当前位置:文档之家› 地震岩石物理应用技术_李生杰

地震岩石物理应用技术_李生杰

GeoFrame_地震属性分析和应用

SIS 软件软件技术应用技术应用技术应用之一之一 斯伦贝谢伦贝谢科技服务科技服务科技服务((北京北京))有限公司 2007年3月 GeoFrame 地震属性分析和应用地震属性分析和应用

1 地震属性分析和应用 应用地震属性开展储层横向预测是地震资料综合解释的重要研究内容。随着地球物理理论、数学理论的不断发展,通过各种计算方法能够提取和分析的地震属性越来越多,如何从众多的地震属性中选择能够反映客观地质现象的属性对目的层储层开展分析,这是地球物理人员在实际工作中面对的一个主要问题。 GeoFrame 综合地学平台为地球物理人员开展储层横向预测研究提供了一套完善的工具。SATK 、SeisClass 、LPM 以及GeoViz 的组合应用,可以帮助研究人员完成从属性提取、属性优化、定性分析到定量计算的储层预测全过程。本文重点阐述GeoFrame 储层预测的基本思路及地震属性的地质应用。 1、地震属性储层预测的基本思路 地震地层学原理假定,地震剖面上的反射波同相轴具有年代分界面的意义,要研究地层岩性和沉积相主要依据的是地震反射特征及其横向变化,也就是地震属性的变化,这是应用地震属性进行储层预测的基本理论依据。 应用地震属性进行储层横向预测要解决的主要问题是多解性问题,即:一种地震属性参数的变化受多种地质因素的影响,而一种地质现象的改变,也会造成多种地震属性的异常。 因此,在对地震属性分析预测过程中,如何从众多的地球物理参数中选取能反映地质特征变化的参数,是地震属性预测的主要问题。实际工作表明,必须做好以下两项工作: ① 正确认识地震属性 正确认识地震属性是做好属性预测的基础,不同的地震属性参数,它的地球物理含义、数学含义不一样,反映的地质规律也不一样。如:半时能量和总能量,尽管都是振幅类参数,但具体的展布规律却不一样(图1)。 图1 1 相同地区相同地区相同地区半时能量半时能量半时能量和和总能量总能量对比图对比图对比图 半时能量半时能量((Energy half-time ) 总能量总能量((Total Energy )

地震定位基本原理

1、Hypo2000定位方法的基本原理 1.1基本原理 Hypoinverse 算法是在Geiger 法的思想上发展起来的一种单事件绝对定位方法。设n 个台站的观测到时为t 1,t 2,…,t n 求震源位置 x o ,y o ,z o 及发震时刻t o ,使得目标函数最小。 ? t 0,x 0,y 0,z 0 = r i 2n i=1 1 其中r i 为到时残差 r i =t i ?t o ?T i x o ,y o ,z o (2) T i 为震源到第i 个台站的计算走时。 使目标函数取极小值,即 ?θ? θ =0 3 其中θ= t o ,x o ,y o ,z o T ,?θ= ? ?t o ,??x o ,??y o ,??z o T 。 g θ =?θ? θ 4 在真解θ附近任意试探解θ?及其校正矢量δθ满足 g θ? + ?θg θ? T T δθ=0 5 即 ?θg θ? T T δθ=? g θ? 6 由?的定义可得公式(6)的具体表达式 ?r i ?θj ?r i ?θk +r i ?2r i ?θj ?θk θ?δθj =? r i ?r i ?θk θ?n i=1n i=1 7 若θ?偏离真解θ不大,则r i θ? 和 ?2T i ?θ j ?θk θ?较小。可忽略二阶导数项,上式被简化为线性最小二乘解: ?r i ?θj ?r i ?θk n i=1δθj =? r i ?r i ?θk θ? n i=1 8 以矩阵形式表示,上式为 A T A δθ=A T r 其中 A = 1?T 1?x 0 ?T 1?y 0 ???1?T n ?x 0 ?T n ?y 0 ?T 1?z 0??T n ?z 0 θ? ,r = r 1 ?r n 9 若二阶导数项不可忽略。则式(7)给出的非线性最小二乘解 A T ?A ?θA T r δθ=A T r 10 通常各站台的到时数据具有不同的精度,若果不加以区别,则具有较低精度的数据将影响结果的精度,这一问题可以通过引入加权目标函数来解决。设各台站到时残差r i 的方差为σi 2,引入加权目标函数 ?r θ = r i 2n i=1 θ 1 σi 2 11 按照上述同样的步骤,得到如下加权线性最小二乘解 A T C r ?1A δθ=A T C r ?1r 12 其中C r 为加权方差矩阵:C r =diag σ12,…,σn 2 。 求得δθ后,以θ=θ?+δθ作为新的尝试点,再求解相应方程。如此反复迭代,直到?或?r 足够小,此时即得估计解θ 。[4]

常用地震属性的意义之欧阳家百创编

常用地震属性的意义 欧阳家百(2021.03.07) 地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。 1、属性体、属性剖面 这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t0、属性值),可以用于常规地震剖面的方式显示与使用,常用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜

2、沿层地震属性 这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y 坐标。提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内

