当前位置:文档之家› 最新 考研内部资料生化

最新 考研内部资料生化

最新 考研内部资料生化
最新 考研内部资料生化

最新贵州大学生物化学与分子生物学专业考研

贵州大学生物化学与分子生物学专业考 研 贵州大学生物化学与分子生物学硕士点主要由贵州大学生化营养研究所组成,该所 创建于1963年,现下属生物技术研究室、分析测试中心、铁农保健营养品厂、分子生物学 及基因工程实验室。师资力量雄厚,拥有教师18人,其中教授2人,副教授7人,博士后出站人员1人,在读博士2名(其中一名20XX年7月毕业),硕士学位获得者6人,硕士生导师5人,学术队伍老中青结构合理。 本学科于1994年被贵州省政府批准为贵州省生化重点学科,贵州大学于1998年投资70余万元建成了生化中试基地(隶属于学校),为实验室成果转化创造了条件,也为复合 型高层次人才培养奠定了基础。现贵州大学已向国家教委申报博士点。 本硕士点从78年起招收硕士生,已培养出18名硕士生,毕业生有在国外或国内攻读 博士学位的(其中有8名考上博士,3名在国外攻读博士),有在大型企业担任重要职务的, 也有在高校或政府部门任职的。由于注重研究生的能力培养,毕业生普遍受到用人单位的欢迎。 学术带头人:何照范,教授,现任生化营养研究所所长及贵州大学生化中试基地主任, 硕士生导师,贵州省首批省管专家,享受国务院特津补贴,主要从事生物活性成分的分离技 术研究等。 学术队伍: 赵德刚:教授,博士后出站,硕士生导师,现任贵州大学科技处处长。 郁建平:副教授,硕士生导师,中山大学在读博士(2000.7月毕业)。 王嘉福:副教授,硕士生导师,现任贵州大学食科系副主任。 国兴明:副教授,硕士生导师。 科研方向: 本学位点现有三个研究方向:1、生物活性成分及分离技术;2、食品生化及检测技术; 3、分子生物学及基因工程。 本学科九五期间共承担国家自然科学基金3项,国家重点实验室课题1项,省九五攻 关课题1项,省基金课题9项,省火炬项目1项,企业委托课题4项,总计经费291.1万元,现在研各种项目12项,总计经费264、6万元。

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径:

过程 2 H 2 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变 构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 第一阶段:糖酵解途径 G (Gn ) 丙酮酸胞液

考研普通生物学考研朱玉贤《现代分子生物学》考研真题

考研普通生物学考研朱玉贤《现代分子生物学》考研 真题 第一部分考研真题精选 一、选择题 1DNA模板链为5′-ATTCAG-3′,其转录产物是()。[浙江海洋大学2019研] A.5′-GACTTA-3′ B.5′-CUGAAU-3′ C.5′-UAAGUC-3′ D.5′-CTGAAT-3′ 【答案】B查看答案 【解析】在RNA转录过程中,RNA是按5′→3′方向合成的,以DNA双链中的反义链为模板,在RNA聚合酶催化下,以4种核苷三磷酸(NTPs)为原料,根据碱基配对原则(A-U、T-A、G-C)。因此答案选B。 2DNA的变性()。[扬州大学2019研] A.可以由低温产生 B.是磷酸二酯键的断裂 C.包括氢键的断裂 D.使DNA的吸光度降低 【答案】C查看答案 【解析】DNA的变性是指当DNA溶液温度接近沸点或者pH较高时,DNA 双链的氢键断裂,最后完全变成单链的过程。DNA的复性是指热变性的DNA经缓慢冷却,从单链恢复成双链的过程。A项,DNA的变性是由于高温引起的,故A

项错误;B项,DNA的变性是核酸双螺旋碱基对的氢键断裂,但不涉及其一级结构的改变,故B项错误;D项,当DNA溶液温度升高到接近水的沸点时(DNA变性),260nm的吸光度明显增加,这种现象称为增色效应,故D项错误。 3密码GGC的对应反密码子是()。[浙江海洋大学2019研] A.GCC B.CCG C.CCC D.CGC 【答案】B查看答案 【解析】根据碱基互补配对原则,G与C相互配对。因此答案选B。 4原核生物启动序列-10区的共有序列称为()。[扬州大学2019研] A.TATA盒 B.CAAT盒 C.Pribnow盒 D.GC盒 【答案】A查看答案 【解析】绝大部分启动子都存在两段共同序列:位于-10bp处的TATA区和-35bp处的TTGACA区。因此答案选A。 5.色氨酸生物合成操纵子为下列()方面的例子。[浙江海洋大学2019研] A.正调控可抑制操纵子 B.负调控可诱导操纵子 C.正调控可诱导操纵子

