模式为“Lei”(注意:为减少干扰,有磁性样品时,工作距离一般为15mm左右); 2) 操作键盘上按“Low Mag”、“Quick View”,将放大倍率调至最低,点击“Stage Map”,对样品进行标记,按顺序对样品进行观察; 3) 取消“Low Mag”,看图像是否清楚,不清楚则调节聚焦旋钮,直至图像清楚,再旋转放大倍率旋钮,聚焦图像,直至图像清楚,再放大……,直到放大到所需要的图; 4) 聚焦到图像的边界一致,如果边界清晰,说明图像已选好,如果边界模糊,调节操作键盘上的“X、Y”两个消像散旋钮,直至图像边界清晰,如果图像太亮或太暗,可以调节对比度和亮度,旋钮分别为“Contrast”和“Brightness”,也可以按“ACB”按钮,自动调整图像的亮度和对比度; 5) 按“Fine View”键,进行慢扫描,同时按“Freeze”键,锁定扫描图像; 6) 扫描完图像后,打开软件上的“Save”窗口,按“Save”键,填好图像名称,选择图像保存格式,然后确定,保存图像; 7) 按“Freeze”解除锁定后,继续进行样品下一个部位或者下一个样品的观察。 3.取出样品 1) 检查高压是否处于关闭状态(如HT键为绿色,点击HT键,关闭高压,HT键为蓝色或灰色); mm,点击样品台按钮,按Exchang(2)检查样品台是否归位,工作距离为8 键, Exchang灯亮; (3) 将送样杆放至水平,轻推送样杆到样品室,停顿1秒后,抽出送样杆并将送样杆竖起卡好,注意观察Hold关闭,为样品台离开样品室。

电子显微镜技术

显微分析技术 摘要:透射电子显微镜、扫描电子显微镜以及扫描探针显微镜已经成为了分析纳米材料的重要手段之一。本文简要的介绍了透射电子显微镜、扫描电子显微镜以及扫描探针显微镜的发展以及应用。 引言 纳米科技是在20世纪80年代后才逐渐发展起来的前沿性、交叉性的新型科学领域,纳米材料的性能与其微观结构有着重要的关系,因此,纳米材料微观结构的表征对于认识纳米材料,推动纳米材料的应用有着深远的意义。 自16世纪出现了光学显微镜以后,把正常人眼睛仅能分辨约0.2mm 细节的能力,延伸到可以看细菌和微生物。20世纪30年代,科学家利用电子源制造出了扫描电子显微镜,其分辨率远远超出了光学显微镜。1932年M.Knoll和E.Ruska 研制出了第一台透射电子显微镜实验装置(TEM),1938年,V on.Ardence将扫描线圈加到透射电子显微镜上(TEM),制成了第一台扫描透射电子显微镜(STEM),放大倍数8000X,分辨率在500~1000 ?之间直到1952年,C.W.Qatley 和McMullan 在剑桥(Cambridge )制成了第一台现代的SEM,分辨率达到500?,很大程度的提高了人类认识微观世界的能力。但是,后来人们发现,当显微镜的放大率提高到1000-1500倍时,受光的衍射效应影响,图像将变得不再清晰。1982年国际商业机器公司苏黎世实验室的葛·宾尼(Gerd Binnig)博士和海·洛雷尔(Heimich Rohrer)博士及其同事们共同研制成功了世界第一台新型的表面分析仪器——扫描隧道显微镜(简称STM)。它的出现使人类第一次能够实时的观察单个原子在物质表面的排列状态和表面电子行为有关的物理、化学性质,为科学家提供了一种前所未有的直接观察单原子、单分子的手段,从而从根本上改变了人类对微观(纳米)世界的认识水平。STM的探针是由针尖与样品之间的隧道电流的变化决定的,因此要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节为了克服