提取地震属性,提取方式有4种(图2-1a)。用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。 常用地震属性的计算方法总结如下: (1)、均方根振幅(RMS Amplitude) 均方根振幅是将振幅平方的平均值开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。 (2)、平均绝对值振幅(Average Absolute Amplitude) 平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。 (3)、最大波峰振幅(Maximum Peak Amplitude) 最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。 PAL画一个使这三个采样点适合曲线并且 沿这一曲线确定出最大值。 MaximumPeak Amplitude = 125 (4)、平均波峰振幅 (Average Peak Amplitude) 平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。 (5)、最大波谷振幅 (Maximum Trough Amplitude) 最大波谷振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷振幅值。 PAL 画一个适合这三个采样点的曲线 并且沿着这一曲线确定出最大值。

地震属性分析技术综述

【全文】地震属性分析技术综述 [摘要] 地震属性是从地震资料中提取的隐藏有用信息,因而地震属性分析技术近几年在油气勘探开发中得到了广泛的应用与研究。本文对地震属性分析技术的发展状况进行了归纳、总结,简单阐述了地震属性分析技术的在不同时期所用到的基本原理和方法。特别对新地震属性进行了具体介绍。最后对该技术进一步的研究工作进行了总结和展望。 摘要:在勘探和开发周期的各个阶段,地震资料在复杂油藏系统的解释过程中,扮演着至关重要的角色。然而,缺少一种有效地将地质知识应用于地震解释中的上具。随着一系列属性新技术的出现,对地震属性进行充分研究,就给地质家提供了快速地从三维地震数据中获得地质信息的能力。尤其在用常规解释手段难以识别日的储层的情况下,属性分析技术更是给地质上作人员指出了新的方向。 [关键词] 地震属性储层预测叠前数据叠后数据 关键词:储层;波形分析;地震属性 1.引言 地震属性是指叠前或叠后的地震数据经过数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征的特殊度量值。地震属性的发展大致从20世纪60年代的直接烃类检测和亮点、暗点、平点技术开始,经历了70年代的瞬时属性(主要是振幅属性)和复数道分析,90年代的多维属性(特别是相干体属性)分析,21世纪的地震相分析等阶段[1一SJ。随着地震属性分析技术的发展与研究,该技术已广泛应用于储层预测、油气藏动态监测、油气藏特征描述等领域,并取得了很好的效果。总之,地震属性分析技术可以从地震资料中提取隐藏其中的多种有用信息,这为油气勘探与开发提供了丰富宝贵的资料,也为解决复杂地质体评价提供了实用的分析手段。因此,对该技术进行深人调查研究具有很强的现实意义。 地震属性是指从地震数据中导出的关于儿何学、运动学、动力学及统计特性的特殊度量值。它可包括时问属性、振幅属性、频率属性和吸收衰减属性,不同的属性可指示不同的地质现象。地震属性分析则是从地震资料中提取其中的有用信息,并结合钻井资料,从不同角度分析各种地震信息在纵向和横向上的变化,以揭示出原始地震剖面中不易被发现的地质异常现象及含油气情况。 地震属性分析技术的研究已由线、面信息扩展到三维体信息,从分类提取扰化发展为一项系统的应用技术。随着地震技术的日趋成熟,地震属性技术近儿年也发展迅速,其中有多属性联合解释技术、波形分析技术、吸收滤波技术等。应用地震属性分析技术去完善勘探生产中的油藏描述工作,已经成为油藏地球物理的核心内容。利用地震属性分析技术预测岩性和有利储集体,描述油藏特征及孔隙度变化,寻找难以发现的隐蔽油区,以至于监测流体运动和进行其它综合研究,一直是石油工作人员追求的目标。 1波形分析技术的研究与应用 通常的层段属性只是表示了某儿个地震信号的物理参数(振幅、相位、频率等),但它们没有一个能够单独描述地震信号的异常,而地震信号的任何物理参数的变化总是对应着反映地震道形状的变化,所以,研究和分析地震资料中代表各种属性总体特征的地震道形状(波形),应该能有非常不错的效果[,]。 1. 1波形分析技术的原理及处理过程

岩石物理分析

第一篇地震岩石物理学及在储层预测的应用 Seismic Rock physics Theory and the Application in Reservor Discrimination 摘要 储层预测研究主要在于弄清储层构造特征、岩性特征及储层参数,进而减少勘探开发风险。储层参数包括孔隙度、渗透率、流体类型等,而地震资料提供的是地震波旅行时和振幅信息,再通过反演可得到弹性参数。地震岩石物理学则为储层参数和弹性参数之间搭建桥梁。横波速度是重要的地球物理参数在近些年发展起来的叠前地震储层弹性参数反演及流体检测方面起着重要的作用。地震横波速度估计技术是根据地震岩石物理建立的目标岩石模量计算模式,利用计算出的模量重建纵波曲线,与实测曲线建立迭代格式修正岩石模量,实现横波速度等关键参数估计。在方法实现上利用了Xu-White模型为初始模型。流体因子是识别储层流体的重要参数,常规流体因子多是基于单相介质理论提出的,而从双相介质岩石物理理论出发可以更好的研究孔隙流体对介质岩石弹性性质的影响,为敏感流体因子的构建提供更好的指导。本文采用了Gassmann流体因子,并分析了其敏感性。 关键词:等效介质模量,孔隙度,横波速度估算,Xu-White模型,Gassmann流体因子。

