当前位置:文档之家› 实验报告 通信原理实验

实验报告 通信原理实验

实验报告 通信原理实验
实验报告 通信原理实验

通信电路与系统实验

姓名:冯杨森

学号:10024122

专业:通信工程

指导教师:徐小平

目录

实验一通信原理多种信号的产生 (4)

一. 实验目的 (4)

二. 实验电路工作原理 (4)

1.电路组成 (4)

2.电路工作原理 (4)

三. 实验内容 (5)

四. 测量点说明 (9)

五.实验结果 (10)

六.讨论思考题 (11)

实验二中央集中控制器系统单元实验 (12)

一. 实验目的 (12)

二. 实验电路工作原理 (12)

1.键盘输入电路 (12)

2.数码管显示电路 (14)

3.系统复位电路 (14)

4.软件设计 (14)

三. (16)

四. 实验步骤及注意事项: (17)

五.实验结果 (17)

六. 讨论思考题 (18)

实验三通信话路终端语音信号传输实验 (19)

一. 实验目的 (19)

二. 实验电路工作原理 (19)

三. 实验内容 (23)

四. 实验步骤及注意事项 (23)

五. 测量点说明 (23)

六. 实验结果 (23)

实验四脉冲幅度调制(PAM)及系统实验 (27)

一.实验目的 (27)

二.实验电路工作原理 (27)

1.电路组成 (27)

2.实验电路工作原理 (27)

三.实验内容 (28)

四.实验步骤及注意事项 (28)

五.测量点说明 (29)

六.实验结果 (29)

七.思考题 (32)

实验五脉冲编码调制(PCM)及系统实验 (33)

一.实验目的 (33)

二. 实验电路工作原理 (33)

1.PCM基本工作原理 (33)

2.PCM编译码电路TP3067芯片介绍 (35)

三. 实验内容 (38)

四. 实验步骤及注意事项 (38)

五. 测量点说明 (41)

六.实验结果 (41)

七. 思考题 (46)

实验一通信原理多种信号的产生

一. 实验目的

1.了解多种时钟信号的产生方法。

2.掌握用数字电路产生伪随机序列码的实现方法。

3.了解PCM编码中的收、发帧同步信号的产生过程。

二. 实验电路工作原理

时钟信号乃是其它各级电路的重要组成部分,在通信电路及其它电路中,若没有时钟信号,则电路基本工作条件将得不到满足而无法工作。

1.电路组成

信号发生器电路是供给实验箱各实验系统的各种时钟信号和其他有用信号与测试信号,实验电原理框图见图1-1所示 , 图1-2是信号发生器电原理图,由以下电路组成:

1.内时钟信号源。

2.多级分频及脉冲编码调制(PCM CODEC)系统收、发帧同步信号产生电路。

3.伪随机序列码产生电路。

4.简易正弦信号发生器电路。

2.电路工作原理

1.内时钟信号源

内时钟信号源电路由晶振J101(4.096MHz)、电阻R101和R102、电容C101、非门U101:A、U101:B、U106:B组成,若电路加电工作后,在U101:A的输出端输出一个比较理想的方波信号,输出振荡频率为4.096MHz,经过D触发器进行二分频,输出为2.048MHz方波信号,输出送到信号转接开关K101的1脚。

2.三级基准信号分频电路及PCM编码调制收发帧同步信号产生电路

该电路的输入时钟信号为2.048MHz的方波,即测量点TP101端,由可预置四位二进制计数器(带直接清零)组成的三级分频电路组成,逐次分频变成8KHz窄脉冲。 U102、U103、U104的第二引脚为各级时钟输入端,输入时钟为2.048MHz、128KHz、8KHz。由第一级分频电路产生的128KHz窄脉冲和由第二级分频电路产生的8KHz窄脉冲进行与非后输出,即为PCM编译码器中的收、发分帧同步信号,波形如图1-3所示。