生化知识点整理(特别全)

第一章 蛋白质的元素组成(克氏定氮法的基础) 碳、氢、氧、氮、硫(C、H、O、N、S ) 以及磷、铁、铜、锌、碘、硒 蛋白质平均含氮量(N%):16% ∴蛋白质含量=含氮克数×6.25(凯氏定氮法) 基本组成单位 氨基酸 熟悉氨基酸的通式与结构特点 ● 1. 20种AA中除Pro外,与羧基相连的α-碳原子上都有一个氨基,因而称α-氨 基酸。 ● 2. 不同的α-AA,其R侧链不同。氨基酸R侧链对蛋白质空间结构和理化性质有 重要影响。 ● 3. 除Gly的R侧链为H原子外,其他AA的α-碳原子都是不对称碳原子,可形成 不同的构型,因而具有旋光性。 ● 氨基酸分类P9 按侧链的结构和理化性质可分为: 非极性、疏水性氨基酸 极性、中性氨基酸 酸性氨基酸 碱性氨基酸 等电点概念 在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点(isoelectric point,pI )。 紫外吸收性质 含有共轭双键的芳香族氨基酸Trp(色氨酸), Tyr(酪氨酸)的最大吸收峰在280nm波长附近。 氨基酸成肽的连接方式 两分子脱水缩合为二肽,肽键

由10个以氨基酸相连而成的肽称为寡肽。 而更多的氨基酸相连而成的肽叫做多肽;多肽链有两端,其游离a-氨基的一端称氨基末端或N-端,游离a-羧基的一端称为羧基末端或C-端。 肽链中的氨基酸分子因脱水缩合而基团不全,被称为氨基酸残基。 蛋白质就是由许多氨基酸残基组成的多肽链。 谷胱甘肽GSH GSH是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。 (1) 体重要的还原剂保护蛋白质和酶分子中的巯基免遭氧化,使蛋白质处与活性状态。 (2) 谷胱甘肽的巯基作用可以与致癌剂或药物等结合,从而阻断这些化合物与DNA、RNA 或蛋白质结合,保护机体免遭毒性损害。 蛋白质1~4级结构的定义及维系这些结构稳定的作用键 蛋白质是氨基酸通过肽键相连形成的具有三维结构的生物大分子 蛋白质的一级结构就是蛋白质多肽链中氨基酸残基的排列顺序。主要化学键是肽键,有的还包含二硫键。 蛋白质二级结构是指多肽链的主链骨架中若干肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象,如α-螺旋、β-折叠、β-转角和无规卷曲等。蛋白质二级结构一般不涉及氨基酸残基侧链的构象。 二级结构的主要结构单位——肽单元(peptide unit)[肽键与相邻的两个α-C原子所组成的残基,称为肽单元、肽单位、肽平面或酰胺平面(amide plane)。它们均位于同一个平面上,且两个α-C原子呈反式排列。] 二级结构的主要化学键——氢键(hydrogen bond) 蛋白质的三级结构是指多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。也就是整条多肽链中所有原子或基团在三维空间的排布位置。蛋白质三级结构的形成和稳定主要靠次级键,包括氢键、盐键、疏水键以及德华力等。此外,某些蛋白质中二硫键也起着重要的作用。 由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象,称为蛋白质的四级结构。[亚基(subunit):由一条或几条多肽链缠绕形成的具有独立三级结构的蛋白质。] 蛋白质二级结构的基本形式?重点掌握α-螺旋、β-折叠的概念 α-螺旋(α-helix) β-折叠(β-pleated sheet) β-转角(β–turn or β-bend) 无规卷曲(random coil) α-helix ①多个肽平面通过Cα的旋转,相互之间紧密盘曲成稳固的右手螺旋。 ②主链螺旋上升,每3.6个氨基酸残基上升一圈,螺距0.54nm。肽平面和螺旋长轴平行。 ③相邻两圈螺旋之间借肽键中羰基氧(C=O)和亚氨基氢(NH)形成许多链氢键,即每一