电子显微镜发展史

电子显微镜的发展史

电子显微镜的发展史 杨柏栋 大庆师范学院物理与电气信息工程学院 摘要:电子显微镜自从被发明出来就为人类做着巨大的贡献,随着现代社会的发展,电子显微镜的作用将会越来越大,我们应该知道电子显微镜的由来,本文将着重介绍电子显微镜的定义、分类、作用及其发展史。 关键字:电子显微镜、电子 引言 随着电子显微镜应用的广泛,人们对于电子显微镜的了解需求大大的增加了,本文介绍了电子显微镜的定义与组成、电子显微镜的种类与用途、电子显微镜的发展史以及电子显微镜的优缺点,以此让人们更加的了解电子显微镜。 一、电子显微镜的定义与组成 电子显微镜,简称电镜,是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器[1]。 电子显微镜由镜筒、真空装置和电源柜三部分组成。 镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。 电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦 电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。 样品架样品可以稳定地放在样品架上。此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。 探测器用来收集电子的信号或次级信号。 二、电子显微镜的种类与用途 电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构[2];扫描式电子显微镜主要用于观察固体表

扫描式电子显微镜观察

掃描式電子顯微鏡觀察 為觀察觀音一號井與麓山帶地層中碎屑性和自生性黏土礦物之 分佈與生長,以及隨埋藏深度增加,自生性黏土礦物(如:混層伊萊石膨潤石)之元素組成之比例有無改變,本研究使用中央大學地球物理研究所JSM-7000F熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, TFE-SEM),用以觀察碎屑性和自生性礦物之分佈與生長情形。SEM的操作條件為加速電壓15 kV、真空室壓力達2.8 × 10-4 Pa、工作距離10 mm。一般掃描式電子顯微鏡偵測主要為偵測二次電子(Secondary Electron Image, SEI)和背向散射電子(Backscattered Electron Image, BEI)成像,由於其產生電子之行為不同,所產生之影像分別為樣本之表面形貌和原子序對比(Goldstein et al., 2003)。平均原子序較高之區域,散射之背向電子訊號較強,呈現之影像較亮。本研究以背向散射電子偵測為主要觀察工具。由於黏土礦物之主要元素成份以原子序較低的矽、鋁氧化物和其他少量金屬鐵、鎂、鈣、鈉、鉀等,因此在背向散射電子影像中,黏土礦物多分佈在深暗色區域。 另外,使用加裝於SEM之元素能量分析儀(Energy Dispersion Spectrometer, EDS),可透過搜集激發電子束產生的X光進行礦物化學組成之定性和半定量分析。EDS操作環境為電子加速電壓15 kV、放大倍率為2000倍以及接收100秒X光光譜時間。使用INCA 軟體(Revision 4.09),鈦元素光譜校準,搜集測量結果之各氧化物重量百分比,混層伊萊石/膨潤石黏土礦物的化學式以22顆氧原子,計算化學式中的陽離子數,部分鋁離子納入四面體網格計算,即矽和鋁離子總和為8;剩餘鋁離子和鐵、鈦、鎂和鈉則被歸為八面體網格計算(Klein, 2002)。

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

2020年智慧树知道网课《生物电镜原理与技术》课后章节测试满分答案

第一章测试1 【单选题】(10分)人眼的平均分辨率为 A. 0.2μm B. 0.4mm C. 0.3mm D. 0.4μm E. 0.2mm 2 【单选题】(10分)电子枪产生的电子是 A. 弹性散射电子 B. 透射电子 C. 二次电子 D. 入射电子 E.

特征x射线 3 【单选题】(10分) 下面哪种电镜可以在观察结构的同时,对组织细胞内的元素成分进行分析 A. 扫描电镜 B. 扫描隧道显微镜 C. 透射电镜 D. 分析电镜 E. 冷冻电镜 4 【单选题】(10分) 世界上第一台电子显微镜是哪年出现的 A. 1924年 B. 1930年 C. 1935年

D. 1945年 E. 1932年 5 【单选题】(10分) 在样品的表面产生,产额与样品表面的凹凸程度有关的是 A. 入射电子 B. 特征x射线 C. 透射电子 D. 二次电子 E. 弹性散射电子 6 【单选题】(10分) 科学家们利用哪种电镜在金属镍表面上用35个惰性气体原子组成了IBM三个字母 A. 透射电镜 B.