3.伪随机码发生器电路

众所周知,伪随机序列,也称作m序列,它的显著特点是:(a)随机特性;(b)预先可确定性;(c)可重复实现。

图1-1 信号发生器原理框图

本电路采用带有两个反馈的三级反馈移位寄存器。若设初始状态为111(Q2Q1Q0=111),则在CP时钟作用下移位一次后,由Q1与Q0模二加产生新的输入Q=Q0⊕Q1=1⊕1=0,则新状态为Q2Q1Q0=011。当移位二次时为Q2Q1Q0=001;当移位三次为Q2Q1Q0=100;移位四次后Q2Q1Q0=010;移位五次后为Q2Q1Q0=101;移位六次后为Q2Q1Q0=110;移位七次后为Q2Q1Q0=111;即又回到初始状态Q2Q1Q0=111。该状态转移情况可直观地用“状态转移图”表示。见图1-5。图1-6是实验系统中伪随机序列码发生器电原理图。从图中可知,这是由三级D触发器和异或门组成的三级反馈移存器。在测量点TP108处的码型序列为1110010周期性序列。

4.简易正弦波信号发生器

图1-7是简易正弦信号发生器电路图,其实是由一个截止频率为ωH二阶低通滤波器和一个截止频率为ωL的二阶高通滤波器组合而成。其二阶低通滤波器由U004:D(TL084)等元件组成。其二阶高通滤波器由U004:C(TL084) 等元件组成。

三. 实验内容

1.多种数字信号产生及形成实验:

2.帧同步信号识别、提取与分析实验:

3.伪随机码、特殊码观察测量分析实验:

4.正弦波信号产生及用途实验:

(注:以后实验中的实验测量点TP205、TP301、TP304等处的波形与TP101相似。)

图1-3 信号发生器输出波形

1 1 1

0 0

1

10

1

2KHz或1KHz

2KHz或1KHz 简易正弦波

PSK或FSK

32KHz或2KHz 32KHz方波

16KHz方波

8KHz

128KHz

1024KHz

8KHz

2048KHz

TP106

TP107TP108TP105

TP901TP902TP104TP102TP103TP301TP101

四. 测量点说明

接好电源,打开开关K2、K3、K100,对应的发光管D6、D7、D1亮,电路加电工作。

各测量点波形说明如下:

1.TP101:频率为

2.048MHz的时钟信号。在PCM编码工作时,TP101 = TP503。

信号转接开关K101的作用是:内时钟信号源的选择开关;选K101的1-2脚,频

率为2.048MHz。选K101的2-3脚,无信号。

2.TP102:频率为128KHz的窄脉冲信号,用于下一级分频电路的逐次分频。

3.TP103:频率为8KHz的窄脉冲信号,脉冲宽度为7.8uS。

4.TP104:频率为8KHz的窄脉冲信号,脉冲宽度为0.488uS。在PCM编码工作时,

TP104 = TP504。

5.TP105:频率为2KHz或1KHz的方波,用于变换成频率为2KHz或1KHz的简易正弦信号

波形。由信号转接开关K102决定,即:

K102的1、2脚,送入2KHz方波信号

K102的2、3脚,送入1KHz方波信号

6.TP106:频率为2KHz或1KHz的简易正弦信号波形,用于增量调制编码和PCM编码时的

语音信号,通过导线接入到S201输入端。此时分别能观察并测量出稳定的输出

数字信号波形来,主要是在没有数字存贮示波器的情况下用此点波形做实验时是

最好的。它由信号转接开关K102决定,即:

K102的1、2脚,送出2KHz简易正弦信号波形,

K102的2、3脚,送出1KHz简易正弦信号波形。

在测试简易正弦波信号输出波形时,注意调节W101、W102两个电位器。

其电位器的作用:

W101:改变高通滤波电路反馈量的大小,使其工作在稳定的状态。

W102:改变输出简易正弦波形的幅度。

7.TP107:常态时没有波形输出,只有当CPU工作时才有波形。此时为2KHz或32KHz的

时钟信号。

8.TP108:常态时没有波形输出,只有当CPU工作时才有波形。此时输出波形是码元速率

为2KHz或32KHz的1110010伪随机信号。

具体方法说明如下:

①按下“开始”与“FSK”键时,

TP107是2KHz的时钟信号,

TP108是码元速率为2KHz的1110010伪随机码。

②按下“开始”与“PSK”键时,

TP107是32KHz的时钟信号,

TP108是码元速率为32KHz的1110010伪随机码。

五.实验结果

TP101 TP102

TP103 TP104

TP105 TP106

TP107 TP108

六.讨论思考题

1.实验电路中内时钟信号源产生是由两级非门、晶振、电阻电容元件组成反馈式振荡

器。能否用其它形式的电路产生时钟信号,举例说明

答:能够用其他形式的电路产生时钟信号。比如:用晶振加电容可直接产生。

2.时钟信号的分频电路能否用其它方法产生,要求电路尽量简要、清楚。有哪些方法?

画出原理图。

答:可以用其他方法产生。比如:用锁存器和触发器来完成。

3.伪随机序列发生器中,如果在Q2与Q1级间再加上一级移存器Q s。试分析该电路的

工作过程并画出输出波形。见图1-8所示。

答:输出波形为 1 1 1 1 0 0 0 1

4.理解并分析正弦波测试信号发生器电路后,试再用其它方法产生正弦波信号。举例

说明,并画出电路图。

答:可用LC震荡电路实现

时钟

图1-8增加Q s时的伪随机序列发生器电路

实验二中央集中控制器系统单元实验

一. 实验目的

1.了解单片微型计算机在通信电路系统中的应用。

2.了解该系统对其它实验系统的管理、控制与检测过程。熟悉键盘操作方法。

二. 实验电路工作原理

图2-1是中央集中控制器系统电路框图,图2-2是中央集中控制器系统原理图。该控制单元是综合实验系统中的中心控制部分,它控制着各部分实验电路的工作,采用MCS-51单片计算机技术,对全部系统实现集中管理与控制,学生上机作某项实验或综合实验时,由辅助键盘进行操作,可选择各种方式的实验,通过数码管和发光管指示,可了解实验系统的工作状态。

1.键盘输入电路

图2-3是键盘输入原理图,共有12个功能键,它们与各实验单元及代码的对应关系

键名实验单元代码

“△M 编码”键 增量调制器编码单元 --“1” “PCM ”键 脉冲编码调制PCM 单元 --“2 “FSK ”键 FSK 调制解调单元 --“3 “VCO ”键 基本锁相环单元 --“4 “PSK ”键 BPSK 调制解调单元 --“5 “综合实验”键 综合实验系统单元和HDB3单元 --“6” “△M 译码”键 增量调制器译码单元 --“7 “PAM ”键 脉冲振幅调制PAM 单元 --“8 “眼图”键 眼图实验 --“9” “开始”键 开始某个实验 --“ON ” “停止”键 结束实验 --“OFF ” “复位”键 系统复位 --“P ” 图2-3 键盘输入原理图

(1)当做增量调制系统实验时,首先键入“开始”键,CPU 扫描到该键并记忆,数码管显示“ON ”,此时再键入“△M 编码”键,则CPU 扫描到该键有输入,数码管显示数字“1”。CPU 内部由程序控制处理去执行相应的指令,送出与△M 编码系统实验所必须的控制信号,使电路正常工作。当不做这项实验时,只要键入“停止”功能键,CPU 记忆该键输入的信号后,使电路停止工作,同时数码管显示“OFF ”,稍等片刻即循环显示“P ”,以示系统电路正常,等待键入其它命令。

(2)做其它实验时,步骤同上,先键入“开始”键,数码管显“ON ”后,再键入对应功能键,数码管显示该实验单元代码,即可开始实验。

(3)同一时刻只能做一个实验,即做下一个实验时,必须用“OFF ”关掉前一个实验,数码管循环显“P ”时才能开始。

2.数码管显示电路

重新

4.软件设计

该实验系统在CPU的管理、检测与控制下,可以完成各项实验或示教,因上述硬件电路是通信原理实验系统的主体,软件则是该实验系统的核心,只有软件功能完善,硬件电路良好,软硬件相结合,才能使硬件电路充分发挥作用,各模块电路才能按照设计要求进行正常工作,在所有的测量点上均能测出与理论分析相一致的正确波形。实验内容才能正常进行下去。