现代分子生物学考研复习重点

现代分子生物学考研复习资料整理 第一章绪论 分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学 分子生物学的主要研究内容 1、DNA重组技术 2、基因表达调控研究 3、生物大分子的结构功能研究——结构分子生物学 4、基因组、功能基因组与生物信息学研究 5、DNA的复制转录和翻译 第二章染色体与DNA 半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制 DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制 原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因 真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构 DNA转座(移位)是由可移位因子介导的遗传物质重排现象 DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化 转座子分为插入序列和复合型转座子两大类 环状DNA复制方式:θ型、滚环型和D-环型 第三章生物信息的传递(上)从DNA到RNA 转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程 启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性 原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力 终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列) 终止子的类型:不依赖于ρ因子和依赖于ρ因子 增强子:能增强或促进转录起始的序列 增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具

江南大学2013年生物化学与分子生物学考研真题

江南大学生物化学与分子生物学13年初试真题(回忆版) 703分子生物学 一名词解释(2.5×10) 1多顺反子2重叠基因3 SNP 4比较基因组 5核酶 6 RNAi 7酵母人工染色体8分子伴侣9 GU-AG法则10忘了 二填空题(每空1.5分,共20空) 1DNA复制时需要先合成(),原核生物一般长度为() 2乳糖操纵子的组成及酶 3 防止DNA环化的酶是()除去() 4 ( )是现在的测序方法通过取出()来测定 5 DNA合成时的方向(),RNA合成的方向(),蛋白质合成时的方向() 6 7 8 9 10记不起来了 三简答每题10分 1蛋白质合成后有哪些加工? 2Westerblot的原理及过程 3分子的标记有哪些? 4cAMP酶突变后对乳糖操纵子的影响? 5基因组测序后得到了哪四张图?对医学的发展有哪些影响? 四问答(每题15分 3题) 1Sanger测序的原理及过程读出图中的序列 2色氨酸操纵子的调控 3多克隆位点没做好记不住了 2013年江南大学生命科学综合真题 1 什么是序列比对?有什么作用? 2 什么是代谢组? 3 简述什么是生物信息学? 4 SCI是什么? 5 蛋白质变性的主要因素有哪些?蛋白质变性后会发生哪些变化? 6 蛋白质的结构决定蛋白质的功能,一个蛋白质的氨基酸序列发生改变,则蛋白质的高级结构肯定发生变化,蛋白质的生物学功能会丧失。对此你有什么看法? 7 为什么说DNA双螺旋模型具有划时代的意义? 8 一个生物的基因组全序列已知,那么蛋白质组就已知了吗? 9一个表现型回复突变的T4噬菌体,发生突变后前两个氨基酸未变,后面的氨基酸序列发生改变,这种突变属于哪类?改变后的多肽对于蛋白质的作用是什么? 10 忘了- 以上大部分为10分一题,以下每题15分,总分150分 11什么是蛋白质组学?其主要研究内容是什么? 12什么是比较基因组学?有哪些应用? 13一个碱基发生改变,其表达产物会发生哪些变化?

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

生物化学知识点总结

生物化学知识点总结 一、蛋白质 蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。6.25称作蛋白质系数。 样品中蛋白质含量=样品中含氮量×6.25 蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收 等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。 肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。 生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。 1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。 寡肽:10个以下氨基酸脱水缩合形成的肽 多肽:10个以上氨基酸脱水缩合形成的肽 蛋白质与多肽的区别: 蛋白质:空间构象相对稳定,氨基酸残基数较多 多肽:空间构象不稳定,氨基酸残基数较少 蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。 α?螺旋的结构特点: 1)以肽键平面为单位,以α?碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。

研究生-分子生物学Ⅱ笔记整理版

分子生物学Ⅱ 专题一细胞通讯与细胞信号转导(一)名词解释 (1)信号分子(signal molecule):是指在细胞间或细胞内进行信息传递的化学物质。 (2)受体(receptor):是指细胞中能识别信息分子,并与之特异结合、引起相应生物效应的蛋白质。 (3)蛋白激酶(protein kinase):是指使蛋白质磷酸化的酶。 (二)简答分析 (1)细胞通讯的方式及每种作用方式的特点。 答: (2)膜受体介导的信息传递途径的基本规律。