Seismic Rock physics Theory and the Application in Reservor Discrimination Abstract The study of reservoir prediction is mainly to investigate the characteristics of reservoir structure,lithologic features and reservoir parameters,aim to reduce the risk of exploration. Reservoir parameters include porosity,permeability,fluid type,etc,But seismic data only reflects on seismic traveltime,amplitude information,and elastic parameters which can be obtained throuth seismic inversion.Seismic rock physics builds bridges for reservoir parameters elastic.S-wave velocity, an important geophysical parameter,plays an important role in pre-stack seismic reservoir elastic parameter inversion and fluid detection witch developed in recent years.The seismic shear wave velocity estimation technique is based on the rock mass calculation model established by the seismic rock physics, reconstructs the longitudinal wave curve with the calculated modulus, establishes the iterative pattern with the measured curve to correct the rock modulus, and obtain the key parameters such as the shear wave velocity.The Xu-White model was used as the initial model in the method implementation. Fluid factor is an important parameter to identify reservoir fluid. Conventional fluid factors are mostly based on the theory of single-phase medium. From the theory of biphasic medium rock physics, it can be better to study the effect of pore fluid on the elastic properties of fluid The construction of fluid factors provides better guidance. In this paper, the Gassmann fluid factor is used and its sensitivity is analyzed. Key word:Equivalent medium modulus, porosity,Shear wave velocity estimation, Xu-White model, Gassmann fluid factor

近三年大地震综述与分析论文

近三年大地震综述与分析 全球每年都要发生地震500多万次,其中人类能感觉到的有5万多次,能造成破坏的5级以上地震约1000次,而能造成巨大灾害的7级以上地震约十几次,平均每年8级以上的地震有1.2次。强烈的地震可以在几十秒甚至几秒的短暂时间内造成巨大的破坏,顷刻之间就可使一座城市变成废墟。 中国地震活动频度高、强度大、震源浅,分布广,是一个震灾严重的国家。1900年以来,中国死于地震的人数达55万之多,占全球地震死亡人数的53%;1949年以来,100多次破坏性地震袭击了22个省(自治区、直辖市),其中涉及东部地区14个省份,造成27万余人丧生,占全国各类灾害死亡人数的54%,地震成灾面积达30多万平方公里,房屋倒塌达700万间。随着地震越来越频繁的发生,地震也越来越引起人们的重视。 2008年 5月12日,中国四川省汶川县发生里氏8.0级特大地震,造成重大人员伤亡和经济损失。 截至9月25日,汶川地震已确认69227人遇难, 374643 人受伤,失踪1 7923 人。 发震时刻:2008年05月12日 14:28:04 纬度:31.0° 经度:103.4° 深度:14 千米 震级:8.0 参考位置:四川汶川县 最大烈度:11° 汶川大地震整个地下断层长度大约240公里,断层为单侧破裂,并从起始点的震中汶川开始向东北方向延伸,这也就是为什么汶川、北川两地破坏严重,因为前者是震中,而后者则正处在断裂带上。 地震断层长度即地壳破裂长度,有的表现为地面裂缝,有的在地面上看不出来,断层为一个破裂面,一般由震中往一个方向破裂,单侧破裂就是破裂面朝一侧破裂。断裂从震中汶川县往北东方向以每秒3公里速度裂向广元,裂完用时大约80秒。震灾范围长240公里、宽30公里,尤其以破裂至北川县时错动得特别厉害。断层错动不是每个位置都很均匀,有的只有几公分,有的则几公尺。因断层带非常粗糙,每一处错动的力量也不一样(台湾“中

岩石物理模型

岩石物理模型综述 岩石是由固体的岩石骨架和流动的孔隙流体组成的多相体,其速度的影响因素呈现复杂性和多样性各因素对速度的影响不是单一的,是相互影响综合作用的结果,这也表明利用地球物理资料进行储层特征预测和流体识别是切实可行的,岩石的弹性表现为多相体的等效弹性,可以概括为4个分量:基质模量,干岩骨架模量,孔隙流体模量,和环境因素(包括压力温度声波频率等),岩石物理理论模型旨在建立这些模量之间相互的理论关系,它在通过一定的假设条件把实际的岩石理想化,通过内在的物理学原理建立通用的关系。有些模型假设岩石中的孔隙和颗粒是层状排列的,有些模型认为岩石是由颗粒和某种单一几何形状的孔隙组成的集合体,其中孔隙可以是球体、椭球体或是球形或椭球形的包含体,还有些模型认为岩石颗粒是相同的弹性球体。鉴于以上不同的实际岩石理想化过程,我们将岩石物理模型分为四类:层状模型、球形孔隙模型、包含体模型和接触模型。 1 层状模型 ①V oigt-reuss-hill(V-R-H)模量模型 在已知组成岩石介质各相的相对含量以及弹性模量的情况下,分别利用同应变状态同应力状态估算岩石介质有效弹性模量的vogit上限reuss下限,利用两者的算术平均计算岩石的有效弹性模量,这种平均并没有任何理论的基础和物理含义,该模型比较适合于计算矿物成分的有效体积模量及可能的最大上下限,不适于求取岩石的总体积模量剪切模量和气饱和岩石的情况。

②Hashin-shtrikman模量模型 在已知岩石矿物和孔隙流体的弹性模量及孔隙度的情况下,Hashin-shtrikman模型能精确地计算出多孔流体饱和岩石模量的取值范围,其上下限的分离程度取决于组成矿物弹性性质的差异(均为固体矿物颗粒时,上下限分离很小;如有流体存在时,则上下限分离较大)。 ③wood模量模型 wood模量模型首先利用reuss下限计算混合物平均体积模量,再利用其与密度的比值估算速度,该模型比较适用于计算孔隙混合流体的有效有效体积模量,或者浅海沉积物的有效体积模量(浅海沉积物基本为悬浮状态)。 ④时间平均平均方程 Wyllie等人的测量显示,假设岩石满足:(1)具有相对均匀的矿物;(2)被液体饱和;(3)在高有效压力下,波在岩石中直线传播的时间是在骨架中的传播时间与在孔隙流体中的传播时间的和,由此得到声波时差公式为 ΔT=(1-φ)ΔTma+φΔTf 其中,ΔT为声波时差,ΔTma和ΔTf分别是孔隙流体和岩石骨架的声波时差值,φ是孔隙度。因此,通常被称为时间平均方程,该方程适用于压实和胶结良好的纯砂岩。对于未胶结、未压实的疏松砂岩,需要用压实校正系数犆p校正;对于泥质砂岩,要进行泥质校正。 2 球形空隙模型