该实验系统的主程序由三大部分组成:即“实验运行处理程序”、“系统管理处理程序和“故障检测处理程序”。图2-6是主程序流程图

图2-6 主程序流程图

“实验运行程序”是该系统软件的主要程序。一方面它要保证系统中各模块电路的正常工作,综合性处理系统实验的统筹控制与系统处理,误码分析检测;另一方面,对系统中的不同实验项目必须作出相应的处理,始终保持各项实验的正常工作。

“系统管理处理程序”是该系统软件中的必要程序,它要完成各个实验项目之间的转换,综合实验的处理,控制信号的管理,键盘的查询和数码管的显示的系统中各项工作状态的运行和管理。

“故障检测处理程序”是该系统软件中的辅助程序,它要完成该系统各模块电路中的重要测量点和故障检测,由CPU作出判断后,在显示电路中反映出来,便于检测和排除故障。

图2-7 中央集成控制元器件位置分布图

三.

1.CPU 微处理器及电路接口实验

2.通信系统原理电路模块操作实验 (1) 测试AT98C51

TP1:TP1为晶振输出端即AT89C51的18引脚,f=12MHz 。

若有波形,则AT98C51单片计算机工作正常。 若没有波形,则AT89C51单片计算机工作不正常。

TP2:为AT89C51的ALE 信号,即30引脚。

若有波形,则AT98C51单片计算机与接口电路工作正常。 若没有波形,则AT89C51单片计算机与接口电路工作不正常。

(2)

① 按下“开始”与“△M 编码 ”键,显示代码“1”。 ② 按下“开始”与“PCM ” 键,显示代码“2”。 ③ 按下“开始”与“FSK ” 键,显示代码“3”。 ④ 按下“开始”与“VCO ” 键,显示代码“4”。 ⑤ 按下“开始”与“PSK ” 键,显示代码“5”。 ⑥ 按下“开始”与“综合实验” 显示代码“6”键。 ⑦ 按下“开始”与“△M 译码”键,显示代码“7”。

⑧按下“开始”与“PAM”键,显示代码“8”。

⑨按下“开始”与“眼图”键,显示代码“9”。

四. 实验步骤及注意事项:

1.打开开关K100

2.该中央集中控制器系统单元电原理总图见图2-2,其元器件位置结构见图2-7,用示波

器逐次测量各点波形,并作记录分析。

3.当发现某些电路不正常时,应先关掉电源开关,再作静态检查,禁止带电插拔集成块。

4.数码管不循环显示“P”时,按“复位”键重新启动。

5.GND

五.实验结果

TP1

TP2

六. 讨论思考题

该中央集中控制器系统中,在单片计算机U1(AT8098C51)的P27(即28脚)与键盘输入与数码管显示电路的扩展电路U6(8155)的CE(即8引脚)之间为什么能直接连接。

答:CE——片选信号,输入低电平有效,由单片机的p27管脚直接控制。

实验三通信话路终端语音信号传输实验

一. 实验目的

1.了解通信话路终端语音信号的传输过程

2.掌握滤波器电路在通信话路终端接收电路中的作用

3.熟悉通信话路终端滤波器的带宽与幅频特性曲线

二. 实验电路工作原理

在通信原理实验及实际通信工程中,语音信号的编译码尤为重要。在本实验中,话路终端语音传输电路方框图如图3-1所示。从图中可知:

1.PCM脉冲编码和译码电路

2.增量调制编码电路和译码电路

3.脉冲幅度调制PAM实验

三部分都共用一个发送通道和接收通道。电原理框图如图3-2所示,其中PAM、PCM、△M三部分电路在后面实验中分别介绍。本次实验主要介绍:话路终端发送与接收滤波。

从S201端口接入,经过发送通道的放大器放大后,信号幅度可由W001进行调节。

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验报告2

通信原理 实验报告 课程名称:通信原理 实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名: 学号: 班级: 2012年12 月