答:配体→膜受体→第二信使→效应蛋白→效应。(3)试以肾上腺素、干扰素、胰岛素、心纳素为例,阐述其信息转导过程。 答:①肾上腺素:cAMP-PKA途径; 过程:首先肾上腺素与其受体结合,使G蛋白被激活;然后G蛋白与膜上的腺苷酸环化酶相互作用,后者将ATP转化为cAMP;最后cAMP磷酸化PKA,从而产生一系列生物学效应。 ②胰岛素:受体型TPK途径; 过程:胰岛素与其靶细胞上的受体结合后,可使其受体中的TPK激活,随后通过下游的Ras途径继续传递信号,直至发生相应的生物学效应。 ③干扰素:Jak-STAT途径; 过程:首先干扰素与受体结合导致受体二聚化,然后受体使JAK(细胞内TPK)激活,接着JAK将下游的STAT磷酸化形成二聚体,暴露出入核信号,最后STAT进入核内,调节基因表达,产生生物学效应。 ④心钠素:cGMP-PKG途径; 过程:心钠素与其受体结合,由于该受体属于GC型酶偶联受体,具有鸟苷酸环化酶的的活性,因此结合后可直接将GTP转化为cGMP,进而激活下游的PKG,最终产生一系列的生物学效应。

(4)类固醇激素是如何调控基因表达的? 答:类固醇激素穿膜后与细胞内(或核内)受体结合,使受体变构形成激素受体活性复合物并进入细胞核中,然后以TF的形式作用于特异的DNA序列,从而调控基因表达。 专题二基因分析的策略 (一)名词解释 (1)分子杂交(molecular hybridization):是指具有一定同源序列的两条核酸单链(DNA或RNA)在一定条件下,按碱基互补配对原则经退火处理,形成异质双链的过程。(2)核酸分子杂交技术:是指采用杂交的手段(方式),用一已知序列的DNA或RNA片段(探针)来测检样品中未知核苷酸顺序。 (3)探针(Probe):是指用来检测某特定核苷酸序列的标记DNA或RNA片段。 (4)增色效应:是指DNA变性时260nm紫外吸收值增加的现象。 (5)解链温度(Tm):是指加热DNA溶液,使其对260nm 紫外光的吸光度达到其最大值一半时的温度,即50%DNA 分子发生变性的温度。 (6)转基因:是指是借助基因工程将确定的外源基因导入

生化考研重点知识总结

生化考研重点知识总结 第一章单糖 ①多糖与碘显色,至少需要的葡萄糖残基数:6 ②唾液淀粉酶激活剂:Cl- ③几个典型非还原糖:蔗糖、糖原、淀粉 ④形成N-糖肽键的单糖或衍生物是: 第二章油脂 ①几个非饱和脂肪酸双键数: ?油酸:1 ?亚油酸:2 ?亚麻酸:3 ②人不能自身合成的必须脂肪酸:亚油酸、亚麻酸 ③四种脂类转运脂蛋白: ?CM:乳糜微粒,转运外源性三酰甘油酯 ?VLDL:极低密度脂蛋白,转运内源性三酰甘 油酯 ?LDL:低密度脂蛋白,转运内源性胆固醇 ?HDL:高密度脂蛋白,转运外源性胆固醇 第三章氨基酸与蛋白质 ①几种主要氨基酸及三字母缩写 ?两特殊:Pro、Gly ?芳香:酪(Tyr)色(Trp/Try,吸光最强)苯(Phe) ?八种必需氨基酸:甲携来一本亮色书,Met/Val/Lys/Ile/Phe/Leu/Trp/Thr ?侧链为羟基氨基酸:苏(Thr)丝(Ser)酪(Tyr) ?酸性氨基酸:天(Asp)谷(Glu)※对应两酰胺:Asn、Gln ?碱性氨基酸:赖(Lys)精(Arg)组(His) ?其它:丙氨酸(Ala)