国内外微地震检测技术现状与应用

国内外微地震检测技术现状与应用 一、国内技术应用现状 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。 1、2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。截止2011年11月,东方物探公司已成功对11口钻井实施了压裂微地震监测。 2、同年,华北油田物探公司针对鄂尔多斯工区大力推广水平井分段压裂技术、不断提高储量动用率及单井产量的要求,2011年年初就对微地震检测技发展状况进行调研,并对检波器、记录仪器、处理软件进行实际考察。 他们与科研院校合作,在鄂南工区富县牛东4井与洛河4井开展微地震监测裂缝评价技术攻关,采用微地震技术对储层压裂进行监测,结果与人工电位梯度方法(ERT)监测结果一致。该公司还通过组建微地震监测项目组,加强相关专业知识的培训和学习,并与科研院校“高位嫁接”,开发微地震检测特色技术,打造差异化竞争优势。 3、近年来,胜利油田积极开展微地震压裂检测技术应用研究,并把它作为油气勘探开发的重要技术手段和技术储备。 据了解,“十二五”期间,非常规油气藏将成为胜利油田的一个重要接替阵地,而微地震压裂检测技术是非常规油气藏勘探领域中的一项重要新技术。 通过开展对国内外微地震压裂检测技术现状、微地震压裂检测采集方法、数据处理及裂缝预测方法、目前成熟的处理反演软件、微地震压裂检测技术应用实例分析等方面调查研究,全面了解和掌握微地震压裂检测技术的技术特点、技术关键、技术实用性及其发展方向,为胜利油田下一步开展非常规油气资源的勘探开发工作提供先进的技术支持,更好地为油气藏勘探开发工作服务。 二、国外技术研究与应用 在20世纪40年代,美国矿业局就开始提出应用微地震法来探测给地下矿井造成严重危害的冲击地压,但由于所需仪器价格昂贵且精度不高、监测结果不明显而未能引起人们的足够重视和推广。 近10年来,地球物理学的进展,特别是数字化地震监测技术的应用,为小范围内的、信号较微弱的微地震研究提供了必要的技术基础。为了验证和开发微地震监测技术在地下岩石工程(如地热水压致裂、水库大坝、石油、核废料处理等)中所具有的巨大潜力,国外一些公司的研究机构和大学联合,进行了一些重大工程应用实验。如1997年,在美国德州东部的棉花谷进行了一次全面而深入的水压致裂微地震成像现场实验,以验证微地震成像技术的实用价值。该实验取得了巨大成功,证明微地震成像技术相对于其它技术来讲,分辨率高、覆盖范围广、经济实用及可操作性强,很有发展潜力。 美国之所以成为目前世界上页岩油气开发的领跑者,就是因为它已经熟练掌握了利用地面、井下测斜仪与微地震检测技术相结合先进的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化。该技术有以下优点: ①、测量快速,方便现场应用; ②、实时确定微地震事件的位置; ③、确定裂缝的高度、长度、倾角及方位;

致密砂岩的岩石物理特征研究文献综述

致密砂岩的岩石物理特征研究文献综述 摘要:致密砂岩是一种非常规的砂岩,一般由致密的碎屑岩组成,主要包括粉砂岩、细砂岩以及部分中-粗砂岩。致密砂岩气藏与深盆气藏和盆地中心气藏以及持续性聚集型气藏有着紧密的联系。本文在对致密砂岩气层的成藏地质特征进行了总结,并介绍了地震响应特征有关的岩石物理参数(例如纵横波速度、密度、泊松比、含气饱和度)等相关概念,在此基础之上,介绍了关于国内外致密砂岩的岩石物理特征研究的基本情况。 关键词:致密砂岩气层岩石物理特征研究现状 一、致密砂岩气层及其岩石物理特征 1.致密砂岩气层的成藏地质特征 致密砂岩气藏的地质成因由多方面因素控制,主要有沉积作用、成岩作用和构造作用,但前面二者起到主控作用。沉积物的物源特征和沉积环境控制着储层物性、岩性以及孔喉结构分布,其中,地层的沉积作用是形成储层低孔低渗特性最基本的作用条件,不仅控制着这类储层的物性特征,还决定了成岩作用的类型和强度。一般情况下,低孔低渗储层主要形成于冲积扇沉积等近源沉积相带或前三角洲沉积等远源沉积相带中。 致密砂岩气藏的一般特征为:(1)基质颗粒杂乱,分选性差,孔喉结构复杂,渗透率较低;(2)致密气藏的非均质性较强,岩性变化大,井与井之间的小层划分及对比难度大;(3)储层具有高含水饱和度,低可流动流体饱和度,以及低气体相对渗透率;(4)气体驱替压力高,存在启动压力现象;(5)气水关系复杂,油、气、水的重力分异不明显,在毯状致密砂层中气和水呈明显的倒置关系,在透镜体状致密砂岩含气层系中一般无明显的水层,致密气藏一般不出现分离的气水接触面,产水不大,含水饱和度高(大于40%);(6)分布隐蔽,常规的勘探方法难以发现。深层浅层成藏关系密切——在致密化程度高而晚期构造相对活动地区,高丰度超压天然气侧向运移困难,势必寻求垂向突破,产生烟囱作用。 2.致密砂岩气层的岩石物理参数 早期的地震数据主要用于构造解释,通过构造结合其它地质信息的综合研究,进行间接地推断该构造的含油气性。随着计算机技术的迅速发展,计算能力的大大的提高,地震处理、解释技术也取得了飞速的发展和进步,现在对地震数据综合分析不仅要准确地落实构造,更重要的是为了预测岩性、孔隙度、孔隙内流体及其饱和度。岩石物理学正好为油藏特性及参数和地震数据建立了某种联系,就像在其两者之间架设了一座桥梁,其作用是在从地震数据中反演出储层和流体特性及在油藏参数的技术方法中起到基本准则的作用。 在均匀各向同性介质中,描述岩石弹性特征的主要地震参数有岩石的密度