实验三二进制数字信号调制仿真实验 一、实验目的 1.加深对数字调制的原理与实现方法; 2.掌握OOK、2FSK、2PSK功率谱密度函数的求法; 3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较; 4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。 二、实验内容 1. 复习二进制数字信号幅度调制的原理 2. 编写MATLAB程序实现OOK调制; 3. 编写MATLAB程序实现2FSK调制; 4. 编写MATLAB程序实现2PSK调制; 5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。 三、实验原理 在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分为基带信号和频带信号。 通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。 调制信号为二进制数字基带信号时,对应的调制称为二进制调制。在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。 下面分别介绍以上三种调制方法的原理,及其MATLAB实现: 本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。 假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。整个过程可用如下程序段实现: %定义相关参数 clear all; close all; A=1 fc=2; %2Hz; N_sample=8; N=500; %码元数 Ts=1; %1 Baud/s dt=Ts/fc/N_sample; %波形采样间隔 t=0:dt:N*Ts-dt; Lt=length(t);

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

通信原理实验报告——xxx

通信原理 实验报告 实验名称:实验一码型变换实验 姓名:xxxx 专业班级:电信xxxxx班 学号:xxxxxxxxxxxxx 中南大学物理与电子学院 X2013年下学期 xx月xx号

码型变换实验: 一、实验目的 1、了解几种常用的数字基带信号。 2、掌握常用数字基带传输码型的编码规则。 3、掌握常用CPLD实现码型变换的方法。 二、实验内容 1、观察NRZ码、RZ码、AMI码HDB3码CMI 码BPH码的波形。 2、观察全0码或者全1码时各码型的波形。 3、观察HDB3码、AMI码的正负极性波形。 4、观察RZ码、AMI码、HDB3码、CMI码、 BPH码经过码型反变换后的输出波形。5、自行设计码型变换电路,下载并观察波 形。 三、实验器材 1、信号源模块 2、编码、译码模块 3、20M双示踪示波器 4、连接线 四、实验结果分析 1、CMI、RZ、BPH码遍解码电路观测

信号源: S1:01110010 S2:01010101 S3:00110011 CMI码: DOUT1波形:1110010 NRZ-OUT输出波形:01010101001100110111 RZ码: DOUT1:11001101

NRZ-OUT输出波形:001100110111001001 DOUT1:10111001001010101

NRZ-OUT输出波形:010110010110011 2、AMI、HDB3码编解码电路观测 S1:01110010 S2:00011000 S3:01000011 AMI码: DOUT1:

DOUT2: AMI-OUT:101001100100110111010011001

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验报告

实 验 报 告 实验名称:PAM编译码器系统 姓名: 学号: 日期: 一.实验名称:PAM编译码器系统 二、实验仪器 1、J H5001通信原理综合实验系统一台 2、20MHz双踪示波器一台

3、函数信号发生器一台 三、实验目的 1、验证抽样定理 2、观察了解PAM信号形成的过程 3、了解混迭效应形成的原因 四、实验内容 准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。 1.近似自然抽样脉冲序列测量 (1)首先将输入信号选择开关K701设置在T(测试状态)位置,将低通滤波器选择开关K702设置在F(滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200~1000Hz、输出电平为2Vp-p的测试信号送入信号测试端口J005和J006(地)。 (2)用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。 2.重建信号观测 TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信号,观测时以J005输入信号做同步。 3.平顶抽样脉冲序列测量 将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。 方法同1测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果做比较。 4.平顶抽样重建信号观测 将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。 方法同2测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果对比分析平顶抽样的测试结果。 5.信号混迭观测 (1)当输入信号频率高于4KHz(1/2抽样频率)时,重建信号将出现混迭效应。观测时,将跳线开关K702设置在NF(无输入滤波器)位置。调整函数信号发生器正

通信原理实验报告89077

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

《通信原理》实验设计报告

中南大学《通信原理》 实验设计报告 学院: 专业班级: 姓名: 学号: 指导老师: 设计时间:

目录 第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 (1) 实验五:数字锁相环与位同步 (6) 实验六:帧同步 (13) 实验七:时分复用数字基带通信系统 (17) 第二部分实验设计部分 设计任务与要求 (22) 方案设计与论证 (22) 源程序与仿真结果 (24) 系统性能分析 (29) 程序调试 (29) 结论与心得 (30) 参考文献 (31)

第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 一、实验目的 1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3. 了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、基本原理 通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。 图3-1 载波同步方框图 本模块上有以下测试点及输入输出点: ? MU平方器输出测试点,VP-P>1V ? VCO VCO输出信号测试点,VP-P>0.2V ? Ud鉴相器输出信号测试点 ? CAR-OUT 相干载波信号输出点/测试点 图3-1中各单元与电路板上主要元器件的对应关系如下: ? 平方器 U25:模拟乘法器MC1496

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

通信原理实验报告

AM调制和解调的仿真原理:1)AM调制的原理是,发射信号的一侧将信号加到高频振荡上,然后通过天线发射出去。在此,高频振荡波是载波信号,也称为载波。调幅是通过调制信号来控制高频载波的幅度,直到其随调制信号线性变化。在线性调制系列中,第一幅度调制是全幅度调制或常规幅度调制,称为am。在频域中,调制频谱是基带调制信号频谱的线性位移;在时域中,调制包络与调制信号波形具有线性关系。设正弦载波为:C(T)= ACOS (WCT +φ0),其中a为载波幅度;WC是载波角频率;φ0是载波的初始相位(通常假设φ0 = 0)。调制信号(基带信号)为m(T)。根据调制的定义,幅度调制信号(调制信号)通常可以表示为:如果调制信号M(T)的频谱为m(W),则SM(T)= am(T)cos(WCT),则调制信号的频谱SM(T):SM(W)= a [M(W + WC)+ m(w﹥6 ﹣1wc)] /22。从高频调制信号中恢复调制信号的过程称为解调。)也称为检测。对于幅度调制信号,解调是从幅度变化中提取调制信号的过程。解调是调制的逆过程。产品类型的同步检波器可用于解调振幅。可以将调制信号与本地恢复载波信号相乘,并且可以通过低通滤波来获得解调信号。下图显示了AM解调的原理:原理图和仿真结果:参数设置:正弦波WAVE1和正弦波WAVE2

模块分别在发送器和接收器处生成载波信号,并且角频率ωC设置为60 rad / s,并且调幅系数为1;调制信号M(T)由正弦波模块产生,为正弦波信号,角频率为5rad / s,幅度为1V。直流分量A0恒定。低通滤波器模块的截止频率设置为6rad / s。承运人:sin60t;调制信号:sin(5T)sin(60t)2 2. B DSB调制和解调模拟调制原理:在幅度调制的一般模型中,如果滤波器是全通网络(= 1),则滤波器中没有DC分量。调制信号,则输出调制信号是没有载波分量(DSB)的双边带调制信号。当源信号的极性改变时,调制信号的相位将突然改变π。SDSB (T)= m(T)coswct调制的目的是将调制信号的频谱移动到所需位置,从而提高系统信息传输的有效性和可靠性。DSB调制原理的框图如图4-3所示:图1:DSB信号本质上是基带信号和载波的乘法,而卷积在频域中。表达式为:调制后,s DSB(W)= [M(W + WC)+ m (W?6?1 WC)] / 2(1),已调制信号的带宽变为原始基带信号带宽的两倍:模拟基带信号的带宽为W。则调制信号的带宽为2W;(2)在调制信号中没有离散的载波频率分量,因为原始的模拟基带信号不包含离散的DC分量。(3)(4)某个信号的频谱或随机信号的功率谱是基带信号的频谱/功率谱的线性位移。因此,它称为线性调制。解调原理:DSB只能进