②PI ?PI的计算:PI=(PK1+PK2)/2=(PK1+PKR COOH )/2=(PK2+PKR NH2 )/2 ?PH的计算:PH=PK1+Lg(R/R+)=PK2+Lg(R-/R) ?PH =7的水中溶蛋白,PH=6,则该蛋白PI<6:蛋白溶后PH下降为6,表明蛋白的COOH 电离出H+,则产生了R-,PH=6>PI 时有R-③蛋白二级结构 ?α螺旋:Sn=3.6 13 ,存在Pro时不形成α螺旋,右手螺旋 ?β折叠:同/反向,肽键中H与O成氢键,轴距0.35nm ?β转角:转角处为Gly ④超二级结构:无规卷曲、结构域 ⑤三级结构:作用力(二硫键、疏水作用力、氢键、静电离子键、范德华力) ⑥蛋白结构分析 ?N端分析法:FDNB(Sanger)、PITC(Edman)、DNS-Cl(丹磺酰氯)、氨肽酶法 ?C端分析法:羧肽酶法、无水肼解法※羧肽酶A:不能水解C端为Lys、Arg、Pro的 肽键;羧肽酶B:能水解C端为Lys、Arg的肽 键;C端倒数第二位是Pro时,A、B都不能水 解 ?打开二硫键:还原法(巯基化合物,碘乙酸保护)、氧化法(过甲酸) ?专一切断:胰蛋白酶(Lys、Arg-COOH肽键);CNBr(Met-COOH肽键);胰凝乳蛋白酶(); ⑦显色反应 ?Follin酚:蓝色,酚基(Tyr)、吲哚基(Trp),组分(CuSO 4 +磷钼酸) ?Millon:红色,酚基(Tyr),组分(HgNO 3+Hg(NO 3 ) 2 ) ?坂口反应:红色,胍基(Arg),组分(α萘酚,NaClO) ?黄色反应:黄色,芳香氨基酸,组分(浓HNO 3 ) ?双缩脲反应:紫红色,肽键,多肽,组分(NaOH+CuSO 4 ) ?乙醛酸反应:紫色,吲哚基(Trp) ⑧几种重要氨基酸 ?提供活性甲基的:S-腺苷Met ?形成N-糖肽键的:Asp ?胶原蛋白中含量高的氨基酸:Gly、Ala、Pro、HO-Pro、HO-Lys

生物化学考试重点_总结

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、蛋白质的主要组成元素:C、H、O、N、S 特征元素:N(16%)特异元素:S 凯氏定氮法:每克样品含氮克数×6.25×100=100g样品中蛋白质含氮量(g%) 组成蛋白质的20种氨基酸 (名解)不对称碳原子或手性碳原子:与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳 为L-α-氨基酸,其中脯氨酸(Pro)属于L-α-亚氨基酸 不同L-α-氨基酸,其R基侧链不同 除甘氨酸(Gly)外,都为L-α-氨基酸,有立体异构体 组成蛋白质的20种氨基酸分类 非极性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、 亮氨酸(Leu)、异亮氨酸(Ile)、脯氨酸(Pro) 极性中性氨基酸:丝氨酸(Ser)、半胱氨酸(Cys)、蛋氨酸(Met) 天冬酰胺(Asn)、谷氨酰胺(Gln)、苏氨酸(Thr) 芳香族氨基酸:苯丙氨酸(Phe)、色氨酸(Trp)、酪氨酸(Tyr) 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu) 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His) 其中:含硫氨基酸包括:半胱氨酸、蛋氨酸 四、氨基酸的理化性质 1、两性解离及等电点 ①氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。 ②氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。 ③(名解)等电点(pI点):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。 pHpI 阴离子氨基酸带净正电荷,在电场中将向负极移动 ④在一定pH范围内,氨基酸溶液的pH离等电点越远,氨基酸所携带的净电荷越大 2、含共轭双键的氨基酸具有紫外吸收性质 色氨酸、酪氨酸的最大吸收峰在280 nm 附近 大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法 3、氨基酸与茚三酮反应生成蓝紫色化合物 在pH5~7,80~100℃条件下,氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 五、蛋白质是由许多氨基酸残基组成的多肽链 (一)氨基酸通过肽键连接而形成肽 1、(名解)肽键(peptide bond)是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键 2、肽是由氨基酸通过肽键缩合而形成的化合物 3、10个以内氨基酸连接而成多肽称为寡肽;由更多的氨基酸相连形成的肽称多肽 肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基