扫描隧道显微镜 C. 分析电镜 D. 扫描电镜 E. 原子力显微镜 7 【单选题】(10分) 哪种电镜能够将活的生物分子进行冷冻,使分子机制可以图像化描述 A. 分析电镜 B. 透射电镜 C. 扫描电镜 D. 扫描隧道显微镜 E. 冷冻电镜 8 【多选题】(10分) 透射电镜可用于

A. 观察各种细胞器的超微结构 B. 用于观察细菌、病毒的超微结构 C. 观察组织细胞的超微结构病变 D. 用于核酸和蛋白质超微结构的研究 E. 观察组织细胞的正常超微结构 9 【判断题】(10分) 电磁透镜包括静电透镜和磁透镜 A. 对 B. 错 10 【判断题】(10分) 分辨率是指人眼或光学仪器观察和分辨物体最小细节的能力 A. 对 B.

扫描电子显微镜技术原理及应用

扫描电子显微镜技术原理及应用 学院:材料学院 班级:111111 学号:111111 姓名:1111

扫描电子显微镜技术原理及应用 摘要:本文阐述了扫描电子显微镜的成像原理,介绍了其功能和特点,以及在材料分析之中的应用。 关键词:扫描电子显微镜;应用;材料分析 引言:扫描电子显微镜是很先进的一种电子光学仪器,它采用细聚焦高压电子束在材料样品表面扫描时激发产生的某些物理信号来调制成像,类似于电视摄影的显像方式,放大倍数远远超过普通光学显微镜,可达到几十万倍甚至更高。 一.扫描电子显微镜的成像原理 扫描电镜成像过程与电视成像过程有很多相似之处,扫描是指在图象上从左到右、从上到下依次对图象象元扫掠的工作过程。它与电视一样是由控制电子束偏转的电子系统来完成的,只是在结构和部件上稍有差异而已。在电子扫描中,把电子束从左到右方向的扫描运动叫做行扫描或称作水平扫描,把电子束从上到下方向的扫描运动叫做帧扫描或称作垂直扫描。 SEM的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。 由电子枪发射的高能电子束,经会聚透镜、物镜缩小和聚焦,在样品表面形成一个具有一定能量、强度、斑点直径的电子束。在扫描线圈的磁场作用下,入射电子束在样品表面上按照一定的空间和时间顺序做光栅式逐点扫描。由于入射电子与样品之间的相互作用,将从样品中激发出二次电子。由于二次电子收集极的作用,可将各个方向发射的二级电子汇集起来,再将加速极加速射到闪烁体上,转变成光信号,经过光导管到达光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大并将其输送至显像管的栅极,调制显像管的亮度。因而,在荧光屏上呈现一幅亮暗程度不同的、反映样品表面形貌的二次电子象。 二.扫描电子显微镜的应用 扫描电子显微镜的样品制备简单, 可以实现试样从低倍到高倍的定位分析,还能够根据观察需要进行空间转动,,以利于使用者对感兴趣的断裂部位进行连续、系统的观察分析,扫描电子显微断口图像因真实、清晰,,并富有立体感, 在金属断口和显微组织三维形态的观察研究方面获得了广泛地应用。 由于扫描电镜可用多种物理信号对材料样品进行综合分析, 并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点, 因此, 在科研、工业产品开发、质量管理及生产在

扫描电子显微镜的发展及展望教案资料

扫描电子显微镜的发 展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON 系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了 Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X射线波谱仪WDS。Microspec公司的全聚焦WDX-400,

相关主题
文本预览
相关文档 最新文档