通信原理实验报告眼图

部分响应系统 一、实验目的 1.通过实验掌握第一类部分响应系统的原理及实现方法; 2.掌握基带信号眼图的概念及绘制方法。 二、实验原理 1.部分响应系统 为了提高系统的频带利用率,减小定时误差带来的码间干扰,升余弦传输特性在这两者的选择是有矛盾的。理想低通传输特性可以有最高的频带利用率 2=s η,但拖尾的波动比较大,衰减也比较慢。若能改善这种情况,并保留系统 的带宽等于奈奎斯特带宽,就能在保证一定的传输质量前提下显著地提高传输速率。这是有实际意义的,特别是在高速大容量传输系统中。部分响应传输系统就具有这样的特点。 部分响应传输系统是通过对理想低通滤波器冲激响应的线性加权组合,来控制整个传输系统冲激响应拖尾的波动幅度和衰减。当然,这样做会引入很强的码间干扰,但这种码间干扰是可控制的,是已知的,因此很容易从接收信号的抽样值中减去。由于这种组合并不影响系统的传输带宽,因此频带利用率高。 第一类部分响应系统是在相邻的两个码元间引入码间干扰。由于理想低通系统的传递函数为 其冲激响应为s s T t T t t h //sin )(ππ= ,如果用)(t h 以及)(t h 的时延s T 的波形作为系统的 冲激响应,那么它的系统带宽肯定限制在??? ? ? ?-s s T T 21,21,也就是说,系统的频带利用率为2bit/Hz 。 接着来看系统的冲激响应函数)(t g : s s s s s s s T t T t T t T T t c T t c T t h t h t g /11 sin )(sin sin )()()(-= ?? ????-+=-+=ππππ s T f 21 ||< 其他 ???=0 )(s T f H

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

通信原理实验报告修订版

通信原理实验报告 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

学院 实验报告 课程名称: 姓名: 学号: 班级: 指导教师: 2017年6月1日

目录 实验网络和实验板简介 (3) 实验1 数字基带信号与 AMI/HDB3编译码 (4) 1.1 实验目的 (4) 1.2 基本原理 (4) 1.3 实验步骤及实验结果 (5) 1.4 实验思考题 (10) 实验2 数字调制 (12) 2.1 实验目的 (12) 2.2 实验原理 (12) 2.3 实验步骤及实验结果 (12) 2.4 实验思考题 (14) 实验3 模拟锁相环与载波同步 (15) 3.1 实验目的 (15) 3.2 实验原理 (15) 3.3 实验步骤及实验结果 (15) 3.4 实验思考题 (18) 实验4 数字解调与眼图 (18) 4.1 实验目的 (18) 4.2 实验原理 (18) 4.3 实验步骤及实验结果 (19) 4. 2FSK解调实验 (21) 4.4 实验思考题 (22) 实验5 数字锁相环与位同步 (22) 5.1 实验目的 (22) 5.2 实验原理 (22) 5.3 实验步骤及实验结果 (23) 5.4 实验思考题 (24) 实验6 帧同步 (25) 6.1 实验目的 (25) 6.2 实验原理 (25) 6.3 实验步骤及实验结果 (26) 6.4 实验思考题 (28) 实验 7 时分复用数字基带通信系统 (28) 7.1 实验目的 (28) 7.2 实验原理 (29) 7.3 实验步骤及实验结果 (30) 7.4 实验思考题 (31) 实验 8 时分复用 2DPSK、2FSK 通信系统 (31) 8.1 实验目的 (31) 8.2 实验原理 (32) 8.3 实验步骤及实验结果 (32) 8.4 实验思考题 (33)

北京邮电大学通信原理软件实验报告-28页文档资料

《通信原理软件》实验报告专业通信工程 班级 2011211118 姓名朱博文 学号 2011210511 报告日期 2013.12.20

基础实验: 第一次实验 实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)截短,按时间间隔均匀取样,仿真时用这个样值集合来表示信号 s(t)。△t反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*f,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信

号。 三、实验内容 1、方案思路: 通过改变取点频率观察示波器显示信号的变化 2、程序及其注释说明: 3、仿真波形及频谱图: Period=0.01 Period=0.3 4、实验结果分析: 以上两图区别在于示波器取点频率不同,第二幅图取点频率低于第一幅图,导致示波器在画图时第二幅图不如第一幅图平滑。 四、思考题 1.两幅图中第一幅图比第二幅图更加平滑,因为第一幅图中取样点数更 多 2.改为0.5后显示为一条直线,因为取点处函数值均为0 实验三频域仿真精度分析 一、实验目的