中国科学技术大学_细胞生物学_生物化学与分子生物学_历年考研真题

出售中国科学技术大学97到2011年生化,细胞真题及答案,2012有真题没有答案,另附科大历年期末期中试题及答案(课件也有,但本人觉得一点用没有,还浪费大量时间看)。本人亲身2013经历考研,总分400左右(不好报出具体分数,请谅解),绝对有用,试题重复率达到每科30分左右(有的年份会远高于这个数),信不信由你,有意者联系qq824538346 发邮件即可,QQ常年不在线,价钱所有资料40元,只为赚回当年买资料花的近400元。。。。如果想咨询考研经验也可联系,有时间的话乐意回答 中国科学技术大学化学院 2005--2006 学年第 2 学期考试试卷 (2006年6月28 日) 考试科目: 生物化学得分:__________ 学生所在系:_________ 姓名:__________ 学号:___________ 一、填空题:(50分,每空1分) 1.蛋白聚糖通常位于__________________ 或_______________________。2.脂类是____________、________________、__________________等类化合

物的总称。 3.脂类在血液中以_____________________________形式运输。 4.真核生物的染色质DNA缠绕在组蛋白上形成_____________________。5.请写出肽平面的共价结构(包括6个原子)_______________________。6.水溶性球状蛋白的内部主要为____________________氨基酸。 7.同源蛋白是_____________________________________________________。8.在蛋白质溶液中加入高浓度的硫酸铵而使蛋白质________的方法被称为___________。 9.许多酶需要________________或_____________________作为辅助因子。10.___________________________________________为抗体酶的产生提供了理论依据。 11.一个酶催化反应的k cat是30.0S-1, Km是 5 mM, 当底物浓度为______________, 反应速度可达最大反应速度的1/4。 12._____________和_________________是水溶性的重要电子载体。 13.柠檬酸是磷酸果糖激酶1(PFK-1)的_______________________。 14.胰高血糖素(Glucagon)通过__________果糖2,6-二磷酸的浓度升高血糖。 15.糖原生物合成的前体是____________________________。 16.胰高血糖素与受体结合,通过信号转导产生二级信使cAMP,cAMP激活蛋白激酶A,进而激活其它与糖原降解有关的酶。这一过程被称为激素调节的________________。 17.脂肪酸彻底氧化产生ATP的三个阶段是_________________、___________________和_________________________________。 18.三羧酸循环中,_________________生成草酰乙酸。

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

生物化学重点知识归纳

生物化学重点知识归纳 酶的知识点总结 一、酶的催化作用 1、酶分为:单纯蛋白质的酶和结合蛋白质的酶,清蛋白属于单纯蛋白质的酶 2、体内结合蛋白质的酶占多数,结合蛋白质酶由酶蛋白和辅助因子组成,辅助因子分为辅酶、辅基;辅酶和酶蛋白以非共价键结合,辅基与酶蛋白结合牢固,一种酶蛋白只能与一种辅助因子结合,所以酶蛋白决定酶反应特异性。结合蛋白质酶;酶蛋白:决定酶反应特异性;辅酶:结合不牢固辅助因子辅基:结合牢固,由多种金属离子;结合后不能分离 3、酶的活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的局部空间结构 4、酶的有效催化是降低反应的活化能实现的。 二、辅酶的种类口诀:1脚踢,2皇飞,辅酶1,NAD, 辅酶2,多个p; 三、酶促反应动力学:1 Km为反应速度一半时的[S](底物浓度),亦称米氏常数,Km增大,Vmax不变。