现代地震勘探技术作业

中国地质大学(北京) 地震属性综述 报告名称: 地震属性综述 学生姓名:王丹 学号:2010120052 所在院(系):地球物理与信息技术学院

地震属性分类及其地质意义 地震勘探是在地表激发人工震源,由震源所引起的震动以地震波的形式向地下传播,并在一定的条件下向上反射传回地表,然后由地表的仪器(检波器)记录反射回来的地震波,从而得到地震记录(也叫地震资料);之后对地震资料进行相关的处理与解释便可以间接地反映和得到地下相关信息。由于地下介质是地震波传播的载体,所以地下介质的物理性质,如岩性、孔隙度、密度以及流体性质等都会对传播中的地震波产生影响,如地震波的能量、波形、振幅、频率、相位等将在传播过程中发生变化。而这种影响和变化又将在地震记录中保留相应的信息。所以,通过对地震记录(地震资料)的“深加工”或者特殊处理,将会从地震资料中获取更多的有用信息以为地质服务。在早期的油气资源勘探中,地震勘探的目标主要是寻找地下有利的大尺度的构造圈闭,所以只需利用有限的地震资料信息便可达到目的。但是,随着油气勘探与开发难度的加大,人们迫切地需要更多地了解地下地层的岩性、流体性质等信息。这就促使人们运用新的技术和思想去从地震资料中发掘出更多的有用信息。从而,也就推动了地震属性技术的出现与发展。地震属性技术延伸了人类的视觉,从而有助于人们发现更多的隐藏于地震资料中的信息,也有助于人们从多角度去获取和分析地下地质信息,从而实现对地下地质的充分与准确认识。 1地震属性的发展与分类 随着油气勘探、开发工作的深入,也为了充分、有效地利用获取不易的地震资料,现今的地震解释人员需要从地震数据中提取越来越多的信息,然后利用这些信息综合解释地下构造、地层和岩性特征以及流体性质,最终定义精确的油藏模型,用于钻井决策、估计地质储量和可采储量。由于生成地震属性是获取所需信急的一条重要捷径,因此,长期以来地震属性技术一直是地震特殊处理和解释的主要研究内容。 地震属性是叠前或者叠后地震数据,经数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征。长期以来以来地震数据的使用仅仅局限于对地震波同相轴的拾取,以实现面对油气储集体的几何形态、构造特征的描述。但是地震数据中隐藏着更加丰富的有关岩性、物性及流体成分等相关信