移动通信原理课程设计_实验报告_321321资料

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

通信原理实验报告80352

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落 信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信 源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒, 相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道 设置如下图所示:

1.1.3实验作业 1)根据信道参数,计算信道相干带宽和相干时间。 fm=200; t=[0 4e-06 8e-06 1.2e-05]; p=[10^0 10^-0.3 10^-0.6 10^-0.9]; t2=t.^2; E1=sum(p.*t2)/sum(p); E2=sum(p.*t)/sum(p); rms=sqrt(E1-E2.^2); B=1/(2*pi*rms) T=1/fm 2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并 分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、 Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。(配合截图来分析) Impulse Response(IR)

从冲击响应可以看出,该信道有四条不同时延的路径。多径信道产生随机衰落,信道冲击响应幅值随机起伏变化。可以看出,该信道的冲激响应是多路冲激响应函数的叠加,产生严重的码间干扰。 Frequency Response(FR) 频率响应特性图不再是平坦的,体现出了多径信道的频率选择性衰落。

通信原理实验报告一

中央民族大学实验报告 学生姓名:马丽娜学号:0938087 专业班级:09电子班 实验类型:□√验证□综合□设计□创新实验日期:2012年3月21日实验成绩: 指导老师:邹慧兰 一、实验项目名称 模拟锁相环模块 二、实验目的 1、熟悉模拟锁相环的基本工作原理 2、掌握模拟字锁相环的基本参数及设计 三、实验基本原理 模拟锁相环模块在通信原理综合实验系统中可作为一个独立的模块进行测试。在系统256KHz时钟锁在发端的256KHz的时钟上,来获得系统的同步时钟,如HDB3接受的同步时钟以及后续电路同步时钟。 该模块主要由模拟锁相环UP01(MC4066)、数字分频器UP02(74LS161)、D触发器UP04(74LS74)、环路滤波器和运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz)组成。在UP01内部有一个振荡器与一个高速鉴相器组成。

该模拟锁相环的框图见图2.1.1。因来自发端信道的HDB3码为归零码,归零码中含有256KHz时钟分量,经UP03B构成中心频率为256KHz有源由带通滤波器后,滤出256KHz时钟信号,该信号再通过UP03A放大,然后经UP04A和UP04B两个除二分频器(共四分频)变为64KHz信号,进入UP01鉴相器输入A脚;VCO输出的512KHz 输出信号经UP02进行八分频变为64KHz信号,送入UP01的鉴相输入B脚;经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO锁定在外来的256KHz频率上。模拟锁相环模块各跳线开关功能如下: 1、跳线开关KP01用于选择UP01的鉴相输出。当KP01设置于1_2时(左端),选择异或门鉴相输出,环路锁定时TPP03、TPP05输出信号将存在一定相差;当KP01设置于2_3时(右端),选择三态门鉴相输出,环路锁定时TPP03、TPP05将不存在相差,调整电位器WP01可以改变模拟锁相环的环路参数。 2、跳线开关KP021是用于选择输入锁相信号,当KP021设置于1_2时(HDB3:左端),输入信号来自HDB3编码模块的HDB3码信号;当KP021设置于2_3时(TEST:右端)选择外部的测试信号(J007输入),此信号用于测量该模拟锁相环模块的性能。 在该模块中,各测试点的定义如下: 1、TPP01:256KHz带通滤波器输出 2、TPP02:隔离放大器输出 3、TPP03:鉴相器A输入信号(64KHz) 4、TPP04:VCO输出信号(512KHz) 5、TPP05:鉴相器B输入信号(64KHz) 6、TPP06:环路滤波器输出 7、TPP07:锁定指示检测(锁定时为高电平) 以上测试点通过JP01测试头引出,JPO1的排列如下图所示

相关主题
文本预览
相关文档 最新文档