2、酶促反应的条件:PH值:一般为最适为7.4,但胃蛋白酶的最适PH为1.5,胰蛋白酶的为7.8;温度:37—40℃; 四、抑制剂对酶促反应的抑制作用 1、竞争性抑制:Km增大,Vmax不变;非抑制竞争性抑制:Km不变,Vmax减低 2、酶原激活:无活性的酶原变成有活性酶的过程。 (1)盐酸可激活的酶原:胃蛋白酶原 (2)肠激酶可激活的消化酶或酶原:胰蛋白酶原 (3)胰蛋白酶可激活的消化酶或酶原:糜蛋白酶原 (4)其余的酶原都是胰蛋白酶结合的 3、同工酶:催化功能相同,但结构、理化性质和免疫学性质各不相同的酶。 LDH分5种。LDH有一手(5种),心肌损伤老4(LDH1)有问题,其他都是HM型。 脂类代谢的知识点总结 1、必需脂肪酸:亚麻酸、亚油酸、花生四烯酸(麻油花生油) 2、脂肪的能量是最多的,脂肪是禁食、饥饿是体内能量的主要来源

分子生物学笔记完全版

分子生物学笔记 第一章基因的结构 第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因(Pseudogene).Ψa1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1.功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构, 2.结构基因中没有内含子,也无重叠现象。 3.细菌DNA大部分为编码序列。 二、病毒基因组的特点 1.每种病毒只有一种核酸,或者DNA,或者RNA; 2.病毒核酸大小差别很大,3X103一3X106bp; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4.大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5.真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6.有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone):一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere):真核生物线状染色体分子末端的DNA区域 端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

新版重庆医科大学生物化学与分子生物学考研经验考研参考书考研真题

考研是我一直都有的想法,从上大学第一天开始就更加坚定了我的这个决定。 我是从大三寒假学习开始备考的。当时也在网上看了很多经验贴,可是也许是学习方法的问题,自己的学习效率一直不高,后来学姐告诉我要给自己制定完善的复习计划,并且按照计划复习。 于是回到学校以后,制定了第一轮复习计划,那个时候已经是5月了。 开始基础复习的时候,是在网上找了一下教程视频,然后跟着教材进行学习,先是对基础知识进行了了解,在5月-7月的时候在基础上加深了理解,对于第二轮的复习,自己还根据课本讲义画了知识构架图,是自己更能一目了然的掌握知识点。8月一直到临近考试的时候,开始认真的刷真题,并且对那些自己不熟悉的知识点反复的加深印象,这也是一个自我提升的过程。 其实很庆幸自己坚持了下来,身边还是有一些朋友没有走到最后,做了自己的逃兵,所以希望每个人都坚持自己的梦想。 本文字数有点长,希望大家耐心看完。 文章结尾有我当时整理的详细资料,可自行下载,大家请看到最后。 重庆医科大学生物化学与分子生物学的初试科目为: (101)思想政治理论 (201)英语一 (611)生物综合 (802)生物化学(自命题) 参考书目为: 1.凌诒萍《细胞生物学》

2.杨抚华《医学生物学》 3.陈竺《医学遗传学》 4.左伋《医学生物学》 5.黄诒森《生物化学与分子生物学》 先聊聊英语 单词部分:我个人认为不背的单词再怎么看视频也没用,背单词没捷径。你想又懒又快捷的提升单词量,没门。(仅供个人选择)我建议用木糖英语单词闪电版,一天200个,用艾宾浩斯曲线一个月能记完,每天记单词需要1小时(还是蛮痛苦的,但总比看真题时啥也看不懂要舒服多)。好处在于是剔除了初高中的简单词,只剩下考研的必考词,能迅速让你上手真题。背单词要一直从3-4月份持续到考研前几天,第一遍记完必须要在暑假前。 阅读完形部分:木糖英语真题手译就挺好用的,不需要做真题以外的任何阅读题。因为真题就是最贴近实战的练习题了,还记得近十年的真题我是刷了大概有四五遍。 不过,我建议从05年的开始抠真题,需要一个单词都不放过,因为考研英语的试卷有80%的单词,去年的卷子重复过。抠真题需要每句都看懂,每个单词都会。尽量在暑假前结束抠题的过程这决定你英语能否考70+,最迟到暑假结束(尽量别这么干,这会拖其他科目的节奏),因为需要大量时间,前期抠真题,一套得一整天。这是为了不让看不懂卡你的阅读,但阅读拿分重要的是逻辑结构,就算看懂了也不一定能做对。在抠完第一遍后,必看木糖的课和木糖的课或者方法。今年的找不到就去找去年的。里面有超级多做题的逻辑,教你提高正确率。然后再做真题,用木糖英语教的方法。最迟10月份搞定。

相关主题
文本预览
相关文档 最新文档