定位技术研究分析综述

定位技术研究分析综述 发表时间:2019-05-13T15:58:53.293Z 来源:《知识-力量》2019年8月26期作者:王中宏汪国强[导读] 随着定位技术的研究与发展,其在人们的日常生活中也得到了越来越广泛的应用,在经济、军事等各行各业产生了一定的影响。文中首先介绍了定位技术的应用背景以及发展现状。然后介绍了目前主要的定位算法,包括基于无线传感器网络的定位技术及典型系统,以及主要的室内定位技术。以及衍生出来的各种定位技术。 (黑龙江大学,黑龙江哈尔滨 150000)摘要:随着定位技术的研究与发展,其在人们的日常生活中也得到了越来越广泛的应用,在经济、军事等各行各业产生了一定的影响。文中首先介绍了定位技术的应用背景以及发展现状。然后介绍了目前主要的定位算法,包括基于无线传感器网络的定位技术及典型系统,以及主要的室内定位技术。以及衍生出来的各种定位技术。最后指出了定位技术亟待解决的问题,以及对下一步进行相关研究的展望。关键词:无线传感器网络定位;典型系统;室内定位技术 1.前言 自从以GPS为代表的定位技术出现以来,其高效、方便、快速与准确的特点使人们的生活出现了巨大的变化,带动了一批应用和服务的快速发展。基于用户位置信息的相关技术的应用和发展,位置服务(LBS)已经成为人们日常工作、生活所必须的一项基本服务需求。无论是室内还是室外,人们对位置服务有着迫切的需要。 2.定位技术的发展现状 定位技术可以分为室外定位技术和室内定位技术两种。在室外环境下,全球定位系统(GPS)、北斗定位系统(BDS)等全球导航卫星系统(GNSS)为用户提供米级的位置服务,基本解决了在室外空间中进行准确定位的问题,并在日常生活中得到了广泛的应用。在室内环境下,由于障碍物的遮挡等问题,对室内定位技术的精度、成本、可靠性、覆盖范围以及响应时间有了更高的要求。 3.定位技术概述 3.1 基于无线传感器网络的定位技术 无线传感器网络是一种特殊的网络,可以应用于布线和电源供给困难以及人员不能到达的区域和一些临时场合等。它不需要固定网络支持,具有快速展开,抗毁性强等特点。基于无线传感为网络的几节点定位技术可以根据是否测距分为距离相关的定位算法和距离无关的定位算法。距离相关的定位算法分为基于事件时间的定位算法和基于角度的定位算法。基于时间的定位算法主要有基于到达时间和基于到达时间差的定位算法。基于到达时间的定位算法测量方式简单,但是只有在视距范围内定位精度较高,且要求严格的时间同步,其难点在于如何精准的测量时间,以及外界环境的影响。基于到达时间差的定位算法能够提高定位精度,但是对硬件要求较高,信号在传输过程中易受影响,应用场景单一。基于角度的定位算法主要有基于到达角和接受信号强的指示的算法。基于到达角的定位算法由一端发射信号,另一端有多个超声波接收器或天线阵列测出信号到达方向,据此得出发射端与接收端的相对角度,由三角定位估计接收端位置,但是需要增加硬件设备,对硬件尺寸、功耗、成本要求较高,易受环境影响。基于接收信号强的指示的定位算法具有低功耗、低成本的优点,但是存在噪声干扰,非视距下会产生多径效应、反射等问题,从而产生不同的路径损耗,增加建立信号衰减模型的复杂程度。 3.2典型的自定位系统 Cricket定位系统属于距离定位和松散耦合系统,采用RF和超声波收发器的TDOA技术。信标节点位置信息通过RF传送,若待定节点获得三个以上信标节点位置信息,就可采用三边定位法或极大似然估计法来估计待定为节点的位置。 RADAR系统可提供两种定位方式:场景分析和三边定位。场景分析在定位区域预先建立信标节点RF信号强度和传播距离之间的对应关系的数据库。定位时待定节点获得RF信号强度,并查询数据库,选择最小的位置作为待定位节点的位置。三边定位中,待定点通过RSSI 获得与三个以上信标节点的距离,采用三边定位法进行自身定位。RADAR仅需部署三个以上信标节点就可实现,且可为室内设备提供无线网络。但待定为节点必须支持无线网络连接,易受环境影响。 Active Badge系统属于室内定位系统,是粗粒度定位和符号定位的典型代表。通过以太网将放置在建筑物内部的红外接收信标节点连接在一起。待定为节点Badge周期性发送红外信号IR,IR信标节点所在房间即为待定为节点Badge位置。 3.3室内定位技术 目前,国内外研究者们提出了蓝牙、红外线、RFID、WLAN、超宽带、超声波等室内定位技术及应用系统,但是不同的室内定位技术根据其定位性能有一定的应用局限,还没有一种普适化技术能满足当前所有的室内定位服务需求。以下是目前国内外各种主流的室内定位技术的简单介绍。 红外定位精度在5-10米,优点是定位精度高,但是不能穿越障碍物,且造价较高,功耗较大且易受光干扰;超声波定位精度在1-10厘米,优点是定位精度高,结构简单,但是具有多径效应,衰减明显,受温度影响且成本较高;视觉定位精度在1厘米到1米,优点是环境依赖性低,但是其成本较高,稳定性低;蓝牙定位精度在2-10米,优点是功耗低,易集成,但是其定位距离短,稳定性低,受噪声干扰;Wifi 定位精度在2-50米,优点是易安装,精度高,但是工作量大,功耗大,易受其他信号干扰;RFID定位精度在5厘米到5米,优点是精度高,造价低,标识小,但是作用距离短,无通信能力,难于整合;UWB定位精度在6-10厘米,优点是穿透力强,精度高,功耗低,但是造价低;Zigbee精度在1-2米,优点是功耗低,成本低,但是其稳定性低,受环境干扰;惯性传感器辅助定位的定位精度在2-10米,覆盖范围低,长时间定位后误差较大;A-GPS优点是速度快,精度高,但占用大量通信资源,在使用手机密集的区域受网络堵塞影响;光跟踪优点是成本高,通信速率高,抗干扰能力强,但是定位范围小。 4.总结与展望 到目前为止。无线传感器网络已经取得了很大的进展,但是仍然存在一些问题。即规模大的无线传感器网络有定位误差积累的问题;定位所有节点的所耗时长较长,效率低下;节点定位的降低通信代价的问题;能耗与算法复杂度之间的平衡问题;动态移动节点的定位方法少的问题;目前都是信标节点辅助定位未知节点,仅依赖节点之间的协作、信息传输,实际定位的算法少;部署大规模的无线传感器网络硬件成本较高。

岩石物理学复习提纲2017

岩石物理学复习提纲 2017 一、试卷题型 ?基本概念以填充和名词解释形式考查 一、填充题: 例: 1、岩石物理学主要从()和()上研究岩石特性与其() 性质间相互关系。 2、矿物一般是由无机作用形成的,()和()都是有机作用的 产物,故均非矿物。 二、名词解释: 例: 1、岩石物理学: 2、离子导电岩石:

一、试卷题型 ?简述题与综合题: 三、简述题,主要考查对岩石物理中一些问题的理解 例: 1、简述岩石物理学研究中存在的问题 2、用定性或定量方式列举三个主要岩石特性因素是怎样影响岩石地震 特性的 3、岩石物理模型中公式的定义,物理量的含义,公式等 一、试卷题型 ?简述题与综合题: 四、综合题,与简述题的差别为,一般在综合题中会加入简单的计算, 同时考查对知识的综合应用。 例: 1、阿尔奇公式的基本形式和物理意义,写出各个参量的含意;已知一 些参数后求岩石的电阻率孔隙度和饱和度; 2、 Gassmann方程中需要哪些参数,与空间平均方式建立岩石物理 模型有什么关系,基质体积模量,孔隙内混合流体的体积模量用什么模型计算,已知体积模量怎样计算速度,反之。

一、试卷题型 ?图示说明题和公式推导或证明 五、图示说明题,用图示的方式说明弹性波在固液介质中的传播规律并用文字回答基本规律; 例1:在一个液-固介质的分界面上,上层液体介质的波阻抗为Z 1=Vp 1ρ1,下层固体介质的波阻抗为Z 2=Vp 2ρ2,且V 2>V 1。当一个波以α角入射到界面时,在界面上会发生什么现象?用射线、箭头和角度方式图示,并回答问题。 一、试卷题型 ?图示说明题和公式推导或证明 例2:图示岩石基本特性与速度的关系(定性关系)。

地震灾害中被困人员定位与搜索方法的探讨模板

地震灾害中被困人员定位与搜索方法的探讨 字数:4085 来源:城市建设理论研究2011年19期字体:大中小打印当页正文摘要 本文介绍了国内外目前地震灾害救援中一些较为成熟的搜索技术,例如视频生命探测仪、音频生命探测仪、红外热像仪等,这些装备都是比较先进、轻便、高效、实用的地震救助现场生命搜索与定位的技术设备。并提出了新时期消防部队参与处置地震灾害事故中搜索定位被困人员所运用的方式方法,为今后消防部队在建筑倒塌事故中搜索定位被困人员提供借鉴。 关键词地震灾害; 定位搜索; 方法 搜索定位是指在灾害现场通过寻访、呼叫、仪器侦查或搜救犬搜索确定被困人员在自然空间或缝隙中幸存者的位置。目前常用的搜索方法有以下几种: 一、人工搜索定位 人工搜索可采取一个房间一个房间或一个空间一个空间的搜索,也可采用拉网式搜索。通过对幸存者家属或已救出的幸存者进行询问,对易于接近或就在表面的遇难者进行快速搜索,可以迅速将被困者救出。对埋压较深的被困人员可做上标记,迅速通知救援力量进行救援。人工搜索定位方法的前提是幸存者能够听到呼叫,并有能力做出回应。当幸存者处于昏迷状态或严重受伤时,这种方法将受到很大的限制。其具体内容如下:

(一)询问知情人 消防救援人员到达事故现场后,应根据倒塌建筑的功能、用途等方面的不同,有针对性的向相关的知情人展开询问调查,并了解被困人员的基本特征(如人数、性别、年龄、所在地点等)。不同的倒塌建筑有以下几种询问方法:一是民用建筑倒塌,应向事故中被埋压人员的邻居、亲人等人询问建筑内部的结构,了解客厅、卧室、厨房等房间大体的分布位置。二是大型的商用建筑发生倒塌,救援人员首先要向单位人员询问了解倒塌建筑的层数、每一层的使用功能、高度、面积、平面布局、使用的性质、建筑内人员的数量、在位率以及倒塌时间等信息,推断埋压人员较密集和生还希望较大的位置。三是综合性商场发生倒塌应向工作人员问清楚每一层的使用功能,在条件允许的情况下应首先对销售家具,布置高架货柜等人员生还希望较大的楼层进行搜救,而后对销售衣服、鞋等人员较为密集的楼层展开救援。 (二)看 在救人之前仔细观察是很重要的。首先要查看废墟表面是否有被砸受伤、身体局部埋压不能行动的人员或死亡的人员,确保及时发现及时救助。其次救援人员要查看倒塌建筑物承重构件等部位的受损情况,判断是否可能形成被困人员生存的空间,以及楼梯和疏散通道在废墟中大体的分布位置。因为建筑物发生倒塌后,内部人员要通过楼梯和疏散通道逃生,在这些地方往往可能会有大量的人员被埋压。倒塌建筑周围的情况也要认真的查看,便于搜救工作的开展。在废墟中查看情况时要按照从上到下,从外到内的顺序查看,以确保救援人员的安全。 (三)主动喊话 在搜索埋压人员的过程中,消防人员在佩戴防护面具时可以使用大功率的扬

岩石物理分析技术在储层预测中的应用

岩石物理分析技术在储层预测中的应用 引言 岩石物理分析基础 应用及效果分析 合成地震记录有明显的改善 结论 1、在AVO研究工作中,泊松比是弹性波反演的主要参数之一,通常采用纵横波速度曲线来求取。 【泊松比:泊松比是指材料在单向受拉或受压时,横向正应变与轴向正应变绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。】 2、Gassmann理论为基础的经验公式,其应用的前提条件是: 1)孔隙流体与孔隙壁接触很好; 2)速度不随频率的变化而变化; 3)剪切模量不受流体影响。 3、在实际测井资料分析研究中,由于测井资料容易受到泥浆、井径扩径等非地层因素的影响,同时由于受泥浆滤液浸入的影响,声波和密度的测量代表地层冲洗带的响应状态。 4、通过对工区内岩石物性特性分析研究,可以得到地层的泥质含量、孔隙度、渗透率、含油饱和度、束缚水饱和度等储层物性参数。 如果已知组成地层各分量及各流体分量的体积模量和剪切模量就能够根据Gassmann理论或者Wood理论确定地层的有效体积模量Κ和有效剪切模量μ.Gassmann理论的有效体积模量Κ和有效剪切模量μ为: 式中Κ为岩石的体积模量,Κ s 为颗粒的体积模量,Κ d 为干岩石骨架的体积 模量,Κ f 为流体的体积模量,μ为岩石的剪切模量,μ d 为干岩石的剪切模量, ρ为流体的颗粒密度;ρ f 为岩石的颗粒密度,φ为孔隙度. Κ f 由Wood公式求出: 式中f i 是体积因子,Κ i 是体积模量,ρ i 矿物的体积密度. 地层的体积密度是岩石密度的体积加权,并且与岩石的孔隙度密切相关,通过下式得到:

其中ρ为地层的体积密度,ρ 0为地层岩石的骨架密度,ρ f 为孔隙中流体的 密度,φ岩石的孔隙度。 纵横波的重构是根据Xu-White模型,压缩波速度是介质密度和弹性模量的函数,可表示为: 横波通过固相弹性介质的速度是: 式中V c 为压缩波速度,Κ为地层的有效体积弹性模量,μ为地层的有效切 变弹性模量,ρ为地层的体积密度,V s 为横波速度。 通过测井曲线的重构,做出各井标准层的测井响应频率直方图或频率交会图,同关键井的标准砂岩或泥岩层作对比,地层的物性参数及含油情况等能够得到很好的反映,并能够真正反映地层的沉积环境,消除由于环境影响对测井的影响. 5、下图为一实际测井资料,在井的563-572m是油层、622-627.8m为气层。 X井曲线校正对比图: X井合成记录对比情况:

从勘探领域变化看地震储层预测技术现状和发展趋势

从勘探领域变化看地震储层预测技术现状和发展趋势 摘要:地震储层预测就是以地震信息为主要依据,综合利用其他资料作为约束,对油气储层的品质参数,如几何特征、地质特性、油藏物理特性等,进行预测的 一门专项技术。随着非常规油气勘探技术的兴起,储层预测的内涵也得到了迅速 扩展,已从储层品质预测扩展到源岩品质和工程品质预测。前,地震储层预测技 术已经成为油气勘探生产中储层预测的主导技术之一,它能较好地根据不同勘探 生产阶段的不同需要,提供不同类型、不同精度的储层预测成果,为油气勘探生 产服务。基于此,在接下来的文章中,将对勘探领域变化背景下,地震储层预测 技术现状和发展趋势进行详细分析。 关键词:勘探领域;地震储层;预测技术 引言:地震储层预测是以高分辨率地震和测井资料为基础,以地质与钻井资 料为参考,波阻抗反演和属性分析为主要技术来进行的。因此,波阻抗反演的效 果和属性参数的运用成为储层预测的关键。为了更好的对其现状以及发展趋势进 行了解,在接下来的文章中,将基于勘探领域变化下,对其技术现状以及发展趋 势进行详细分析。 一、地震储层预测技术 (一)地震裂缝预测技术 裂缝预测技术的研究应用成为国内外储层及含油气预测的热门。裂缝是碳酸 盐岩、火山岩中重要的油气储集空间,也是大部分非常规油气的主要存储地方, 如页岩气、煤层气、致密砂岩气等主要以吸附和游离态储存在裂缝或孔隙中.岩 石性质、不同受力类型等因素决定了裂缝的成因、产状、密度、大小、宽度、方 向等呈现复杂多样性,这决定了裂缝预测的超难度和超复杂性。地震裂缝预测技 术的应用起步于计算岩石物理中等效介质理论的提出与应用。等效介质理论将实 验岩石物理模型微观的裂缝参数与地震波场表征的宏观介质性质有机的联系起来,在此基础上发展形成多种各向异性裂缝检测方法和技术,如多波多分量技术预测 裂缝、方位各向异性预测裂缝等.中石油将裂缝预测方法和技术的研究列为“十二五”物探技术研究主要方向之一。 (二)岩石物理分析技术 岩石物理分析技术的应用主要表现在理论岩石物理模型的实际应用、理论模 型与测井岩石物理分析的结合应用及测井岩石物理分析应用等三个方面。岩石物 理针对岩石机理的研究使其成为现今地震储层及油气预测技术发展应用的理论来源。近几年SEG每年都将岩石物理分析及应用作为专题进行讨论[1]。 二、地震储层预测技术现状 目前,由于地震技术储备跟不上勘探领域变化带来的技术需要,物探技术人 员总感到力不从心、疲于应付。地震储层预测技术的发展历程可以清晰证实这个 观点。早在二十世纪八十年代初期,勘探领域从构造转向岩性,地震勘探先后出 现了“亮点”和AVO技术、波阻抗反演技术、模式识别技术等,到了九十年代末岩 性目标的描述在地震领域已经是非常成熟的技术,此时地质上才逐步提出了岩性 地层勘探的理念。也就是说地震技术领先于勘探领域对技术的需求,所以物探人 员可以从容应对。随后在本世纪初又从波阻抗反演进一步延伸到叠前反演,岩性 地层勘探问题可以得到更好地解决。但是,近几年勘探目标很快转到了火山岩、 碳酸盐岩等复杂岩性,接着又转入了致密油气,甚至是页岩油气,勘探目标的快 速变化,使原来的地震储层预测技术的介质假设不适应勘探新领域的实际介质条

相关主题
文本预览
相关文档 最新文档